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Summer School in mini-HPC

Scope of summer school

With increasing computational power available even on desktop level, opportunities for simulating

large-scale physical, biological and social systems are ubiquitous. Moreover, as the scale and scope

of simulations increase, the challenge of handling ever-larger data sets becomes immense. This

challenge is amplified by the phenomenon of “big data” – the generation of more and more data

as the internet permeates our lives, and the possibility of a data wall, should the rate of data

generation outstrip our capacity to interpret this information. The object of this module is to study

high-performance computing at elementary level (along with standard data I/O) operations, and to

interpret the resulting large data files in an automated fashion using batch-processing techniques

that can be implemented in Matlab.

Learning Outcomes

1. Be able to write elementary programs in Fortran, including subroutines, and compiler linking

2. Be able to handle data I/O in Fortran

3. Be able to implement multi-threading in Fortran

4. Be familiar with the theory of multi-threading, the pitfalls in its implementation, and its

limitations with respect to computer architecture

5. Be able to automate data post-processing from Fortran simulations in Matlab, including Mat-

lab I/O, visualization (e.g. 3D isosurfaces, contour plotting, animations), and statistical

post-processing.

6. Be familiar with the pitfalls associated with data-processing of weakly-structured files

Prerequisites

Students must have taken ACM 20030 or its non-UCD equivalent and have a working knowledge of

Matlab. No prior knowledge of Fortran of the Linux operating system is assumed, although some

knowledge of these areas would be helpful.

Assessment No assessment takes place in the summer school. Students who complete the school

satisfactorily will receive a certificate of attendance.
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Chapter 1

Introduction

Module summary

We will follow the following programme of work:

1. Study a little bit of computer architecture. This is because we want to understand the concepts

behind parallel programming, and then implement them.

2. Study some analytical models. These will be the test cases on which we do numerical work.

The analytical models include a diffusion equation and Poisson’s equation, in two dimensions,

with a mixture of boundary conditions.

3. Study some numerical methods, in particular central differencing and the Crank–Nicholson

scheme for diffusion.

4. Study a Matlab code to solve Poisson’s equation in two dimensions, on a rectangular domain.

You will extend this code to a diffusion problem.

5. Study rigorously iterative methods for solving matrix problems, investigating readily-computable

sufficient conditions for the convergence of such methods.

6. Learn the basics of Fortran, including code-writing, compilation, execution, and I/O (in-

put/output).

7. Study a Fortran code to solve Poisson’s equation in two dimensions, on a rectangular domain.

You will extend this code to a diffusion problem.

8. Write postprocessing routines in Matlab to examine and visualize outputs from Fortran codes.

9. Study the concept of shared memory and its implementation via the OpenMP (OMP) standard.
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2 Chapter 1. Introduction

10. Parallelize our Fortran codes.

11. Investigate interesting conceptual issues in parallel programming: race conditions, reductions,

thread-local operations, memory use.

12. Assess the performance of a parallel code by timing the execution of such codes.

13. Study issues around memory allocation in Fortran.

14. Write, run, and postprocess a three-dimensional code for solving Poisson’s problem in a regular

three-dimensional domain.

Textbooks

• Lecture notes are available for download on the web and are self-contained:

http://mathsci.ucd.ie/~onaraigh/summerschool.html

• The lecture notes will also be used as a practical Matlab/Fortran guide in the lab-based

sessions.

• Here is a list of the resources on which the notes are based:

– For issues concerning numerical linear algebra:

http://tavernini.com/arc/mat5603note2.pdf

as well as

http://www.math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect6.pdf

– For issues concerning computer architecture and memory, the course Introduction to

High-Performance Scientific Computing on the website

www.tacc.utexas.edu/~eijkhout/Articles/EijkhoutIntroToHPC.pdf

– For more information about the numerical solution of partial differential equations, the

book Numerical Recipes in C, W. H. Press et al. (CUP, 1992):

http://apps.nrbook.com/c/index.html

– For parallel programming in the OpenMP (OMP) standard, the lecture notes Parallel

Programming in Fortran 95 using OpenMP, M. Hermanns (2002):

http://www.openmp.org/presentations/miguel/F95_OpenMPv1_v2.pdf
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Module dependencies

Some knowledge of Linear Algebra and Calculus is assumed. Students must have taken ACM 20030

or its non-UCD equivalent and have a working knowledge of Matlab. No prior knowledge of Fortran

of the Linux operating system is assumed.

School format

• Mornings, 10:00 (sharp) – 12:30 (ish): Lectures

• Afternoons, 14:00 (sharp) – 16:00: supervised lab and problem sessions

Of course, you can stay after 16:00 (until the building closes) to finish problems.



Chapter 2

Floating-Point Arithmetic

Overview

Binary and decimal arithmetic, floating-point representation, truncation, truncation errors, IEEE

double precision standard

2.1 Introduction

Being electrical devices, ‘on’ and ‘off’ are things that all computers understand. Imagine a computer

made up of lots of tiny switches that can either be on or off. We can represent any number (and

hence, any information) in terms of a sequence of switches, each of which is in an ‘on’ or ‘off’ state.

We do this through binary arithmetic. An ‘on’ or an ‘off’ switch is therefore a fundamental unit

of information in a computer. This unit is called a bit.

2.2 Positional notation and base 2

One of the crowing achievements of human civilization is the ability to represent arbitrarily large

and small real numbers in a compact way using only ten digits. For example, the integer 570, 123

really means

570, 123 = (5× 105) + (7× 104) + (0× 103) + (1× 102) + (2× 101) + (3× 100)

Here,

• The leftmost digit (5) has five digits to its right and therefore comes with a power 105,

4



2.2. Positional notation and base 2 5

• The digit second from the left (7) has four digits to its right and therefore comes with power

of 104,

• And so on, down to the rightmost digit, which, by definition, has no other digits to its right,

and therefore comes with a power of 100.

In contrast, the Romans would have struggled to represent this number:

570, 123 = DLXXCXX I I I,

where the overline means multiplication by 1, 000.

Rational numbers with absolute value less than unity can be expressed in the same way, e.g.

0.217863:

0.217863 = (2× 10−1) + (1× 10−2) + (7× 10−3) + (8× 10−4) + (6× 10−5) + (3× 10−6).

Other rational numbers have a decimal expansion that is infinite but consists of a periodic repeating

pattern of digits:

1
7
= 0.142857142857 · · · = (1×10−1)+(4×10−2)+(2×10−3)+(8×10−4)+(5×10−5)+(7×10−6)

+ (1× 10−7) + (4× 10−8) + (2× 10−9) + (8× 10−10) + (5× 10−11) + (7× 10−12) + · · ·

Using geometric progressions, it can be checked that 1/7 does indeed equal 0.142857142857 · · · ,
since

0.142857142857 · · · = 1

(
1

10
+

1

107
+

1

1013
+ · · ·

)
+ 4

(
1

102
+

1

108
+ · · ·

)
+

+ 2

(
1

103
+

1

109
+ · · ·

)
+ 8

(
1

104
+

1

1010
+ · · ·

)
+

+ 5

(
1

105
+

1

1011
+ · · ·

)
+ 7

(
1

106
+

1

1012
+ · · ·

)
+ · · ·

=
1

10

(
1 +

1

106
+

1

1012
+ · · ·

)
+

4

102

(
1 +

1

106
+

1

1012

)
+ · · ·

=

(
1 +

1

106
+

1

1012
+ · · ·

)[
1

10
+

4

102
+

2

103
+

8

104
+

5

105
+

7

106

]
=

1

1− 1
106

(
105 + 5× 104 + 2× 103 + 8× 102 + 5× 10 + 7

106

)
,
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Hence,

0.142857142857 · · · =
106

106 − 1

(
105 + 5× 104 + 2× 103 + 8× 102 + 5× 10 + 7

106

)
,

=
105 + 4× 104 + 2× 103 + 8× 102 + 5× 10 + 7

106 − 1
,

=
142857

999999
,

=
142857

7× 142857
,

= 1
7
.

In a similar way, all real numbers can be represented as a decimal string. The decimal string may

terminate or be periodic (rational numbers), or may be infinite with no repeating pattern (irrational

numbers). For example, a real number y ∈ [0, 1), with

y =
∞∑
n=1

xn

10n
= 0.x1x2 · · ·

where xi ∈ {0, 1, · · · , 9}. This number does not as yet have a meaning. However, consider the

sequence {yN} of rational numbers, where

yN =
N∑

n=1

xn

10n
. (2.1)

This is a sequence that is bounded above and monotone increasing. By the completeness axiom,

the sequence has a limit, hence

y = lim
N→∞

yN .

The completeness axiom is therefore equivalent to the construction of the real numbers: any real

number can be obtained as the limit of a rational sequence such as Equation (2.1).

Now that we understand how numbers are represented in base 10 using positional notation, we now

examine other bases. Consider for example the string

x = 1010110,

in base 2. Using positional notation and base 2, we understand x to be the number

x = (1× 26) + (0× 25) + (1× 24) + (0× 23) + (1× 22) + (1× 2) + (0× 20),

= 64 + 16 + 4 + 2,

= 86, base 10.
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Numbers with absolute value less than unity can be represented in a similar way. For example, let

x = 0.01101 base 2.

Using positional notation, this is understood as

x =
0

2
+

1

22
+

1

23
+

0

24
+

1

25
,

= 1
4
+ 1

8
+ 1

32
,

= 8
32

+ 4
32

+ 1
32
,

= 13
32
,

= 0.40625 base 10.

Two binary strings can be added by ‘carrying twos’. For example,

+
0.0 1 1 0 1
1.1 1 1 0 0
10.0 1 0 0 1

Let’s check our calculation using base 10:

x1 = 0.01101 =
0

2
+

1

4
+

1

8
+

0

16
+

1

32
=

13

32
,

x2 = 1.111 = 1 +
1

2
+

1

4
+

1

8
=

15

8
=

60

32
.

Hence,

x1+x2 =
73

32
= 2+

9

32
= 2+

1

32
+

8

32
= 2+

1

32
+
1

4
= (1×21)+(0×2)+

1

22
+

1

25
= 10.01001 base 2.

Because computers (at least notionally) consist of lots of switches that can be on or off, it makes

sense to store numbers in binary, as a collection of switches in ‘on’ or ‘off’ states can be put into a

one-to-one correspondence with a set of binary numbers. Of course, a computer will always contain

only a finite number of switches, and can therefore only store the following kinds of numbers:

1. Numbers with absolute value less than unity that can be represented as a binary expansion

with a finite number of non-zero digits;

2. Integers less than some certain maximum value;

3. Combinations of the above.
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An irrational real number (e.g.
√
2) will be represented on a computer by a truncation of the true

value. This introduces a potential source of error into numerical calculations – so-called rounding

error.

2.3 Floating-point representation

Rounding error is the original sin of computational mathematics. A partial atonement for this sin is

the idea of floating-point arithmetic. A base-10 floating-point number x consists of a fraction F

containing the significant figures of the number, and an exponent E:

x = F × 10E,

where
1
10

≤ F < 1.

Representing floating-point numbers on a computer comes with two kinds of limitations:

1. The range of the exponent is limited, Emin ≤ E ≤ Emax, where Emin is negative and Emax

is positive; both have large absolute values. Calculations leading to exponents E > Emax

are said to lead to overflow; calculations leading to exponents E < Emin are said to have

underflowed.

2. The number of digits of the fraction F that can be represented by on and off switches on a

computer is finite. This results in rounding error.

The idea of working with rounded floating-point numbers is that the number of significant figures

(‘precision’) with which an arbitrary real number is represented is independent of the magnitude of

the number. For example,

x1 = 0.0000001234 = 0.1234× 10−6, x2 = 0.5323× 106

are both represented to a precision of four significant figures. However, let us add these numbers,

keeping only four significant figures:

x1 + x2 = 0.0000001234 + 532, 300,

= 532, 300.0000001234,

= 0.5323000000001234× 106,

= 0.5323× 106 four sig. figs.,

= x1.
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Rounding has completely negated the effect of adding x1 and x2.

When starting with a real number x with a possibly indefinite decimal expansion, and representing it

floating-point form with a finite number of digits in the fraction F , the rounding can be implemented

in two ways:

1. Rounding up, e.g.

0.12345 = 0.1235, four sig. figs.,

and 0.12344 = 0.1234 and 0.12346 = 0.1235, again to four significant figures;

2. ‘Chopping’, e.g.

0.12345 = 0.12344 = 0.12346 = 0.1234, truncated to four sig. figs.

The choice between these two procedures appears arbitrary. However, consider

x = a.aaaaB,

which is rounded up to

x̃ = a.aaaC,

If B < 5, then C = a, hence

x− x̃ = 0.0000B = B × 10−5 < 5× 10−5.

On the other hand, if B ≥ 5, then C = a + 1 (the digit is incremented by one). In a worst-case

scenario, B = 5, and

x̃− x = a.aaaC − a.aaaaaB = (C − a)× 10−4 −B × 10−5 = 10−4 − 5× 10−5 = 5× 10−5.

In either case therefore,

|x̃− x| ≤ 5× 10−5.

Assuming a ̸= 0, we have |x| > 1, hence 1/|x| < 1, and

|x̃− x|
|x|

≤ 5× 10−5 = 1
2
× 10−4.

More generally, rounding x to N decimal digits gives a relative error

|x̃− x|
|x|

≤ 1
2
× 10−N+1.
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See if you can show by similar arguments that for chopping, the relative error is twice as large than

that for rounding: ∣∣˜̃x− x
∣∣

|x|
≤ 10−N+1.

A more convenient way of summarizing these results is as follows: Let

x̃ = fl(x)

be the result of rounding the real number x using either rounding up or chopping. Define the signed

relative error

ϵ =
fl(x)− x

x
. (2.2)

We know,

|ϵ| ≤ ϵN =

1
2
10−N+1, rounding up,

10−N+1, chopping.
(2.3)

Thus, by definition,

|ϵ| ≤ ϵN

Re-arranging Equation (2.2), we have

fl(x) = x(1 + ϵ), |ϵ| ≤ ϵN .

The value ϵN is calledmachine epsilon and depends on the floating-point arithmetic of the machine

in question. We can also think of machine epsilon as the largest number x for which the computed

value of 1 + x is 1. It can be computed as follows in Matlab:

x=1;

while( 1+x~=1)

x=x/2;

end

x=2*x;

display(x)

However, Matlab will display machine epsilon if you simply enter ‘eps’ at the command prompt.
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2.4 Error accumulation

Most computing standards will have the following property:

fl(a ◦ b) = (a ◦ b)(1 + ϵ), |ϵ| ≤ ϵN , (2.4)

where ϵN is the machine epsilon and ◦ represents an arithmetic operation such as ×, +, −, or ÷.

This is a good property to have: if the error in representing the numbers a and b is small, then the

error in representing their sum is also small. Because machine epsilon is very small, the compound

error obtained in a long sequence of arithmetic operations (where each component operation has the

property (2.4)) is very small. Errors induced by compounding individual errors such as Equation (2.4)

are therefore almost always negligible. However, error accumulation can still occur in two other ways:

1. The numbers entered into the computer code lack the precision required for a long calculation,

and ‘cancellation errors’ occur;

2. Certain iterative algorithms contain stable and unstable solutions. The unstable solution is

not accessed if the ‘initial condition’ is zero. However, if the initial condition is ϵN , then the

unstable solution can grow over time until it swamps the other, desired solution.

These sources of error will become more apparent in the examples in the homework.

2.5 Double precision and other formats

The gold standard for approximating an arbitrary real number in rounded floating-point form

x = F × 2E (2.5)

is the so-called IEEE double precision. A double-precision number on a computer can be thought

of as a 64 contiguous pieces of memory (64 bits). One bit is reserved for the sign of the number,

eleven bits are reserved for the exponent (naturally stored in base 2), and the remaining fifty-two

bits are reserved for the significand. Thus, in IEEE double precision, a real number is approximated

and then stored as follows:

x ≈ fl(x) = (−1)sign

(
1 +

52∑
i=1

b−i

2i

)
× 2Es−1023.

Here, the exponent Es is stored using a contiguous eleven-bit binary string, meaing that Es can in

principle range from Es = 0 to Es = 2047. However, Es = 0 is reserved for underflow to zero, and
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Es = 2047 is reserved for overflow to infinity, meaning that the maximum possible finite exponent

is Es = 2046. Accounting for offset, the maximum true exponent is

E = Es,max − 1023 = 2046− 1023 = 1023.

Hence, xmax ≈ 21023. Similarly,

xmin = 21−1023 = 2−1022.

Now, recall the formula

|x− fl(x)|
|x|

:= ϵ ≤ ϵN =

1
2
10−N+1, rounding up,

10−N+1, chopping,

which gave the truncation error in base 10 for truncation after N figures of significance. Going over

to base two and chopping, we have

|x− fl(x)|
|x|

:= ϵ ≤ ϵN = 2−N+1.

In IEEE double precision, the precision is N = 52 + 1 (the extra 1 comes from the digit stored

implicitly), hence

ϵN = 2−53+1 = 2−52.

Equivalently, the smallest positive number strictly greather than 1 detectable in this standard is

1 +
0

2
+

0

22
+ · · ·+ 1

252
,

and again, ϵN = 2−52 gives machine precision. The IEEE standard also supports extensions to the

real numbers, including the symbols Inf (which will appear when a code has overflowed), and NaN.

The symbol NaN will appear as a code’s output if you do something stupid. Examples in Matlab

sytanx include the following particularly egregious one:

x=0/0;

display(x)
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Figure 2.1: 64 contiguous bits in memory make up an IEEE floating-point number, with bits re-
served for the sign, the exponent, and the fraction. From http://en.wikipedia.org/wiki/Double-
precision floating-point format (20/11/2012).

Exercise 2.1 If Planck’s constant is ∼ 10−34 (SI units), and if machine epsilon is ∼ 10−16, how

can Planck’s constant be represented in IEEE double precision?

Solution: The smallest number in absolute value terms representable in IEEE double precision is

approximately 2−1022, which comfortably takes in Planck’s constant. This is the concept of range:

numbers within the range 2−1022 > x > 21023 can be represented.

On the other hand, machine epsilon is concerned with the concept of precision. Machine epsilon

can be thought of as the smallest positive number ϵN for which the difference between 1 + x and

1 is detectable by the computer. Equivalently, machine precision can be thought of as an upper

bound on the relative error between a real number x and its IEEE floating-point representation:

|x− fl(x)|
|x|

≤ ϵN .

These concepts come together when you try to add ~ to 1 on a computer – although hbar is definitely

not zero (nor will it appear as zero to the computer), the computer addition of 1 + ~ will always

yield 1. We are limited in the precision with which we can represent the sum 1 + ~.

Another datatype is the integer, which is stored in a contiguous chunk of memory like a double,

typically of length 8, 16, 32, or 64 bits. Typically, the integers are defined with respect to an offset

(two’s complement), so that no explicit storage of the sign is required.
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Common Programming Error:

Mixing up integers and doubles. For example, suppose in a computer-programming lan-

guage such as Fortran, that x has been declared to be a double-precision number. Then,

assigning x the value 1, i.e.

x=1;

confuses the compiler, as it now thinks that x is an integer! In order not to confuse the

compiler, one would have to write

x=1.d0; (Fortran)

Now, the distinction between integers and doubles is not enforced in Matlab, and am-

biguity about variable types is allowed. However, in the Fortran part of this course, the

compiler will punish you severely for this ambiguity.

Matlab implements the IEEE standard, albeit implicitly. For example, if you type

display(pi)

at the command line, you will only see the answer

3.1416

However, you can rest assured that the built-in working precision of the machine is 53 bits. For

example, typing

display(eps)

yields

2.2204e-016

Also, typing

x=2;

while(x~=Inf)

x_old=x;

x=2*x;

end

display(x_old)
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yields

8.9885e+307,

the same as 21023 = 8.9885e+ 307.



Chapter 3

Computer architecture and Compilers

Overview

Computer architecture means the relationship between the different components of hardware in a

computer. In this chapter, this idea is discussed under the following headings: the memory/processor

model, memory organization, processor organization, simple assembly language.

3.1 The memory/processor or von Neumann model

Computer architecture means the relationship between the different components of hardware

in a computer. On a very high level of abstraction, many architectures can be described as von

Neumann architectures. This is a basic design for a computer with two components:

1. An undivided memory that stores both program and data;

2. A processing unit that executes the instructions of the program and operates on the data

(CPU).

This design is different from the earliest computers in which the program was hard-wired. It is

also very clever, as the line between ‘data’ and ‘program’ can become blurred – to our advantage.

When we write a program in a given language, we work with a computer that has other, more

basic programs installed – including a text editor and a compiler. The von Neumann architecture

enables the computer to treat the code we write in the text editor as data, and the compiler is in

this context a ‘super-program’ that operates on these data and converts our high-level code into

instructions that can be read by the machine. Having said this, in this course, we understand ‘data’

to be the collection of numbers to be operated on, and the code is the set of instructions detailing

the operations to be performed.

16



3.2. Memory organization 17

In conventional computers, the machine instructions generated by the compiled version of our code

do not communicate directly with the memory. Instead, information about the location of data

in the computer memory, and information about where in memory the results of data processing

should go, are stored directly in a part of the CPU called the register. Rather counter-intuitively,

the existence of this ‘middle-man’ register speeds up execution times for the code. Many computer

programs possess locality of reference: the same data are often accessed repeatedly. Rather than

moving these frequently-used data to and from memory, it is best to store them locally on the CPU,

where they can be manipulated at will.

The main statistic that is quoted about CPUs is their Gigahertz rating, implying that the speed of

the processor is the main determining factor of a computer’s performance. While speed certainly

influences performance, memory-related factors are important too. To understand these factors, we

need to describe how computer memory is organized.

3.2 Memory organization

Practically, a pure von Neumann architecture is unrealistic because of the so-called memory wall.

In a modern computer, the CPU performs operations on data on timescales much shorter than the

time required to move data from memory to the CPU. To understand why this is the case, we need

to study how the CPU and the computer memory communicate.

In essence, the CPU and the computer memory communicate via a load of wires called the bus. The

front-side bus (FSB) or ‘North bridge’ connects the computer main memory (or ‘RAM’) directly to

the CPU. The bus is typically much slower than the processor, and operates with clock frequencies

of ∼ 1GHz, a fraction of the CPU clock frequency. A processor can therefore consume many items

of data fed from the bus in one clock tick – this is the reason for the memory wall.

The memory wall can be broken up further in two parts. Associated with the movement of data are

two limitations: the bandwidth and the latency. During the execution of a process, the CPU will

request data from memory. Stripping out the time required for the actual data to be transferred,

the time required to process this request is called latency. Bandwidth refers to the amount of data

that can be transferred per unit time. Bandwidth is measured in bytes/second, where a byte (to

be discussed below) is a unit of data. In this way, the total time required to for the CPU to request

and receive n bytes from memory is

T (n) = α+ βn,

where α is the latency and β is the inverse of the bandwidth (second/byte). Thus, even with infinite

bandwidth (β = 0), the time required for this process to be fulfilled is non-zero.

Typically, if the chunk of memory of interest physically lies far away from the CPU, then the latency
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is high and the bandwidth is low. It is for this reason that a computer architecture tries to maximize

the amount of memory near the CPU as possible. For that reason, a second chunk of memory close

the CPU is introduced, called the cache. This is shown schematically in Figure 3.1. Data needed in

Figure 3.1: The different levels of memory shown in a hierarchy

some operation gets copied into the cache on its way to the processor. If, some instructions later,

a data item is needed again, it is searched for in the cache. If it is not found there, it is loaded

from the main memory. Finding data in cache is called a cache hit, and not finding it is called a

cache miss. Again, the cache is a part of the computer’s memory that is located on the die, that

is, on the processor chip. Because this part of the memory is close the CPU, it is relatively quick

to transfer data to and from the CPU and the cache. For the same reason, the cache is limited

in size. Typically, during the execution of a programme, data will be brought from slower parts

of the computer’s memory to the cache, where it is moved on and off the register, where in turn,

operations are performed on the data. There is a sharp distinction between the register and the

cache. The instructions in machine language that have been generated by our compiled code are

instructions to the CPU and hence, to the register. It is therefore possible in some circumstances

to control movement of data on and off the register. On the other hand, the move from the main

memory to the cache is done purely by the hardware, and is outside of direct programmer control.
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3.3 The rest of the memory

The rest of the memory is referred to as ‘RAM’, and is neither built into the CPU (like the registers),

nor collocated with the CPU (like the cache). It is therefore relatively slow but has the redeeming

feature that it is large. The most-commonly known feature of RAM is that the data it contains are

removed when the computer powers off. This is why you must save your work to the hard drive!

RAM itself is broken up into two parts – the stack and the heap.

Stacks are regions of memory where data is added or removed on a last-in-first-out basis. The stack

really does resemble a stack of plates. You can only take a plate on or off the top of a stack – this

is also true of data stored in the stack. Another silly analogy is to imagine a series of postboxes

attached one on top of the other to a vertical pole. Initially, all the postboxes are empty. Then,

the bottommost postbox is filled and a postit note is placed on it, indicating that the location of

the next available postbox. As letters are put into and removed from postboxes, the postit note

moves up and down the stack of postboxes accordingly. It is therefore very simple to know how

many postboxes are full and how many are empty – a single label suffices. The system for addressing

memory slots in the stack is equally simple and for that reason, accessing the stack is faster than

accessing other kinds of memory.

On the other hand, there is the heap, which is a region of memory where data can be added or

removed at will. The system for addressing memory slots in the heap is therefore much more detailed,

and accessing the heap is therefore much slower than accessing the stack. However, the size of the

stack is fixed at runtime and is usually quite small. Many codes require lots of memory. Trying

to fit lots of data into the relatively small amount of stack that exists can lead to stack overflow

and segmentation faults. Stack overflow is a specific error where the exectuting program requests

more stack resources than those that exist; segmentation faults are generic errors that occur when

a code tries to access addresses in memory that either do not exist, or are not available to the code.

So ubiquitous and terrifying are these errors to computer codes a popular web forum for coders and

computer scientists is called http://stackoverflow.com/.

For the Fortran part of this course, remember the following lesson:

Common Programming Error:

Never allocate arrays on the stack (Possibly Fatal)!

All of the different levels of memory and their dependencies are summarized in the diagram at the

end of this chapter (Figure 3.2).
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3.4 Multicore architectures

If you open the task manager on a modern machine running Windows, the chances are you will see

two panels by first going to ‘performance’ and then ‘CPU Usage History’ . It would appear that

the machine has two CPUs. In fact, modern computers contain multiple cores. We still consider

the machine to have a single CPU, but two smaller processing units (or cores) are placed on the

same chip. The two cores share some cache (‘L2 cache’), while some other cache is private to each

core (‘L1 cache’). This enables computer to break up a computational task into two parts, work on

each task separately, via the private cache, and communicate necessary shared data via the shared

cache. This architecture therefore facilitates parallel computing, thereby speeding up computation

times. High-level programs such as MATLAB take advantage of multiple-core computing without

any direction from the user. On the other hand, lower-level programming standards (e.g. C, Fortran)

require explicit direction from the user in order to implement multiple-core processing. This is done

using the OpenMP standard.

Unfortunately, the idea of having several cores on a single chip makes the description of this archi-

tecture ambiguous. We reserve the word processor for the entire chip, which will consist of multiple

sub-units called cores. Sometimes the cores are referred to as threads and this kind of computing

is called multi-threaded.

3.5 Compilers

As mentioned in Section 3.1, a standard procedure for writing code is the following:

1. Write the code in a high-level computer language such as C or Fortran. You will do this in a

text editor. Computer code on this level has a definite syntax that is very similar to ordinary

English.

2. Convert this high-level code to machine-readable code using a compiler. You can think of

this as a translator that takes the high-level code (readable to us, and similar in its syntax to

English) into lots of gobbledegook that only the computer can understand.

3. Compilation takes in a text file and outputs a machine-readable executable file. The exe-

cutable can then be run from the command line.

MATLAB sits one level higher than a high-level computer language, with a friendly syntax and all

sorts of clever procedures for allocating memory so that we don’t need to worry about technical

issues. It also has a user-friendly interface so that our high-level Matlab files can be run and the

output interpreted and plotted in a user-friendly fashion. Incidently, Matlab is written in C, so it as
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though two translations happen before the computer executes our code: Matlab→ C → (Machine-

readable code).
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Figure 3.2: Computer architecture showing the interaction between the different levels of memory.



Chapter 4

The model diffusion equation – theoretical

background

Overview

We consider analytical solutions to a two-dimensional diffusion problem. The reason for examining

this particular problem are manifold: it is a minimal model that nonetheless has a small amount

of complexity sufficient to warrant the use of a number of interesting numerical methods. Also,

its analytical solution is rather interesting, as it requires the use of a hybrid Foruier-cosine series

expansion. Finally, analytical solutions in this section will be used as benchmarks for future numerical

simulation studies. Throughout the course, the problem considered in this section will be referred

to as the model diffusion equation.

4.1 Boundary conditions – review

For this discussion, let

∂C

∂t
= a(x, t)

∂2C

∂x2
+ b(x, t)

∂C

∂x
+ c(x, t)C + d(x, t), x ∈ (0, L), t > 0,

be a parabolic partial differential equation in one space dimension, on x ∈ (0, L), with smooth initial

conditions

C(x, t = 0) = Cinit(x), x ∈ [0, L].

Then the following boundary conditions are possible.

23
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1. Dirichlet conditions The function C(x, t > 0) is specified on the boundaries:

C(0, t > 0) = g1(t),

C(L, t > 0) = g2(t).

If the functions g1 = g2 = 0, then we have homogeneous Dirichlet conditions:

C(0, t > 0) = 0,

C(L, t > 0) = 0.

2. Neumann conditions: The derivative Cx(x, t > 0) is specified on the boundaries:

Cx(0, t > 0) = g1(t),

Cx(L, t > 0) = g2(t).

If the functions g1 = g2 = 0, then we have homogeneous Neumann conditions, corre-

sponding to no flux through the boundaries.

3. Mixed conditions: As the name suggests, this set is a mixture of Dirichlet and Neumann

conditions:

α1Cx(0, t > 0) + α2C(0, t > 0) = g1(t),

α3Cx(L, t > 0) + α4C(L, t > 0) = g2(t).

4. Periodic boundary conditions: The function C(x, t > 0) has the same value on either

boundary point:

C(0, t) = C(L, t), t > 0.

In practice, these are not very realistic boundary conditions but they are used in numerical

experiments because they are easy to implement. However, they can be used to mimic an

infinite domain, if the periodic length L is made long enough.

4.2 The model diffusion equation

We are interested in solving the following partial differential equation (PDE) for diffusion, given here

in non-dimensional form as follows:

∂C

∂t
= ∇2C + s(x, z), (x, z) ∈ Ω, (4.1a)
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where

Ω = (0, Lx)× (0, 1), (4.1b)

and ∇2 = ∂2
x + ∂2

z is the Laplacian. The partial differential equation is subject to the following

boundary conditions:
∂C

∂z
= 0, z = 0, z = 1, (4.1c)

together with periodic boundary conditions in the x- and y-directions:

C(x = 0, z, t) = C(x = Lx, z, t). (4.1d)

Finally, an initial condition is prescribed:

C(x, z, t = 0) = Cinit(x, z), (x, z) ∈ Ω, (4.1e)

where Cinit(x, z) is a continuous function. Here, the system of equations (6.1) is made non-

dimensional on the channel depth Lz (herein set to unity), and the diffusive timescale τ = L2
z/D,

where D is the diffusion coefficient.

4.3 Physical interpretation

Physically, Equation (6.1) is a model for diffusion of particles in the presence of a source. The

amount of matter in the system changes over time, due to contributions from the source s(x, y, z).

There are no contributions from the boundary conditions. For, consider the following evolution

equation for the total system mass

M =

∫
Ω

d2xC(x, z, t).

We have

dM

dt
=

∫
Ω

d2x
∂C

∂t
,

=

∫
Ω

d2x
[
∇2C + s(x, z)

]
,

=

∫
Ω

d2x s(s, z) +

∫
∂Ω

dAn · ∇C,



26 Chapter 4. The model diffusion equation – theoretical background

where ∂Ω is the boundary of the set Ω, dA is an element of area on the boundary, and n is the

outward-pointing unit normal to ∂Ω. We compute∫
∂Ω

dAn · ∇C =

∫ Lx

0

dx
∂C

∂z

∣∣∣∣
z=1

−
∫ Lx

0

dx
∂C

∂z

∣∣∣∣
z=0

+

∫ Lz

0

dz
∂C

∂x

∣∣∣∣
x=Lx

−
∫ Lz

0

dz
∂C

∂x

∣∣∣∣
x=0

.

However, all of these terms cancel, either because of the no-flux boundary condition (∂C/∂z)(z =

0, 1) = 0, or because of periodicity, meaning that

dM

dt
= LxLz⟨s⟩, ⟨s⟩ := 1

LxLz

∫
Ω

d2x s(s, z). (4.2)

4.4 Decomposition

In view of the formula (4.2), it is sensible to split the solution into two parts:

C = ⟨C⟩(t) + C ′(x, z, t), s = ⟨s⟩+ s′(x, z).

By linearity,

∂

∂t
⟨C⟩ = ∇2⟨C⟩+ ⟨s⟩,

∂C ′

∂t
= ∇2C ′ + s′.

Indeed, the solution to the mean contribution is known:

⟨C⟩(t) = ⟨C⟩(t = 0) + ⟨s⟩t = ⟨Cinit⟩+ ⟨s⟩t.

while the PDE for the fluctuations inherits all the properties of the basic PDE (6.1), such that

∂C ′

∂t
= ∇2C ′ + s′(x, z), (x, z) ∈ Ω, (4.3a)

subject to the following boundary conditions:

∂C ′

∂z
= 0, z = 0, z = 1, (4.3b)

together with periodic boundary conditions in the x- and y-directions:

C ′(x = 0, z, t) = C ′(x = Lx, z, t). (4.3c)
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Finally, an initial condition is prescribed:

C ′(x, z, t = 0) = Cinit(x, z)− ⟨Cinit⟩, (x, z) ∈ Ω, (4.3d)

4.5 Analytical solution

We prove the following theorem:

Theorem 4.1 Equation (4.3) has at least one smooth solution, namely

C ′(x, z, t) =
∞∑
n=1

∞∑
i=−∞

{
e−k2int

[
ain(0)−

sin
k2
in

]
+

sin
k2
in

}
ei[(2π/Lx)ix] cos

(
nπz

Lz

)
, (4.4a)

where

ain(0) =
2

LxLz

∫ Lx

0

∫ Lz

0

d2x e−i[(2π/Lx)ix] cos

(
nπz

Lz

)
[C0(x, z)− ⟨C0⟩] , (4.4b)

and where we have restored the definition of Lz for clarity’s sake.

Proof: Take Equation (6.1a), multiply by cos(nπz/Lz) (with n = 1, 2, · · · ) and integrate with

respect to z. The result is

∂t

∫ Lz

0

C ′ cos

(
nπz

Lz

)
dz = ∂2

x

∫ Lz

0

C ′ cos

(
nπz

Lz

)
dz +

∫ Lz

0

(
∂2C ′

∂z2

)
cos

(
nπz

Lz

)
dz

+

∫ Lz

0

s(x, z) cos

(
nπz

Lz

)
dz.

We call

Ĉn(x, t) :=
2

Lz

∫ Lz

0

C ′(x, t) cos

(
nπz

Lz

)
dz, ŝn(x) :=

2

Lz

∫ Lz

0

s(x, z) cos

(
nπz

Lz

)
dz;

hence, we have
∂Ĉn

∂t
= ∂2

xĈn +

∫ Lz

0

(
∂2C ′

∂z2

)
cos

(
nπz

Lz

)
dz + ŝn(x, y). (4.5)
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Consider now the following (with kn = nπ/Lz):∫ Lz

0

(
∂2C ′

∂z2

)
cos

(
nπz

Lz

)
dz =

∫ Lz

0

{
∂

∂z

[
cos

(
nπz

Lz

)
∂C ′

∂z

]
+ kn sin

(
nπz

Lz

)
∂C ′

∂z

}
dz,

=

[
cos

(
nπz

Lz

)
∂C ′

∂z

]z=Lz

z=0

+ kn

∫ Ly

0

sin

(
nπz

Lz

)
∂C ′

∂z
dz,

= 0 + kn

∫ Lz

0

sin

(
nπz

Lz

)
∂C ′

∂z
dz,

= kn

∫ Lz

0

{
∂

∂z

[
sin

(
nπz

Lz

)
C ′
]
− kn cos

(
nπz

Lz

)
C ′
}
dz,

=

[
sin

(
nπz

Lz

)
C ′
]z=Lz

z=0

− k2
n

∫ Lz

0

cos

(
nπz

Lz

)
C ′(x, z, t) dz.

Hence,

2

Lz

∫ Lz

0

(
∂2C ′

∂z2

)
cos

(
nπz

Lz

)
dz = −k2

n (2/Lz)

∫ Lz

0

cos

(
nπz

Lz

)
C ′(x, z, t) dz = −k2

nĈn.

Thus, Equation (6.1a) is transformed – via Equation (4.5) to

∂Ĉn

∂t
+ k2

nĈn = ∂2
xĈn + ŝn(x). (4.6)

However, this is now a standard diffusion problem in one (periodic) dimension, which can be solved

by standard Fourier-series methods: we propose

Ĉn(x, t) =
∞∑

i=−∞

ain(t)e
i[(2π/Lx)ix];

we also decompose ŝn(x, y) as

ŝn(x) =
∞∑

i=−∞

sine
i[(2π/Lx)ix].

Thus, the following amplitude equations are obtained:

dain
dt

= −k2
inain + sin, (4.7)

where

kin =

[(
2π

Lx

)2

i2 +

(
π

Lz

)2

n2

]1/2
.
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Equation (4.7) has solution

ain(t) =

e−k2int
[
ain(0)− sin

k2in

]
+ sin

k2ijn
, kin ̸= 0,

a0(0) + s0t, kin = 0,

where the second case follows because kin = 0 if and only if i = n = 0. However, this case is ruled

out because n ̸= 0. Thus, the solution for Ĉn(x, y, t) is therefore

Ĉn(x, t) =
∞∑

i=−∞

{
e−k2int

[
ain(0)−

sin
k2
in

]
+

sin
k2
in

}
ei[(2π/Lx)ix].

We now note that a cosine transform has been taken in the z-direction:

Ĉn(x, t) =
2

Lz

∫ Lz

0

cos

(
nπz

Lz

)
C ′(x, z, t) dz, n ̸= 0.

However, since {
cos

(
nπz

Lz

)}∞

n=1

is a basis for mean-zero continuous functions whose first derivative vanishes at z = 0, Lz, meaning

that the cosine transform can be reversed:

C ′(x, y, z, t) =
∞∑
n=1

Ĉn(x, y, t) cos

(
nπz

Lz

)
.

Hence,

C ′(x, z, t) =
∞∑
n=1

∞∑
i=−∞

{
e−k2int

[
ain(0)−

sin
k2
in

]
+

sin
k2
in

}
ei[(2π/Lx)ix] cos

(
nπz

Lz

)
.

Finally, it is of interest to determine the coefficients aijn(0). We have

Cinit(x, y, z)− ⟨Cinit⟩ =
∞∑
n=1

∞∑
i=−∞

aij(0)e
i[(2π/Lx)ix] cos

(
nπz

Lz

)
,

hence, by Fourier transformation,

ain(0) =
2

LxLz

∫ Lx

0

∫ Lz

0

d2x e−i[(2π/Lx)ix] cos

(
nπz

Lz

)
[Cinit(x, z)− ⟨Cinit⟩] .

(the factor of 2 comes from the cosine series). Having constructed a solution to Equation (4.3), it

is also the case that this is the only such smooth solution:

Theorem 4.2 Equation (4.4) is the unique smooth solution of Equation (4.3).
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Exercise 4.1 Prove Theorem (4.2).



Chapter 5

The model Poisson problem

Overview

In this chapter we consider a simpler problem than the diffusion problem posed previously. It will be

referred to throughout the course as the model Poisson problem.

5.1 The model Poisson problem

Consider the following sample problem (Poisson equation):

∇2C0 + s(x, z) = 0, (x, z) ∈ Ω, (5.1a)

where

Ω = (0, Lx)× (0, 1), (5.1b)

with boundary conditions
∂C0

∂z
= 0, z = 0, z = 1, (5.1c)

and

C0(x = 0, z, t) = C0(x = Lx, z, t). (5.1d)

31
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5.2 Solvability condition and explicit solution

Consider Equation (5.1a). Integrate both sides over x and z and apply the boundary conditions on

C. The result is

0 =

∫ Lx

0

dx

∫ Lz

0

dz s(x, z).

Thus, in order to get a self-consistent solutin, we require that the source should have zero mean:

⟨s⟩ := 1

LxLz

∫ Lx

0

dx

∫ Lz

0

dz s(x, z) = 0.

This is referred to as the solvability condition.

Assuming that Equation (5.1) satisfies the solvability condition, a solution is available through a

Fourier-cosine series:

C0(x, y) =
∞∑
n=1

∞∑
i=−∞

sin
k2
in

ei[(2π/Lx)ix] cos

(
nπz

Lz

)
, (5.2)

where kin and sin are defined as in Chapter 4.

5.3 Relation between model diffusion and Poisson problems

It is clear from Equation (5.2) that

lim
t→∞

C ′(x, z, t) = C0(x, z),

where C ′(x, z, t) (LHS) is the fluctuating part of the solution of the model diffusion problem, and

C0(x, y) (RHS) here denotes the solution of the model Poisson problem. Thus, the following theorem

is shown:

Theorem 5.1 Let ⟨s⟩ = 0 in the model diffusion equation. Then the solution C(x, z, t) of the

model diffusion equation – given smooth initial data – converges to the solution of the model

Poisson problem, as t → ∞:

lim
t→∞

C(x, z, t) = C0(z, z), ∇2C0(x, y) + s(x, y) = 0.
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Exercise 5.1 Prove Theorem 5.1 using a second approach: show first that

∂

∂t
(C − C0) = ∇2 (C − C0) ,

and hence show that

lim
t→∞

C(x, y, t) = C0(x, y). (5.3)

Non-uniqueness of solutions

Consider again the model Poisson problem with solution (5.2). It is clear that C0 + Const. is also

a solution, since ∇2(Const.) = 0, and C0 + Const. also satisfies the boundary conditions (hybrid

periodic–Neumann). The solution (5.2) is therefore not unique. This is because the operator ∇2,

equipped with the hybrid periodic–Neumann boundary conditions has a non-trivial kernel – the set

of all constant functions is a one-dimensional vector subspace and is the non-trivial kernel of the

PDE.

Exercise 5.2 What happens to the kernel of ∇2 if the boundary conditions are modified to

be a mixture of periodic BCs in the x-direction and homogeneous Dirichlet conditions in the

z-direction?

Pedagogical link between the model diffusion and Poisson problems

Throughout the rest of the course, work will be split up in the following way

• I will show you how to solve the model Poisson problem numerically.

• You will then take these techniques and solve the more difficult model diffusion equation.



Chapter 6

Model diffusion equation – Numerical

setup

Overview

In this chapter we consider numerical solutions of the model diffusion equation. We introduce

centred differencing in space as a way of approximating the Laplace operator numerically. Also,

Crank–Nicholson temporal discretization is introduced as a way of discretizing the temporal derivative

∂/∂t. Crank–Nicholson is a so-called implicit method, which means that a certain equation must

be inverted in order to evolve the numerical solution forward in time, stepping from one time step

to the next. For this reason, Jacobi iteration is introduced as a method for solving such implicit

(linear) equations.

6.1 The model

We are interested in solving the PDE from Chapter 4, recalled here to be

∂C

∂t
= ∇2C + s(x, z), (x, z) ∈ Ω, (6.1a)

where

Ω = (0, Lx)× (0, 1), (6.1b)

and ∇2 = ∂2
x + ∂2

z is the Laplacian. The partial differential equation is subject to the following

boundary conditions:
∂C

∂z
= 0, z = 0, z = 1, (6.1c)

34
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together with periodic boundary conditions in the x- and y-directions:

C(x = 0, z, t) = C(x = Lx, z, t). (6.1d)

Finally, an initial condition is prescribed:

C(x, z, t = 0) = Cinit(x, z), (x, z) ∈ Ω, (6.1e)

where Cinit(x, z) is a continuous function. Here, the system of equations (6.1) is made non-

dimensional on the channel depth Lz (herein set to unity), and the diffusive timescale τ = L2
z/D,

where D is the diffusion coefficient.

6.2 The discretization

We discretize the PDE and compute its approximate numerical solution on a discrete grid:

xi = (i− 1)∆x, i = 1, · · ·nx,

yj = (j − 1)∆y, j = 1, · · ·ny,

such that

(nx − 1)∆x = Lx, ∆x = Lx/(nx − 1),

and similarly, ∆y = Ly/(ny − 1). The PDE is also discretized in time, such that the solution is

only available at discrete points in time tn = n∆t, with n = 0, 1, · · · . The solution at tn and

x = (i∆x, y∆j) is written as Cn
ij. The diffusion operatior in the PDE (6.1) is approximated by

centred differences:

(
∇2C

)
ij
≈ Ci+1,j + Ci−1,j − 2Cij

∆x2
+

Ci,j+1 + Ci,j−1 − 2Cij

∆y2
:= D(Cij)

i = 2, 2, · · · , nx − 1, j = 2, 2, · · · , ny − 1.

Common Programming Error:

Extending the index ranges on i and j down to i = 1, j = 1 and up to i = nx, j = ny.

This is not allowed, since these are boundary points, where the PDE does not apply.

Instead, boundary conditions apply to these sets of points.
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The discretization in time is done using a Crank–Nicholson scheme:

Cn+1
ij − Cn

ij

∆t
= 1

2

[
D(Cn

ij) +D(Cn+1
ij )

]
+ sij, i = 2, 2, · · · , nx − 1, j = 2, 2, · · · , ny − 1.

Re-arrange:

[
1− 1

2
∆tD

] (
Cn+1

ij

)
=
[
1 + 1

2
∆tD

] (
Cn

ij

)
+∆tsij,

i = 2, 2, · · · , nx − 1, j = 2, 2, · · · , ny − 1. (6.2)

On the left-hand side, the quantity
[
1− 1

2
∆tD

]
is in fact a matrix operator, and the solution is

available only in implicit form: an inversion needs to be performed to extract Cn+1
ij from this implicit

equation:

Cn+1
ij =

[
1− 1

2
∆tD

]−1 { [
1 + 1

2
∆tD

] (
Cn

ij

)
+∆tsij

}
. (6.3)

The implicit equation (6.2) is written out in more detail now:

(1 + ax + ay)C
n+1
ij −1

2
ax
(
Cn+1

i+1,j + Cn+1
i−1,j

)
+1

2
ay
(
Cn+1

i,j+1 + Cn+1
i,j−1

)
=
[
1 + 1

2
∆tD

] (
Cn

ij

)
+sij := RHSn

ij,

where ax = ∆t/∆x2 and az = ∆t/∆z2. Tidy up:

(1 + ax + ay)C
n+1
ij − 1

2
ax
(
Cn+1

i+1,j + Cn+1
i−1,j

)
+ 1

2
ay
(
Cn+1

i,j+1 + Cn+1
i,j−1

)
= RHSn

ij. (6.4)

This is an implicit equation for Cn+1
ij that we must now endavour to solve.

Exercise 6.1 Investigate the reaons why a Crank–Nicholson treatment of the diffusion operator

is preferred.

6.3 Jacobi method

The focus of this course is on the use of iterative methods to solve problems such as Equation (6.3)

or equivalently, Equation (6.4). The idea is to make an initial guess for the solution, plug this into

some algorithm for refining the guess, and continue until this iterative procedure converges.

The simplest and most naive iterative method os the so-called Jacobi method. Let v ≡ Cn+1 be

the array to be found by solving Equation (6.3):

(1 + ax + ay) vij − 1
2
ax (vi+1,j + vi−1,j) +

1
2
ay (vi,j+1 + vi,j−1) = RHSij.
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This can be re-arranged simply as

vij =
1
2
ax (vi+1,j + vi−1,j) +

1
2
ay (vi,j+1 + vi,j−1) + RHSij

1 + ax + ay
. (6.5)

The idea of the Jacobi method is to take a guess for v, say vN , and to create a new guess vN+1 via

the formula

vN+1
ij =

1
2
ax
(
vNi+1,j + vNi−1,j

)
+ 1

2
ay
(
vNi,j+1 + vNi,j−1

)
+RHSij

1 + ax + ay
. (6.6)

If this iterative scheme converges, then limN→∞ vN = limN→∞ vN+1, and the approximate solutions

vN and vN+1 can be replaced in Equation (6.6) with some identical array v∗, thereby forcing

Equation (6.6) to be identical to Equation (6.5).

Common Programming Error:

Mixing up the iteration level N and the time-step levle n in an application of an iterative

method to an evolusionary PDE.

6.4 Boundary conditions

The idea to solve the PDE (6.1a) is to do implement a Crank–Nicholson-centred difference scheme

at interior points. Inversion of the resulting implicit problem is then achieved by the Jacobi method.

However, this approach can only be used at interior points

i = 2, 2, · · · , nx − 1, j = 2, 2, · · · , ny − 1.

At boundary points, the boundary conditions are enforced: ∂C/∂z = 0 at z = 0, 1, and periodic

boundary conditions in the x-direction. These are implemented numerically in a straightforward

fashion. The Neuman conditions at z = 0, Lz are implemented as

Ci,j=1 = Ci,j=2, Ci,j=ny = Ci,j=ny−1,

while the periodicity conditions at x = 0, Lx are implemented as follows

• i = 1: C(i− 1, j) = C(nx − 1, j),

• i = nx: C(i+ 1, j) = C(2, j).

Thus, the points i = 1 and i = nx are identified.
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6.5 The algorithm

We can now assemble an algorithm to solve Equation (6.1a) numerically:

1. Set up a discretization scheme with ∆x, ∆z, and ∆t defined by the user. Also, prescribe an

initial condition Cinit(x, z) and a source function s(x, z).

2. Obtain Cn=1
ij from C0

ij at interior points using centred differences, the Crank–Nicholson tem-

poral discretization, and Jacobi iteration.

3. Implement many iterations of the Jacobi method, until the method has converged to some

user-defined tolerance.

4. Implement the boundary conditions on Cn=1.

5. Repeat steps 2–4 for the desired number of timesteps.
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The model Poisson problem – numerical

setup

Overview

In this chapter we consider numerical solutions to the model Poisson problem.

7.1 The code

A numerical method for solving this problem is implemented below.

1 f u n c t i o n [ xx , yy ,C , C t rue , r e s i t ]= t e s t p o i s s o n j a c o b i ( )

2

3 % Numer ica l method to s o l v e

4 % [ D { xx}+D { yy } ]C=s ( x , y ) ,

5 % sub j e c t to p e r i o d i c boundary c o n d i t i o n s i n the x−d i r e c t i o n ,

6 % and Neuman boundary c o n d i t i o n s at y=0 and y=L y .

7

8 a s p e c t r a t i o =2;

9

10 Ny=101;

11 Nx=a s p e c t r a t i o ∗(Ny−1)+1;

12

13 i t e r a t i o n ma x =5000;

14

15 Ly=1.d0 ;

16 Lx=a s p e c t r a t i o ∗Ly ;
17 dx=Lx /(Nx−1) ;

18 dy=Ly /(Ny−1) ;

39
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19

20 kx0=2∗p i /Lx ;
21 ky0=p i /Ly ;

22 A0=10;

23

24 dx2=dx∗dx ;
25 dy2=dy∗dy ;
26

27 f s o u r c e=z e r o s (Nx , Ny) ;

28

29 % I n i t i a l i s e s ou r c e

30

31 kx=kx0 ;

32 ky=3∗ky0 ;
33

34 f o r i =1:Nx

35 f o r j =1:Ny

36 x v a l =( i −1)∗dx ;
37 y v a l =( j −1)∗dy ;
38 f s o u r c e ( i , j )=A0∗ cos ( kx∗ x v a l ) ∗ cos ( ky∗ y v a l ) ;

39 end

40 end

41

42 % Compute a n a l y t i c s o l u t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
43

44

45 xx =0∗(1:Nx) ;
46 yy =0∗(1:Ny) ;
47 C t rue=z e r o s (Nx , Ny) ;

48

49 f o r i =1:Nx

50 f o r j =1:Ny

51 xx ( i )=( i −1)∗dx ;
52 yy ( j )=( j −1)∗dy ;
53

54 C t rue ( i , j )=(−A0/( kx∗kx+ky∗ky ) ) ∗ cos ( kx∗ xx ( i ) ) ∗ cos ( ky∗ yy ( j ) ) ;
55

56 end

57 end

58

59 % I t e r a t i o n s t ep ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
60 % I n i t i a l gue s s f o r C :

61 C=ze r o s (Nx , Ny) ;

62

63 r e s i t =0∗(1: i t e r a t i o n ma x ) ;
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64

65 f o r i t e r a t i o n =1: i t e r a t i o n ma x

66

67 C o ld=C ;

68

69 f o r i =1:Nx

70

71 % Pe r i o d i c BCs he r e .

72 i f ( i ==1)

73 im1=Nx−1;

74 e l s e

75 im1=i −1;

76 end

77

78 i f ( i==Nx)

79 i p 1 =2;

80 e l s e

81 i p 1=i +1;

82 end

83

84 f o r j =2:Ny−1

85

86 d i a g ona l =(2. d0/dx2 ) +(2. d0/dy2 ) ;

87 tempva l =(1. d0/dx2 ) ∗( C o ld ( ip1 , j )+C o ld ( im1 , j ) ) +(1. d0/dy2 ) ∗( C o ld ( i , j

+1)+C o ld ( i , j −1) )− f s o u r c e ( i , j ) ;

88 C( i , j )=tempva l / d i a g on a l ;

89

90 end

91 end

92

93 % Implement D i r i c h l e t c o n d i t i o n s at y=0,y=L y .

94 C( : , 1 )=C( : , 2 ) ;

95 C( : , Ny)=C( : , Ny−1) ;

96

97 r e s i t ( i t e r a t i o n )=max(max( abs (C−C o ld ) ) ) ;

98

99 end

100

101 end

codes/poisson matlab/test poisson jacobi.m
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7.2 Now you try...

Exercise 7.1 Write a Matlab code to solve the full diffusion equation (6.1a). Use the model

Poisson problem as a starting-point. Also, use the Jacobi iteration method in the Crank–

Nicholson step. Take C0(x, z) = 0, and let s(x, y) be a simple combination of a small number

of sines and cosines, with wavelengths that fit inside the box (0, Lx) × (0, Lz). In this way,

validate your Matlab code with respect to the analytical solution obtained in Chapter 4.
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Jacobi iteration – convergence

Overview

The idea of this chapter is to take a generic linear problem Ax = b, and to formulate a sufficient

condition on A that guarantees the success of the Jacobi iterative method. It turns out that

this sufficient condition is something called diagonal dominance, which means that the diagonal

elements of A should be large (in some sense) compared to the off-diagonal ones.

8.1 Generic discussion

Consider the Jacobi scheme for solving

Av = b, (A)ij = aij ∈ R.

The idea is to write A = D+R, where

D = diag (a11, a22, · · · , ann) , n ∈ N,

and where

R = A−D.

Then, the iterations vN ,vN+1 that generate approximate solutions are obtained as follows:

DvN+1 = −RvN + b,

43
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for a given starting-guess v0. Assume that

lim
N→∞

= v∗.

Thus,

DvN+1 = −RvN + b,

Dv∗ = −Rv∗ + b.

Subtract:

D
(
vN+1 − v∗) = −R

(
vN − v∗) ,

or

DrN+1 = −RrN , (8.1)

where rN = vN − v∗ is the residual vector at level N . Take L2 vector norms on both sides:

∥rN+1∥ = ∥D−1RrN∥2.

Now, use the L2 operator norm (Appendix A):

∥rN+1∥2 ≤ ∥D−1R∥2∥rN∥2.

Telescope this result:

∥rN∥2 ≤
(
∥D−1R∥2

)N ∥r0∥2.

By requiring that ∥D−1R∥2 < 1, we obtain

lim
N→∞

∥rN∥2 = 0,

hence

lim
N→∞

rN = 0,

hence

lim
N→∞

vn = v∗.
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Thus, we have shown the following theorem:

Theorem 8.1 A sufficient condition for the convergence of the Jacobi iteration algorithm

DvN+1 = −RvN + b, vN=0 = v0,

is the following bound on the L2 operator norm:

∥D−1R∥2 < 1. (8.2)

For systems with entries on the diagonal that are relatively large (in absolte-value terms) compared

to entries off the diagonal, this constraint is usually satisfied, and the Jacobi iteration converges.

However, this is a relatively vague criterion, which is of limited use. In addition, the L2 operator

norm is difficult to compute numerically, so in practice it is not known a priori – using Theorem (8.1)

alone – whether the Jacobi method will converge. For that reason, we need a more rigorous notion

of diagonal dominance.

8.2 Diagonal dominance

Definition 8.1 (L∞ matrix norm) Let M ∈ Rn×n. Then

∥M∥∞ = sup
∥x∥∞=1

∥Mx∥∞,

where ∥x∥∞ denotes the ordinary L∞ norm for vectors: for x = (x1, · · · , xn) ∈ Rn,

∥x∥∞ = max
i

|xi|.
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Lemma 8.1 (Consistency of the L∞ norm) Let M1 and M2 be square matrices in Rn×n. Then

∥M1M2∥∞ ≤ ∥M1∥∞∥M2∥∞.

Proof: It suffices to consider the case with ∥M1M2∥∞ ̸= 0.

∥M1M2∥∞ = sup
∥x∥∞=1

∥M1M2x∥∞,

= ∥M1M2x0∥∞,

= ∥M1y∥∞, y = M2x0 ̸= 0,

=

(
∥M1y∥∞
∥y∥∞

)
∥y∥∞,

≤
[
sup
y ̸=0

(
∥M1y∥∞
∥y∥∞

)]
∥y∥∞,

= ∥M1∥∞∥y∥∞,

= ∥M1∥∞∥M2x0∥∞,

≤ ∥M1∥∞∥M2∥∞.

Definition 8.2 Let M ∈ Rn×n. The spectral radius ρ(M) refers to that M-eigenvalue with maxi-

mal absolute value:

ρ(M) = max
i

(|λi|) , Mxi = λixi.
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Theorem 8.2 (Bound on the spectral radius) Let M ∈ Rn×n. Then

ρ(M) ≤ ∥M∥∞.

Proof: Let Mx = λx, with x ̸= 0. Let

X =


| |
x · · · x

| |

 .

Thus,

MX = λX.

Take L∞ norms on both sides:

|λ|∥X∥∞ = ∥Mx∥∞ ≤ ∥M∥∞∥X∥∞,

hence

|λ| ≤ ∥M∥∞,

for any eigenvalue λ, and the result is shown:

ρ(M) ≤ ∥M∥∞.

Now, by this stage, I am tired of proving theorems, so I shall simply state this last and crucial

theorem:

Theorem 8.3 Let M ∈ Rn×n. Then

∥M∥∞ = max
i

(
n∑

k=1

|mik|

)
. (8.3)

Note the sum over columns!
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Putting it all together

We now apply these results to M = D−1R. In view of Theorem 8.2 and Theorem 8.3, we have

ρ
(
D−1R

)
≤ ∥D−1R∥∞ = max

i

(
n∑

k=1

|(D−1R)ik|

)

But

D−1R =


0 a12

a11
· · · a1,n−1

a11

a1n
a11

...
an1

ann
· · · an,n−1

ann
0

 ,

hence

ρ
(
D−1R

)
≤ ∥D−1R∥∞ = max

i

 1

|aii|

n∑
k=1
k ̸=i

|aik|

 .

This motivates a definition:

Definition 8.3 A matrix A ∈ Rn×n is diagonally dominant if

1

|aii|

n∑
k=1
k ̸=i

|aik| < 1,

for each i = 1, 2, · · · , n.

Along the way, we have established the following facts for a diagonally-dominant matrix:

Theorem 8.4 Let A ∈ Rn×n be diagonally dominant. Then

ρ
(
D−1R

)
≤ ∥D−1R∥∞ = max

i

 1

|aii|

n∑
k=1
k ̸=i

|aik|

 < 1,

where D and R have their usual meanings.
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We now consider a final theorem:

Theorem 8.5 Let Av = b be a linear problem, where A ∈ Rn×n is diagonally dominant. Then

the Jacobi iteration method converges.

Proof: Start with the definition of the Jacobi residuals, Equation (8.1) or, equivalently,

rN+1 = −D−1RrN , (8.4)

Telescope the result:

rN = (−1)N
(
D−1R

)N
r0.

Write

D−1R = P−1JP,

where J is the Jordan normal form associated with D−1R. We have

rN = (−1)N
(
−D−1R

)N
r0,

= (−1)N
(
P−1JP

)
r0,

= (−1)N
(
P−1JNP

)
r0.

We now use the fact that ρ(D−1R) ≤ ∥D−1R∥∞ < 1 as in the hypothesis of the theorem. Thus,

all the eigenvalues have modulus less than one. Hence, each block in the Jordan matrix, raised to

the N th power, tends to zero as N → ∞. It follows that

lim
N→∞

JN = 0. (8.5)

Therefore, finally,

lim
N→∞

rN = 0.

Exercise 8.1 Familiarize yourself with the Jordan decomposition (Appendix A), and satisfy

yourself that Equation (8.5) is true.
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8.3 Operation count

An elementary (non-iterative) method of solving linear problems is Gaussian elimination. The op-

eration count of Gaussian elimination is O(n3), meaning that the number of operations (addition,

multiplication etc.) required to invert the matrix is proprtional to the cube of the size of the matrix.

This can be regarded as a relatively good performance result, since it compares very favourably with

the operation count of determinant-type calculations, the latter being another candidate method for

matrix inversion. However, for massive calculations (e.g. n ∼ 106), even the relatively good per-

formance of Gaussian elimination (O(n3)) is not satisfactory. For such large calculations, iterative

methods such as the Jacobi scheme are preferred; clearly in such iterative methods, the count is

O(ncn
2), where nc is the number of iterations required for the method to converge, with nc ≪ n

for n large.
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Successive over-relaxation

Overview

Recall theorem (8.4) in Chapter 8: given a diagonally-dominant problem Ax = b, the Jacobi

iteration method will converge. In this module, we are always working with such systems. Thus, the

Jacobi method will always work for us. However, its convergence is quite poor. In other words, a

relatively large number of iterations is required in order to obtain a sufficiently converged solution.

In this section we outline a new method. Superficially, it is a straightforward extension of the Jacobi

method; however, on deeper reflection, the improved method represents a conceptual leap. This is

the method of successive over-relaxation (SOR).

9.1 The idea

Start with the generic problem

Ax = b.

Recall the Jacobi solution:

DvN+1 = −RvN + b.

In index notation,

vN+1
i = − 1

aii

n∑
j=1

Rikv
N
k + bi. (9.1)

The idea behind SOR is to retrospectively improve the ‘old guess’ vN that goes into formulating the

‘new guess’. If the ‘old guess’ can be retrospectively improved, then this makes the new guess even

better. To do this, the right-hand side of the Jacobi equation (9.1) is updated with just-recently-

created values of vN+1. Where this is not possible, the old values of vN are used. The result is the

51
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following iterative scheme:

vN+1
i = − 1

aii

i−1∑
k=1

Rikv
N+1
k − 1

aii

n∑
k=i

Rikv
N
k +

bi
aii

. (9.2)

But Rii = 0, and Rij = aij otherwise. Hence, Equation (9.2) can be replaced by

vN+1
i =

1

aii

[
bi −

i−1∑
k=1

aikv
N+1
k −

n∑
k=i+1

aikv
N
k

]
. (9.3)

Equation (9.3) is not yet optimal (however, it is already the Gauss–Seidel method for solving a linear

system). Instead, we introduce an extra degree of freedom, which allows us to weight how much

or how little retrospective improvement of the old guess is implemented in the (N + 1)th iteration

step. This is done by a simple modification of Equation (9.3):

vN+1
i = (1− ω) aii +

ω

aii

[
bi −

i−1∑
k=1

aikv
N+1
k −

n∑
k=i+1

aikv
N
k

]
(9.4a)

The factor ω is restricted to the range

0 < ω < 2; (9.4b)

this preserves the diagonal-dominance of the system and hence ensures convergence. The exact

choice of ω is made by trial-and-error in order to speed up convergence.
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9.2 Implementation – model Poisson problem

In the example below, I started with the problem in Chapter 7 and the associated Jacobi solver. I

have replaced the Jacobi solver with an SOR solver – minimal changes are required. That said, the

concept is quite different.

1 f u n c t i o n [ xx , yy ,C , C t rue , r e s i t ]= t e s t p o i s s o n s o r ( )

2

3 % Numer ica l method to s o l v e

4 % [ D { xx}+D { yy } ]C=s ( x , y ) ,

5 % sub j e c t to p e r i o d i c boundary c o n d i t i o n s i n the x−d i r e c t i o n ,

6 % and Neuman boundary c o n d i t i o n s at y=0 and y=L y .

7

8 a s p e c t r a t i o =2;

9

10 Ny=101;

11 Nx=a s p e c t r a t i o ∗(Ny−1)+1;

12

13 i t e r a t i o n ma x =1000;

14 r e l a x =1.5 ;

15

16 Ly=1.d0 ;

17 Lx=a s p e c t r a t i o ∗Ly ;
18 dx=Lx /(Nx−1) ;

19 dy=Ly /(Ny−1) ;

20

21 kx0=2∗p i /Lx ;
22 ky0=p i /Ly ;

23 A0=10;

24

25 dx2=dx∗dx ;
26 dy2=dy∗dy ;
27

28 f s o u r c e=z e r o s (Nx , Ny) ;

29

30 % I n i t i a l i s e s ou r c e

31

32 kx=kx0 ;

33 ky=3∗ky0 ;
34

35 f o r i =1:Nx

36 f o r j =1:Ny

37 x v a l =( i −1)∗dx ;
38 y v a l =( j −1)∗dy ;
39 f s o u r c e ( i , j )=A0∗ cos ( kx∗ x v a l ) ∗ cos ( ky∗ y v a l ) ;
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40 end

41 end

42

43 % Compute a n a l y t i c s o l u t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
44

45

46 xx =0∗(1:Nx) ;
47 yy =0∗(1:Ny) ;
48 C t rue=z e r o s (Nx , Ny) ;

49

50 f o r i =1:Nx

51 f o r j =1:Ny

52 xx ( i )=( i −1)∗dx ;
53 yy ( j )=( j −1)∗dy ;
54

55 C t rue ( i , j )=(−A0/( kx∗kx+ky∗ky ) ) ∗ cos ( kx∗ xx ( i ) ) ∗ cos ( ky∗ yy ( j ) ) ;
56

57 end

58 end

59

60 % I t e r a t i o n s t ep ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
61 % I n i t i a l gue s s f o r C :

62 C=ze r o s (Nx , Ny) ;

63

64 r e s i t =0∗(1: i t e r a t i o n ma x ) ;

65

66 f o r i t e r a t i o n =1: i t e r a t i o n ma x

67

68 C o ld=C ;

69

70 f o r i =1:Nx

71

72 % Pe r i o d i c BCs he r e .

73 i f ( i ==1)

74 im1=Nx−1;

75 e l s e

76 im1=i −1;

77 end

78

79 i f ( i==Nx)

80 i p 1 =2;

81 e l s e

82 i p 1=i +1;

83 end

84
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85 % SOR s t ep i n he r e now :

86 f o r j =2:Ny−1

87

88 d i a g ona l =(2. d0/dx2 ) +(2. d0/dy2 ) ;

89 tempva l =(1. d0/dx2 ) ∗(C( ip1 , j )+C( im1 , j ) ) +(1. d0/dy2 ) ∗(C( i , j +1)+C( i , j −1)

)− f s o u r c e ( i , j ) ;

90 C( i , j )=(1− r e l a x ) ∗C( i , j )+r e l a x ∗ tempva l / d i a g on a l ;

91

92 end

93 end

94

95 % Implement D i r i c h l e t c o n d i t i o n s at y=0,y=L y .

96 C( : , 1 )=C( : , 2 ) ;

97 C( : , Ny)=C( : , Ny−1) ;

98

99 r e s i t ( i t e r a t i o n )=max(max( abs (C−C o ld ) ) ) ;

100

101 end

102

103 end

codes/poisson matlab/test poisson sor.m

Lines 87-88 contain the idea of a ‘sweep’. At a fixed value of i, various j-values are considered.

For j=2, only ‘old’ values of C(i, j) are known (that is, values of C(i, j) at iteration level N).

These old values are used to update C(i, 2), giving a value of C(i, 2) valid at iteration level N + 1.

Now, moving on to j = 3, the new value CN+1(i, 2) is known, along with the old value CN(i, 4).

These two values are used to estimate a new value of CN+1(i, 3). In this way, the counter j ‘sweeps’

through all allowed j-values, and CN(i, j) is updated to a new value CN+1(i, j), using a combination

of old and new neighbouring values in the process.

9.3 Now you try...

Exercise 9.1 Take the Matlab code that you used previously to solve the diffusion equation.

Replace the Jacobi solver with an SOR solver. Investigate the convergence of the method with

respect to the parameter ω. For the optimal value of ω, compare the convergence properties

with those of the Jacobi method. Be careful that your new code reproduces the old results, and

again validate your Matlab code with respect to the analytical solution obtained in Chapter 4.



Chapter 10

Introduction to Fortran

Overview

I am going to try an example-based introduction to Fortran, wherein I provide you with a sample

code, and then tell you about it. I will then ask you to some tasks based on the code, and to modify

it.

10.1 Preliminaries

A basic Fortran code is written in a single file with a .f90 file extension. It conists of a main part

together with subroutine definitions. A subroutine is like a subfunction in Matlab or C, with one

key difference that I will explain below.

The main part

The main code is enclosed by the following declaration pair:

program mainprogram

...

end program mainprogram

At the top level, all variables that are to be used must be declared (otherwise compiler errors

will ensue). Variables can be declared as integers or as double-precision numbers (other types are

possible and will be discussed later on). Before variable declarations are made, a good idea is to

type implicit none. This means that Fortran will not assume that symbols such as i have an
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(implicit) type. It is best to be honest with the compiler and tell it upfront what you are going to

do. Equally, it is not a good idea for the compiler to try to guess what you mean.

An array of double-precision numbers is defined as follows:

integer :: Nx,Ny

parameter (Nx = 201, Ny = 101)

double precision, dimension(1:Nx,1:Ny) :: my_array

This creates an array of double-precision numbers where the indices go from i = 1, 2, · · · , 201, and
j = 1, 2, · · · , 101. there is nothing special in Fortran about starting arrays with i = 1: they can

start from any integer whatsoever (positive or negative).

After defining all arrays and all other variables operations are performed on them using standard

manipulations. These typically include ‘do’ loops (the Fortran equivalent of ‘for’ loops), and ‘if’ and

‘if-else’ statements. The syntax for these operatiosn is given below in the sample code (Section 10.2).

Column-major ordering

To understand column-major ordering, consider the following array:

A =

[
1 2 3

4 5 6

]

If stored in contiguous memory in a column-major format, this array will take the following form in

memory:

1 4 2 5 3 6.

Suppose that elements of the array A are denoted by Aij (i for rows, j for columns). When these

elements are accessed sequentially in contiguous memory, it is the row index that increases the

fastest. Thus, in Fortran, a do loop for manipulations on the array A should be written out as

follows:

do j=1,2

do i=1,3

! manipulations on A(i,j) here

...

end do

end do
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Subroutines

Subroutines contain discrete tasks that are repeated many times. Instead of having a main code that

contains multiple copies of the same piece of code, such code-tasks are relegated to subroutines.

The advantages are economy-of-code and computational efficiency. Unlike in C, arrays can be passed

to subroutines in a blindly straightforward manner. Examples of such subroutines can be found in

the sample code (Section 10.2).

As mentioned previously, a subroutine in Fortran is like a subfunction in C or Matlab. However,

there is one key difference: formally, a subroutine produces no explicit outputs. Thus, suppose

we want to operate on a variable x with an operation f to give a result y (formally, y = f(x)). In

Fortran, we view x and y as inputs to a subroutine wherein y is assigned the value f(x) as part of

the subroutine’s implementation. This will become clearer in examples.

Output

Finally, the result of these manipulations should be sent to a file, for subsequent reading. The values

in an array my array of size (1, · · · , Nx)× (1, · · ·Ny) can be written to a file as follows:

open(unit=20,file=’myfile.dat’,status=’UNKNOWN’)

do j=1,Ny

do i=1,Nx

write(20,*) my_array(i,j)

end do

end do

close(unit=20, status=’KEEP’)
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10.2 The code

The following code solves the model Poisson problem using SOR iteration. If done correctly, it

should reproduce exactly the results obtained previously in Matlab. An output file called ‘oned.dat’

is produced. I cannot remember why I called the output file by this name. However, these things

are rather arbitrary.

1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2

3 program mainprogram

4 i m p l i c i t none

5

6 i n t e g e r : : Nx , Ny

7 paramete r (Nx = 201 , Ny = 101)

8

9 doub le p r e c i s i o n : : dx , dy , x v a l , y v a l , Lx , Ly , p i =3.1415926535

10 doub le p r e c i s i o n : : ax , ay , d i a g v a l , r e l a x , tempval , e r r 1 , e r r 2 , A0

11 doub le p r e c i s i o n , d imens ion ( 1 : Nx , 1 : Ny) : : f s o u r c e ,C , C o ld

12

13 i n t e g e r : : i , j , im1 , ip1 , i t e r a t i o n , ma x i t e r a t i o n =1000

14

15 Lx=2.d0

16 Ly=1.d0

17

18 A0=10.d0

19

20 dx=Lx/ db l e (Nx−1)

21 dy=Ly/ db l e (Ny−1)

22

23 ax=1.d0 /( dx∗dx )
24 ay=1.d0 /( dy∗dy )
25 d i a g v a l =2.d0∗ax+2.d0∗ay
26 r e l a x =1.5d0

27

28 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
29 ! compute source , i n i t i a l i s e gue s s

30

31 f s o u r c e =0.d0

32 C=0.d0

33 C o ld=0.d0

34

35 w r i t e (∗ ,∗ ) ’ g e t t i n g s ou r c e ’

36 c a l l g e t f p e r i o d i c ( f s o u r c e , Nx , Ny , dx , dy , Lx , Ly , A0)

37 w r i t e (∗ ,∗ ) ’ done ’

38
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39 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
40 ! s o r s t e p s

41

42 do i t e r a t i o n =1, ma x i t e r a t i o n

43 e r r 1 = 0 .0

44

45 ! f o r keep ing t r a c k o f the e r r o r

46 C o ld=C

47

48 do j = 2 ,Ny−1

49 do i = 1 ,Nx

50

51 i f ( i . eq . 1 ) then

52 im1=Nx−1

53 e l s e

54 im1=i−1

55 end i f

56

57 i f ( i . eq . Nx) then

58 i p 1=2

59 e l s e

60 i p 1=i+1

61 end i f

62

63 tempva l=ax ∗(C( ip1 , j )+C( im1 , j ) )+ay ∗(C( i , j +1)+C( i , j −1) )− f s o u r c e ( i , j

)

64 C( i , j )=(1− r e l a x ) ∗C( i , j )+r e l a x ∗ tempva l / d i a g v a l

65

66 end do

67 end do

68

69 ! Implement D i r i c h l e t c o n d i t i o n s at y=0,y=L y .

70 C( : , 1 )=C( : , 2 )

71 C( : , Ny)=C( : , Ny−1)

72

73 i f (mod( i t e r a t i o n , 100 )==0)then

74 c a l l g e t d i f f (C , C old , Nx , Ny , e r r 1 )

75 w r i t e (∗ ,∗ ) i t e r a t i o n , ’ D i f f e r e n c e i s ’ , e r r 1

76 end I f

77

78 end do

79

80 w r i t e (∗ ,∗ ) ’ D i f f e r e n c e i s ’ , e r r 1

81

82
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83 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
84 ! w r i t e r e s u l t to f i l e

85

86 w r i t e (∗ ,∗ ) ’ w r i t i n g to f i l e ’

87 open ( u n i t =20, f i l e=’ oned . dat ’ , s t a t u s=’UNKNOWN’ )

88

89 do j =1,Ny

90 do i =1,Nx

91 x v a l =( i −1)∗dx
92 y v a l =( j −1)∗dy
93 Write (20 ,∗ ) x v a l , y v a l , C( i , j )

94 end do

95 end do

96 c l o s e ( u n i t =20, s t a t u s=’KEEP ’ )

97 w r i t e (∗ ,∗ ) ’ done ’

98

99 end program mainprogram

100

101

102 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
103 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
104

105 s u b r o u t i n e g e t f p e r i o d i c ( f s r c , Nx , Ny , dx , dy , Lx , Ly , A0)

106 i m p l i c i t none

107

108 i n t e g e r : : i , j , Nx , Ny

109 doub l e p r e c i s i o n : : dx , dy , Lx , Ly , x v a l , y v a l , p i =3.1415926535

110 doub l e p r e c i s i o n : : kx0 , ky0 , kx , ky , A0

111 doub l e p r e c i s i o n : : f s r c ( 1 : Nx , 1 : Ny)

112

113 kx0=2.d0∗ p i /Lx
114 ky0=p i /Ly

115

116 kx=kx0

117 ky=3.d0∗ky0
118

119 f s r c =0.d0

120 do j =1,Ny

121 do i =1,Nx

122 x v a l =( i −1)∗dx
123 y v a l =( j −1)∗dy
124 f s r c ( i , j )=A0∗ cos ( kx∗ x v a l ) ∗ cos ( ky∗ y v a l )

125 end do

126 end do

127
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128 r e t u r n

129 end s u b r o u t i n e g e t f p e r i o d i c

130

131 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
132

133 s u b r o u t i n e g e t d i f f (C , C old , Nx , Ny , d i f f )

134 i m p l i c i t none

135

136 doub l e p r e c i s i o n : : d i f f , sum

137 i n t e g e r : : Nx , Ny , i , j

138 doub l e p r e c i s i o n , d imens ion ( 1 : Nx , 1 : Ny) : : C , C o ld

139

140 sum = 0.0D0

141 Do j = 1 , Ny

142 Do i = 1 , Nx

143 sum = sum + (C( i , j )−C o ld ( i , j ) ) ∗∗2
144 End Do

145 End Do

146 d i f f = sum

147

148 Return

149 End s u b r o u t i n e g e t d i f f

150

151 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
152 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

codes/poisson code/main periodic sor.f90
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10.3 Porting Output into Matlab

It can be useful to examine the data in a file such as ‘oned.dat’ in Matlab. There are many ways of

doing this. Below is my favourite way:

1 f u n c t i o n [X,Y,C]= o p e n d a t f i l e ( )

2

3 % We need to s p e c i f y the s i z e o f the computa t i ona l domain , as t h i s can ’ t be

4 % i n f e r r e d from the d a t a f i l e .

5

6 Nx=201;

7 Ny=101;

8

9 % Here I c r e a t e a c h a r a c t e r a r r a y c a l l e d ” f i l e n ame ” . Th i s shou l d

10 % cor r e spond to the name o f the For t ran−gene r a t ed f i l e .

11

12 f i l e n ame=’ oned . dat ’ ;

13

14 % Here i s the number o f l i n e s i n the d a t a f i l e .

15 n l i n e s=Nx∗Ny ;
16

17 % Open the f i l e . Here , f i d i s a l a b e l t ha t l a b e l s which l i n e i n the f i l e

18 % i s be ing read . Obv ious l y , upon open ing the f i l e , we a r e at l i n e 1 .

19

20 f i d=fopen ( f i l e n ame ) ;

21

22 % P r e a l l o c a t e some a r r a y s f o r s t o r i n g the data .

23

24 X=0∗(1: n l i n e s ) ;

25 Y=0∗(1: n l i n e s ) ;

26 C=0∗(1: n l i n e s ) ;

27

28 % Loop ove r a l l l i n e s .

29

30 f o r i =1: n l i n e s

31 % Grab the data from the c u r r e n t l i n e . Once the data i s grabbed , the

32 % l a b e l f i x a u t oma t i c a l l y moves on to the next l i n e .

33 % The data from the c u r r e n t l i n e i s grabbed i n t o a s t r i n g − he r e c a l l e d

34 % c1 .

35 c1=f g e t l ( f i d ) ;

36

37 % Next I have to conv e r t the t h r e e s t r i n g s on any g i v en l i n e i n t o t h r e e

38 % doub l e s . Th i s i s done by s cann ing the s t r i n g i n t o an a r r a y o f

39 % doub le s , u s i n g the ” s s c a n f ” command :

40 vec temp=s s c a n f ( c1 , ’%f ’ ) ;
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41

42 % Now i t i s s imp l e : j u s t a s s i g n each doub l e to a v a l u e x , y , o r C .

43 x temp=vec temp (1) ;

44 y temp=vec temp (2) ;

45 C temp=vec temp (3) ;

46

47 % Read the x−, y−, and C−v a l u e s i n t o t h e i r own a r r a y s .

48 X( i )=x temp ;

49 Y( i )=y temp ;

50 C( i )=C temp ;

51 end

52

53 % F i n a l l y , r e shape t h e s e a r r a y s i n t o p h y s i c a l , two−d imen s i o n a l a r r a y s .

54

55 X=re shape (X, Nx , Ny) ;

56 Y=re shape (Y, Nx , Ny) ;

57 C=re shape (C , Nx , Ny) ;

58

59 % Impor tant ! C l o s e the f i l e so tha t i t i s not l e f t d ang l i n g . Not c l o s i n g a

60 % f i l e p r o p e r l y means tha t i n f u t u r e , i t w i l l be d i f f i c u l t to man ipu l a t e

61 % i t . For example , i t i s im p o s s i b l e to d e l e t e or rename a a c u r r e n t l y−open

62 % f i l e .

63

64 f c l o s e ( f i d ) ;

65

66 end

codes/poisson code/open dat file.m

This file should be stored int he same directory as ‘oned.dat’. Then, at the command line, type

[X,Y,C]=open_dat_file();

The results can be visualized as usual:

[h,c]=contourf(X,Y,C);

set(c,’edgecolor’,’none’)

Provided the source function and domain size are the same in both cases, this figure should agree

exactly with the one generated previously using only Matlab (Figure 10.1). Here,

s(x, y) = A0 cos(kxx) cos(kyy), (10.1)
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with kx = kx0 and ky = 3ky0, and A0 = 10. Further details: kx0 = (2π/Lx) is the fundamental

wavenumber in the x-direction, and ky0 = π/Ly is the fundamental wewavenumber in the y-

direction. The domain geometry is chosen to be Lx = 2 and Ly = 1.
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Figure 10.1: Solution of the Poisson problem for the source (10.1). Grid size: Nx = 201 and
Ny = 101.
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10.4 Now you try...

The next assignment involves running a job on a cluster, rather than your local PC. First, your .f90

code must be turned into a machine-readable executable. This is done using a compiler. Here is a

sample compile line:

ifort main_periodic_sor.f90 -o sor.x

Here, the text file main periodic.f90 is being turned into an exectuable sor.x using the ‘ifort’

compiler.

When you have a compiled executable, DO NOT execute on the command line. This is an extremely

ignorant form of behaviour. Instead, to ensure faireness to fellow users, you should use the cluster’s

queuing system. This is a job scheduler that ensures that jobs are executed through a queue, in a

afair manner. Thus, the next step instead is to write a submit scrpit containing information that

the queue scheduler can use to submit your job. Here is a sample submit script for a particular

queue on the Maths mini-hpc cluster Orr:

#!/bin/bash

#$ -S /bin/bash

#$ -N job_sor

#$ -q 4x8a.q

#$ -pe orte 8

#$ -V

#$ -cwd

cd /home/lennon/ucd_summerschool/main_periodic_sor

./sor.x

I called this file ‘submit lon’ (no extension).

Common Programming Error:

Writing a submit script in DOS (Windows) and expecting it to run in a Linux environment.

Both systems use different formats for spaces and returns. Thus, a script written under

DOS should be run through the linux command ‘dos2unix’ before submission to queue.
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Then, to send your job off to the queue, type the following string at the command line:

qsub submit_lon

You can check on the status of your job by typing

qstat

Now try the following exercise.

Exercise 10.1 Run the Fortran code for the Poisson problem on the cluster. You will need a

submit script, which you then submit to a queue. The result will be stored in a file called

‘oned.dat’, which you should analyse in Matlab. Finally, diagnostic data realted to the code

execution (standard output) will be put into a separate file labelled by the job identifier.



Chapter 11

Challenge problem in Fortran

Overview

In this chapter we shall write a Fortran code to solve the model diffusion equation. We shall output

data sequentially to text files (not to be overwritten). We shall then postprocess the data, reading

raw data into Matlab to make contour plots, movies, and other diagnostics.

11.1 The Fortran task

Exercise 11.1 Write a Fortran code to solve the model diffusion equation with a source. Data

should be periodically dumped to text files. When complete, postprocess the data as in the next

section.

Dumping data periodically to a file

In order to dump data periodically to a file, a variable of ‘character’ type needs to be defined. This

is done along with the definition of the other variables, at the beginning of the main part of the

code:

character*60 filename

Thus, a variable of ‘character’ type is created, with the name ‘filename’. A character datatype can

be thought of as an array of strings. Thus, character*60 filename is a string that can hold up

to 60 individual characters.

68
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Suppose now that we are in an iterative loop, where the iteration is over time steps, labelled here by

the counter iteration time. Suppose further that every file period time timesteps, we wish

to output a certain field variable C (together with relevant coordintes (x, y)) to a datafile, such

that no datafile is overwritten. Here is a way to do it:

! ****************************************************

! write result to file

if(mod(iteration_time,file_period_time).eq.0)then

write(*,*) ’writing to file’

write(filename,’(A,I9,A)’)’diffusion_’,iteration_time,’.dat’

write(*,*) filename

open(unit=9,file=filename,status=’unknown’)

do j=1,Ny

do i=1,Nx

x_val=(i-1)*dx

y_val=(j-1)*dy

write(9,*) x_val, y_val, C(i,j)

end do

end do

close(9)

write(*,*) ’done’

end if

! ****************************************************
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11.2 Making movies with Matlab

The first Matlab code here takes all of the datafiles generated by the Fortran code and turns them

into lovely Matlab figures. This is done in the background, and the figures are saved for future use.

The Matlab function operates sequentially on each .dat file generated, assuming all such files are

in the current working directory:

1 f u n c t i o n [ ]= c r e a t e a l l f i g f i l e s ( )

2

3 % Dec l a r t h e s e to be g l o b a l v a r i a b l e s so they don ’ t need to be pas sed to

4 % sub f u n c t i o n s .

5

6 g l o b a l Nx

7 g l o b a l Ny

8 g l o b a l n l i n e s

9

10 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11 % F i l e s t r u c t u r e i n f o rma t i o n

12

13 Nx=201;

14 Ny=101;

15

16 n l i n e s=Nx∗Ny ;
17

18 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
19 % Grab a l l f i l e s i n f o l d e r

20 % Here , f i l e s w i th names o f the form ” d i f f u s i o n ∗ . dat ” a r e examined . The

21 % f i l e n ame s o f a l l such f i l e s a r e grabbed i n t o a c e l l a r r a y c a l l e d ” f i l e s ” .

22 % The number o f e n t r i e s i n the c e l l a r r a y i s grabbed u s i n g the ”numel”

23 % command .

24

25 f i l e s=d i r ( ’ d i f f u s i o n ∗ . dat ’ ) ;
26 k l im=numel ( f i l e s ) ;

27

28 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
29 % I n i t i a l i z e Matlab f i g u r e f o r p l o t t i n g

30

31 % Here , I open a f i g u r e ( h i s a hand l e to a f i g u r e ) .

32 % However , I make i t i n v i s i b l e − i t i s on l y d e f i n e d i n the background .

33 % This i s a good i d e a f o r l a r g e jobs , e s p e c i a l l y i f such j o b s a r e to be run

34 % on a c l u s t e r w i th matlab .

35

36 h=f i g u r e ;

37 s e t (h , ’ V i s i b l e ’ , ’ o f f ’ ) ;

38
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39 % Loop ove r a l l f i l e s from kk=1 up to the l a s t f i l e w i th i ndex k l im .

40

41 f o r kk=1: k l im

42

43 % Count the f i l e and output i t to the s c r e e n as a s t r i n g message .

44 d i s p l a y ( s t r c a t ( ’ drawing ’ , num2str ( kk ) , ’ th f i l e ’ ) )

45

46 % Grab the name o f the kkth f i l e from the c e l l a r r a y .

47 f i l e n ame=f i l e s ( kk ) . name ;

48

49 % Load the data from the kkth f i l e i n t o a r r a y s o f double−p r e c i s i o n

50 % numbers .

51

52 % Here , the s u b f u n c t i o n my op en f i l e ( ) i s v e r y s i m i l a r to the one we had

53 % be f o r e : i t opens the f i l e o f name ” f i l e n ame ” and r e ad s s e q u e n t i a l l y

54 % through the l i n e s o f the f i l e , g a t h e r i n g the data i n t o v e c t o r s . The

55 % ve c t o r s a r e r e shaped i n t o two−d imen s i o n a l a r r a y s at the end o f the

56 % ope r a t i o n .

57

58 [X ,Y,C]=my op en f i l e ( f i l e n ame ) ;

59

60 % Standard contou r p l o t t i n g now .

61 [ ˜ , cc ]= con t ou r f (X,Y,C) ;

62 s e t ( cc , ’ e d g e c o l o r ’ , ’ none ’ )

63 c o l o r b a r

64 s e t ( gca , ’ fontname ’ , ’ t imes new roman ’ , ’ f o n t s i z e ’ , 18)

65 x l a b e l ( ’ x ’ )

66 y l a b e l ( ’ y ’ )

67

68 % Create a f i l e name f o r the kkth f i g u r e .

69 f i g f i l e n am e=s t r c a t ( ’ c on t ou r ’ , num2str ( kk ) , ’ . f i g ’ ) ;

70

71 % Save the kkth contou r p l o t to a Matlab ” . f i g ” f i l e .

72 s a v ea s (h , f i g f i l e n am e )

73 c l f

74 end

75

76 end

77

78 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
79 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
80

81 f u n c t i o n [X,Y,C]=my op en f i l e ( f i l e n ame )

82

83 % Globa l v a r i a b l e s − I d i d not need to pas s them e x p l i l c i t l y to the
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84 % sub f u n c t i o n .

85

86 g l o b a l Nx

87 g l o b a l Ny

88 g l o b a l n l i n e s

89

90 f i d=fopen ( f i l e n ame ) ;

91

92 X=0∗(1: n l i n e s ) ;

93 Y=0∗(1: n l i n e s ) ;

94 C=0∗(1: n l i n e s ) ;

95

96 f o r i =1: n l i n e s

97 c1=f g e t l ( f i d ) ;

98 vec temp=s s c a n f ( c1 , ’%f ’ ) ;

99 x temp=vec temp (1) ;

100 y temp=vec temp (2) ;

101 C temp=vec temp (3) ;

102

103 X( i )=x temp ;

104 Y( i )=y temp ;

105 C( i )=C temp ;

106 end

107

108 X=re shape (X, Nx , Ny) ;

109 Y=re shape (Y, Nx , Ny) ;

110 C=re shape (C , Nx , Ny) ;

111

112 f c l o s e ( f i d ) ;

113

114 end

115

116 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

codes/diffusion code/create all fig files.m

These are invisible figure files! The can be opened as follows:

openfig(’contour_1.fig’,’new’,’visible’)
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Also, they can be made into a movie:

1 f u n c t i o n [ ]=make move1 ( )

2

3 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4

5 s c r e e n s i z e = get (0 , ’ S c r e e nS i z e ’ ) ;

6

7 k l im=40;

8 numframes = k l im ;

9

10 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11 % % Movie code

12

13 % Here , I open a f i g u r e and s e t the s i z e o f t h i s f i g u r e .

14 f i g 1 = f i g u r e (1 ) ;

15

16 x1=0∗ s c r e e n s i z e (3 ) ;

17 y1=0.1∗ s c r e e n s i z e (3 ) ;

18 x2=0.6∗ s c r e e n s i z e (3 ) ;

19 y2=0.7∗ s c r e e n s i z e (4 ) ;

20

21 s e t ( f i g 1 , ’ P o s i t i o n ’ , [ x1 y1 x2 y2 ] ) ;

22

23 % Next , I c r e a t e a Matlab a r r a y c a l l e d A mov . Th i s a r r a y w i l l s t o r e a

24 % sepa r a t e contou r p l o t . These c o n t o u r p l o t s make up the frame o f the

25 % movie .

26

27 % The f i r s t i nd ex o f the a r r a y count s the contou r p l o t ( o r the frame ) .

28 % The second i ndex s t o r e s the a c t u a l f i g u r e or contou r p l o t .

29

30 A mov = mov i e in ( numframes , f i g 1 ) ;

31 s e t ( f i g 1 , ’ NextP lot ’ , ’ r e p l a c e c h i l d r e n ’ )

32

33 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
34

35 f o r k=1: k l im

36

37 t ime=0.1∗k ;
38

39 f i l e n ame1=s t r c a t ( ’ c on t ou r ’ , num2str ( k ) , ’ . f i g ’ ) ;

40

41 % Here , I open the kth c o n t o u r p l o t i n t o a temporary f i g u r e c a l l e d

42 % ” tempf i g ” .

43

44 t emp f i g=op en f i g ( f i l ename1 , ’ r e u s e ’ , ’ v i s i b l e ’ ) ;
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45 s e t ( tempf ig , ’ P o s i t i o n ’ , [ x1 y1 x2 y2 ] ) ;

46 t i t l e ( s t r c a t ( ’ t= ’ , num2str ( t ime ) ) )

47

48 % Now I p l a c e the temporary f i g u r e ” t empf i g ” i n t o the kth frame o f the

49 % movie a r r a y .

50

51 A mov ( : , k ) = get f rame ( t empf i g ) ;

52 c l o s e ( t emp f i g )

53

54 d i s p l a y ( s t r c a t ( ’ k=’ , num2str ( k ) ) )

55 end

56

57 % Here i s the Matlab command to tu rn the movie a r r a y i n t o a r e p l a y a b l e

58 % movie .

59

60 movie ( f i g 1 , A mov , 1 , 3 ) ;

61 save movie . mat A mov ;

62

63 % F i n a l l y , I t u rn the Matlab movie i n t o a s t anda rd p o r t a b l e a v i f i l e .

64 % This pa r t can be v e r y t r i c k y , and to ge t i t to work a c r o s s p l a t f o rms ,

65 % somet imes i t i s n e c e s s a r y to s p e c i f y a c e r t a i n codec . T r i a l and e r r o r

66 % and goog l i n g a r e r e q u i r e d he r e .

67

68

69

70 % % Example wi th a codec s p e c i f i e d , and wi th compre s s i on . :

71 % mov i e2av i (A mov , ’ mov ie compressed . av i ’ , ’ compress ion ’ , ’ Cinepak ’ , ’ q u a l i t y ’ , 1 0 0 , ’

fps ’ , 1 ) ;

72

73 % % Working example ( on my computer ) :

74

75 mov i e2av i (A mov , ’ movie . a v i ’ , ’ compre s s i on ’ , ’ None ’ , ’ f p s ’ , 1 ) ;

76

77 % % In both examples , ” f p s ” i s a good paramete r to a d j u s t . I t i s the

78 % % number o f movie f rames tha t g e t s p l a y ed pe r second .

79

80 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
81

82 end

codes/diffusion code/make move1.m
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11.3 Further diagonsitics

Exercise 11.2 Let C(x, y, t) denote the solution to the model diffusion equation with suitable

initial data, and let C0(x, y) be the solution of the model Poisson problem. We have already

shown analytically that

lim
t→∞

C(x, y, t) = C0(x, y). (11.1)

In addition to this analytical result, modify the Matlab postprocessing routines in this chapter

so that they can be used to confirm Equation (11.1).

Hint: With very little effort, and very little modification of create all fig files.m, I obtained

the following figure (Figure 11.1):
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Figure 11.1: Decay of the L2 norm of the deviation away from the stationary solution.

Here, on the y-axis, I have plotted

∆(t) =

{
1

NxNy

∑
i,j

[C(i, j, t)− C0(i, j)]
2

}1/2

,

where I obtained C0(x, y) analytically. In fact, the decay of ∆(t) in Figure 11.1 should be strictly

exponential. Perhaps with a finer grid resolution or a smaller timestep, this can be demonstrated.
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Introduction to shared memory

Overview

Recall from Section 3 our discussion about modern desktop computers: although such computers

still have a single CPU, they possess two (or more) processing units (or cores), which are placed

on the same chip. The cores share some cache (‘L2 cache’), while some other cache is private to

each core (‘L1 cache’). This enables the computer to break up a computational task into two(or

more) parts, work on each task separately, via the private cache, and communicate necessary shared

data via the shared cache. This architecture therefore facilitates parallel computing, thereby

speeding up computation times. High-level programs such as MATLAB take advantage of multiple-

core computing without any direction from the user. On the other hand, lower-level programming

languages such as Fortran require explicit direction from the user in order to implement multiple-core

processing. The aim of this chapter is to do precisely this, usingthe OpenMP standard.

Again, for clarity, we repeat some things: we reserve the word processor for the entire chip, which

will consist of multiple sub-units called cores. Sometimes the cores are referred to as threads and

this kind of computing is called multi-threaded.

12.1 Shared memory – concepts

A useful schematic diagram of shared memory is the following one, obtained on Wikipedia (Fig-

ure 12.1):

76
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Figure 12.1: Schematic diagram of a multithreaded calculation

The idea is that a code in the absence of multithreading trivially consists of a single thread called the

master. Then, when a particularly heavy piece of computation needs to be done (such as a large

nested ‘do’ loop), the master breaks the task into many threads. Different parts of the calculation

are done on different threads. If the calculation is non-local (also, if the amount of data operated

on is small), such that on thread X, data from thread Y is required, then all such data is stored in

the L2 cache, to be shared between X and Y and all other threads. On the other hand, data which

is strictly local to thread X can be stored in the L1 cache of X. Finally, when all the threads have

done their part of the calculation, they rejoin the master. At this end-stage, the master must have

access to the necessary data in the L2 cache.

The advantage of such a concept is the existence of a set of simple directives (understandable

to a Fortran compiler) to implement multi-threading. The purpose of this chapter is to explain

these directives to you. However, a disadvantage of this approach is the limitation imposed by the

computer architecture: we can only access as much parallelism as there are cores on the computer.

A desktop will have 2 or 4 cores; some machines will have 8 or even 16 cores. Thus, a theoretical

speedup of 16 is possible, but no higher. Further limitations:

• The finite bandwidth of the bus that enables communication between the memory of the

individual threads (speedup limitation)

• The finite amount of global memory accessible by all the threads (jobsize limitation)

These severe architecture-dependent limitations are overcome by moving to a more sophisticalted

parallelism called MPI, beyond the scope of this course.
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12.2 OMP directives

To split up a Fortran ‘do loop’ into threads, it suffices to put a special line before and after the

loop, and to decide which variables are thread-private and which variables are shared. Typically,

• Arrays that are operated on are shared.

• Intermediate variables and loop variables (i, j etc) are private.

Common Programming Error:

Not specifiying which variables are private and which are shared – can lead to catastrophic

errors.

Not initializing private variables. At thread-creation time, all private variables have no

value and must be assigned some initial value explicitly in the code.

An example of the relevant OMP directives is shown here. This piece of code assigns the array

f src some value.

!$omp parallel default(shared), private(i,j,x_val,y_val)

!$omp do

do j=1,Ny

do i=1,Nx

x_val=i*dx-(dx/2.d0)

y_val=j*dy-(dy/2.d0)

f_src(i,j)=-A0*cos(kx*x_val)*cos(ky*y_val)

end do

end do

!$omp end do

!$omp end parallel

The convention here is that all variables are shared – unless indication is given to the contrary. Thus,

the private variables are only those intermediate variables that are useed in the construction of the

final answer. These private variables are x val, y yval, i, and j.

12.3 OMP and SOR

It would appear that to do SOR with OMP, it suffices blindly to stick a few lines of code in front

of the relevant ‘do’ loops. However, this could be dangerous, and lead to the failure of the SOR
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algorithm. Suppose that an array Cij is being obtained by SOR iteration, such that some old

value Cold
ij is being replaced by a new improved value Cnew

ij . Assume that for a fixed j, a sweep is

performed, starting at i=1. Thus, symbolically,

Cnew
ij = f

(
Cnew

i−1j, C
old
i+1j

)
,

where f is some linear function that depends on the particular matrix problem being solved. Now

suppose that this job has been split up into threads that share the array C via shared memory.

Suppose that Cij is being operated on using thread X. For some i, it may be the case that Cnew
i−1j is

operated on using thread Y ̸= X. Thread X may ‘race ahead’ of thread Y , such that C is replaced

by Cnew slowly on thread Y compared to thread X. Thus, thread Y may use Cold
i−1j to update

Cij, instead of Cnew
i−1j, possibly causing the failure of the SOR method and non-convergence. This

is an example of a so-called ‘race condition’ on OMP, and is to be avoided if possible (they can be

catastrophic).

Common Programming Error:

Not noticing a race condition – they are common and not restricted to the SOR algorithm.

They typically involve arrays whose elements are being updated with other elements from

the same array.

Red-black coloring

The race condition for SOR can be overcome by implementing something called red-black coloring.

This works only for problems (such as the diffusion problem) where the discretization uses only

nearest neighbours (however, if neighbours other than the nearest neighbours are needed, then a

scheme with more colours than just red and black will work). The SOR sweep is split into two

half-steps. During the first half-step, and for fixed j, grid sites with even i are updated. During the

next half-step, grid sites with odd i are updated.

Alternatively, for fixed j, grid sites with even i can be thought of as being ‘red’, while grid sites

with odd i can be thought of as being ‘black’. During the first half-sweep, red sites are updated

with the old black values (consistent with the SOR algorithm), and during the second half-seep, the

black sites are updated with the just-updated (new) red values.
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Figure 12.2: Schematic diagram of red-black coloring for the SOR algorithm

The advantage of this approach is synchronization: the second half-sweep does not begin until the

first half-sweep has been completed by all threads. The first half-sweep is straightforward: red

values are updated with old black values. This sweep is implemented on all threads which then join

the master. Then, during the second half-sweep, the threads fork again and the black values are

updated with a consistent set of (new) red values.

12.4 Other simple OMP tricks

You may have noticed by now that Fortran (in its ‘.f90’ incarnation) supports vectorization. That

is, for a square array C with

i = 1, 2, · · · , nx, j = 1, 2, · · · , ny, (12.1)

the operation

do j=1,n_y

do i=1,n_x

C(i,j)=1.d0

end do

end do

can be implemented equivalently as
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C=1.d0

This is still an array operation, whose speed of implemnetation can be increased with OpenMP. The

relevant directive is called a workshare:

!$omp parallel workshare

C=1.d0

!$omp end parallel workshare

Finally, there are some situations where an array needs to be populated using a very simple formula,

with no need for intermediate or temporary variables. Suppose that we wanted to create an array

Dij =
1

∆x2
(Ci+1,j + Ci−1,j − 2Cij) +

1

∆z2
(Ci,j+1 + Ci,j−1 − 2Cij) (12.2)

to store a numerical approximation of the Laplacian of C, where C is a square array with the

same indices as in Equation (12.1). Of course, it is not possible to compute the Laplacian at

bounary points, so we do not even attempt such a thing. The operation in Equation (12.2) can be

implemented using a parallel forall loop as follows:

!$omp parallel workshare

forall (i = 2:nx-1, j=2:ny-1)

D(i,j)=(1.d0/dx*dx)*(C(i+1,j)+C(i-1,j)-2.d0*C(i,j)) &

+(1.d0/dy*dy)*(C(i,j-1)+C(i,j+1)-2.d0*C(i,j))

end forall

!$omp end parallel workshare

Note the use of a continuation character to enable a line to be broken, for ease of reading.

12.5 OMP reduction

Sometimes an operation is performed on each thread, with a certain local result, and it is necessary

to combine all such local results back into the master thread. Examples of this kind include sums

and maxima. For example, suppose that an array C is split up between threads, such that thread i

operates only on a chunk of the array, say C(i). Then, suppose that on thread i, the following sum

is computed

si =
∑
pq

C(i)
pq .
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It might become necessary during the course of an assignment to compute

s =
∑
i

si, sum over all threads.

This is an example of an OMP reduction. The syntax for this operation is given in the following

example.

subroutine get_diff(u,u_old,maxl,maxn,diff)

implicit none

double precision :: diff,sum

integer :: maxl,maxn,i,j,tid

double precision, dimension(0:maxl,0:maxn) :: u, u_old

sum = 0.0D0

!$omp parallel do default(none), &

!$omp private(i,j), shared(u,u_old,maxn,maxl,sum), &

!$omp reduction(+:sum)

Do j = 1, maxn-1

Do i = 1, maxl-1

sum = sum + (u(i,j)-u_old(i,j))**2

End Do

End Do

!$omp end parallel do

diff = sum

Return

End subroutine get_diff

Common Programming Error:

Reduction can only be done on shared variables.
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Multithreading for the model Poisson

equation

Overview

We solve the model Poisson problem numerically using OpenMP. We test the code’s parallel effi-

ciency. You will then be asked to implement OMP parallelism for the model diffusion problem.

13.1 The code for the model Poisson problem

1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2

3 program mainprogram

4 i m p l i c i t none

5

6 i n t e g e r : : Nx , Ny

7 paramete r (Nx = 201 , Ny = 101)

8

9 doub le p r e c i s i o n : : dx , dy , x v a l , y v a l , Lx , Ly , p i =3.1415926535

10 doub le p r e c i s i o n : : ax , ay , d i a g v a l , r e l a x , tempval , e r r 1 , e r r 2 , A0

11 doub le p r e c i s i o n , d imens ion ( 1 : Nx , 1 : Ny) : : f s o u r c e ,C , C o ld

12

13 i n t e g e r : : i , j , im1 , ip1 , i t e r a t i o n , ma x i t e r a t i o n =1000

14

15 Lx=2.d0

16 Ly=1.d0

17

18 A0=10.d0

19

83
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20 dx=Lx/ db l e (Nx−1)

21 dy=Ly/ db l e (Ny−1)

22

23 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
24 ! compute source , i n i t i a l i s e gue s s

25

26 f s o u r c e =0.d0

27 C=0.d0

28 C o ld=0.d0

29

30 w r i t e (∗ ,∗ ) ’ g e t t i n g s ou r c e ’

31 c a l l g e t f p e r i o d i c ( f s o u r c e , Nx , Ny , dx , dy , Lx , Ly , A0)

32 w r i t e (∗ ,∗ ) ’ done ’

33

34 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
35 ! s o r s t e p s

36

37 do i t e r a t i o n =1, ma x i t e r a t i o n

38

39 ! f o r keep ing t r a c k o f the e r r o r

40 ! $omp p a r a l l e l workshare

41 C o ld=C

42 ! $omp end p a r a l l e l workshare

43

44 ! F i r s t sweep

45 c a l l do so r C (C , f s o u r c e , dx , dy , Nx , Ny , 0 )

46 ! Second sweep

47 c a l l do so r C (C , f s o u r c e , dx , dy , Nx , Ny , 1 )

48

49 ! Implement D i r i c h l e t c o n d i t i o n s at y=0,y=L y .

50 C( : , 1 )=C( : , 2 )

51 C( : , Ny)=C( : , Ny−1)

52

53 i f (mod( i t e r a t i o n , 100 )==0)then

54 c a l l g e t d i f f (C , C old , Nx , Ny , e r r 1 )

55 w r i t e (∗ ,∗ ) i t e r a t i o n , ’ D i f f e r e n c e i s ’ , e r r 1

56 end I f

57

58 end do

59

60 w r i t e (∗ ,∗ ) ’ D i f f e r e n c e i s ’ , e r r 1

61

62

63 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
64 ! w r i t e r e s u l t to f i l e
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65

66 w r i t e (∗ ,∗ ) ’ w r i t i n g to f i l e ’

67 open ( u n i t =20, f i l e=’ po i s s o n . dat ’ , s t a t u s=’UNKNOWN’ )

68

69 do j =1,Ny

70 do i =1,Nx

71 x v a l =( i −1)∗dx
72 y v a l =( j −1)∗dy
73 Write (20 ,∗ ) x v a l , y v a l , C( i , j )

74 end do

75 end do

76 c l o s e ( u n i t =20, s t a t u s=’KEEP ’ )

77 w r i t e (∗ ,∗ ) ’ done ’

78

79 end program mainprogram

80

81

82 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
83 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
84

85 s u b r o u t i n e g e t f p e r i o d i c ( f s r c , Nx , Ny , dx , dy , Lx , Ly , A0)

86 i m p l i c i t none

87

88 i n t e g e r : : i , j , Nx , Ny

89 doub l e p r e c i s i o n : : dx , dy , Lx , Ly , x v a l , y v a l , p i =3.1415926535

90 doub l e p r e c i s i o n : : kx0 , ky0 , kx , ky , A0

91 doub l e p r e c i s i o n : : f s r c ( 1 : Nx , 1 : Ny)

92

93 kx0=2.d0∗ p i /Lx
94 ky0=p i /Ly

95

96 kx=kx0

97 ky=3.d0∗ky0
98

99 f s r c =0.d0

100 do j =1,Ny

101 do i =1,Nx

102 x v a l =( i −1)∗dx
103 y v a l =( j −1)∗dy
104 f s r c ( i , j )=A0∗ cos ( kx∗ x v a l ) ∗ cos ( ky∗ y v a l )

105 end do

106 end do

107

108 r e t u r n

109 end s u b r o u t i n e g e t f p e r i o d i c
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110

111 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
112

113 s u b r o u t i n e g e t d i f f (C , C old , Nx , Ny , d i f f )

114 i m p l i c i t none

115

116 doub l e p r e c i s i o n : : d i f f , sum

117 i n t e g e r : : Nx , Ny , i , j

118 doub l e p r e c i s i o n , d imens ion ( 1 : Nx , 1 : Ny) : : C , C o ld

119

120 sum = 0.0D0

121 ! $omp p a r a l l e l do d e f a u l t ( none ) , &

122 ! $omp p r i v a t e ( i , j ) , s ha r ed (C , C old , Ny , Nx) , &

123 ! $omp r e d u c t i o n (+:sum)

124 Do j = 1 , Ny

125 Do i = 1 , Nx

126 sum = sum + (C( i , j )−C o ld ( i , j ) ) ∗∗2
127 End Do

128 End Do

129 ! $omp end p a r a l l e l do

130 d i f f = sum

131

132 Return

133 End s u b r o u t i n e g e t d i f f

134

135 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
136 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
137 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
138

139 s u b r o u t i n e do so r C (C , f s o u r c e , dx , dy , Nx , Ny , f l a g )

140 i m p l i c i t none

141

142 i n t e g e r : : i , j , ip1 , im1 , Nx , Ny , f l a g

143 doub le p r e c i s i o n : : dx , dy , ax , ay

144 doub le p r e c i s i o n : : f s o u r c e ( 1 : Nx , 1 : Ny) ,C ( 1 : Nx , 1 : Ny)

145

146 doub le p r e c i s i o n : : r e l a x , d i a g v a l , tempva l

147

148 ax=1.d0 /( dx∗dx )
149 ay=1.d0 /( dy∗dy )
150 d i a g v a l =2.d0∗ax+2.d0∗ay
151 r e l a x =1.5d0

152

153 ! $omp p a r a l l e l d e f a u l t ( sha r ed ) , p r i v a t e ( i , j , im1 , ip1 , tempva l )

154 ! $omp do
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155 do j =2,Ny−1

156 do i=mod( j+f l a g , 2 ) +1,Nx , 2

157

158 i f ( i . eq . 1 ) then

159 im1=Nx−1

160 e l s e

161 im1=i−1

162 end i f

163

164 i f ( i . eq . Nx) then

165 i p 1=2

166 e l s e

167 i p 1=i+1

168 end i f

169

170 tempva l=ax ∗(C( ip1 , j )+C( im1 , j ) )+ay ∗(C( i , j +1)+C( i , j −1) )− f s o u r c e ( i , j

)

171 C( i , j )=(1− r e l a x ) ∗C( i , j )+r e l a x ∗ tempva l / d i a g v a l

172

173 end do

174 end do

175 ! $omp end do

176 ! $omp end p a r a l l e l

177

178 end s u b r o u t i n e do so r C

codes/poisson code omp/poisson sor.f90
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13.2 Execution

On Orr, the compile line command is the following:

ifort -openmp poisson_sor1.f90 -static -o poisson_omp.x

However, this will differ from compiler to compiler. A modified submit script is required. The submit

script will set an environment variable that specifies the number of OMP threads. Obviously, this

should never exceed the number of actual threads on the computer. A sample submit script on Orr

is the following:

#!/bin/bash

#$ -S /bin/bash

#$ -N poiss_omp

#$ -q 4x8a.q

#$ -pe orte 8

#$ -V

#$ -cwd

export OMP_NUM_THREADS=8

cd /home/lennon/ucd_summerschool/poisson_code_omp

./poisson_omp.x

which submits to a machine with four processors, each of which has 8 threads. Submission is then

via the ordinary queue.
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13.3 OMP reduction – revsited

Recall in Chapter 12 we examined a method to reduce a sum over all threads. It is instructive to

consider an alternative method for doing the OMP reduction in the subroutine get diff:

subroutine get_diff(C,C_old,Nx,Ny,diff_val)

implicit none

integer :: Nx,Ny,i,j

double precision, dimension(1:Nx,1:Ny) :: C, C_old

integer :: large,tid,numthreads,OMP_GET_THREAD_NUM,OMP_GET_NUM_THREADS

parameter (large=100)

double precision :: diff_vec(0:large),diff_val

!$omp parallel

numthreads = OMP_GET_NUM_THREADS()

!$omp end parallel

!$omp parallel default(shared), private(i,j,tid,diff_val)

tid=OMP_GET_THREAD_NUM()

diff_val=0.d0

!$omp do

Do j = 1, Ny

Do i = 1, Nx

diff_val = diff_val + (C(i,j)-C_old(i,j))**2

End Do

End Do

!$omp end do

diff_vec(tid)=diff_val

write(*,*) ’tid= ’,tid,’diff= ’,diff_val, ’num threads= ’,numthreads

!$omp end parallel

diff_val=0.d0

do tid=0,numthreads-1

if(diff_vec(tid).gt.diff_val)diff_val=diff_vec(tid)

end do
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Return

End subroutine get_diff

This subroutine makes use of some new OMP directives – and OMP GET NUM THREADS, and

OMP GET THREAD NUM:

• When called in a parallel region,OMP GET NUM THREADS returns an integer N , the number of

threads available. It must be called in a parallel region – otherwise the answer returned will

be 1.

• When called in a parallel region, OMP GET THREAD NUM returns an integer i that labels the

current thread, with i = 0, · · · , N − 1.

Exercise 13.1 Implement both kinds of reduction for the model Poisson problem and compare

the residuals. Given that the code is run twice, with both executions being independent, are we

justified in thinking the residuals should be the same (to machine precision) in each case?

Exercise 13.2 Write a Fortran code from scratch that computes

p(n) =
N∑

n=1

1

n2
.

Parallelize the code using OpenMP, in particular an OMP reduction for the summation.

Now, suppose however that the maximum over all rows and columns of the residual array is required.

Here, a similar operation can be performed to obtain the maximum over all threads – either by explicit

computation, or by OMP reduction. Notionally, the reduction takes place as follows. Suppose we

have an array C, split up between threads, such that thread i operates only on a chunk of the array,

say C(i). Then, suppose that on thread i, the following maximum is computed

mi = max
pq

|C(i)
pq |.

Suppose now we are interested in computing

m = max (m1,m2, · · · ) , maximum over all threads.

The syntax for this is as follows:
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subroutine get_diff(u,u_old,maxl,maxn,diff)

implicit none

double precision :: diff,max_val,temp_val

integer :: maxl,maxn,i,j

double precision, dimension(0:maxl,0:maxn) :: u, u_old

max_val=0.d0

!$omp parallel do default(none), &

!$omp private(i,j,temp_val), shared(u,u_old,maxn,maxl,max_val), &

!$omp reduction(max:max_val)

Do j = 1, maxn-1

Do i = 1, maxl-1

temp_val=abs(u(i,j)-u_old(i,j))

if( temp_val .gt. max_val) then

max_val=temp_val

end if

End Do

End Do

!$omp end parallel do

diff = sum

Return

End subroutine get_diff

Common Programming Error:

Using an OMP reduction on the ‘max’ operator in the C language. It is only defined in

Fortran – all the more reason to use lovely Fortran!

13.4 Tasks – timing

OpenMP provides built-in functions to time the execution of a parallel code. In the main code, when

variables are declared, one declares three further variables:
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Number of threads Time in seconds

8 0.1299
4 0.1184
2 0.1926
1 0.2251

Table 13.1: Execution times for the SOR iteration (model Poisson problem)

real(8) :: start_time, end_time, OMP_get_wtime

Consider now a given parallel task that is to be performed. Before execution, one measures the wall

time:

start_time=OMP_get_wtime()

Then, the parallel segment of code is run and the wall time is measured again:

end_time=OMP_get_wtime()

The total execution time is the difference of these two snapshots:

write(*,*) ’ Walltime is ’, end_time-start_time

I timed the execution of the SOR code on a 201×201 grid, with 1,000 SOR iterations and tabulated

the results (Table 13.1). I also plotted the same information in Figure 13.1. The results are okay
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Figure 13.1: Execution times for the SOR iteration (model Poisson problem)

but not brilliant:
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• For N = 1, 2, 4 the execution time decreases with the increase in thread count. This is good!

Our code is running faster because of the multi-threading.

• However, between N = 4 and N = 8, the code is slowing down again. Thus, N = 4 is

the optimal number of threads. going beyond N = 4 is a waste of time and electricity. The

reasons for this can be manifold. A possibility is the existence of communication overheads

– threads need to share data, not all of which may be in the cache. When threads spend

time sharing data, it is wasted time, in other words, time that should be better spent doing

the actual calculation. We say that oure code scales out to 4 threads, and we speak of our

code’s scalability.

• The parallel efficiency is defined to be

EN =
TN

NT1

,

where N is the number of threads, TN is the time required to run on N threads and T1 is the

time required to run on a single thread. At N = 4, the parallel efficiency is only 13%.

Exercise 13.3 See if the performance of the parallel code can be improved by removing the

diagnostic step involving computation of the residuals via OMP reduction. This is a purely

diagnostic step and is not needed for the successful running of the code.

13.5 Over to you...

Exercise 13.4 Recall in Chapter 11, you wrote a Fortran code to solve the model diffusion

equation with a source. Now parallelize the code in OMP. If possible, measure its performance

and scalability.
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Memory allocation in Fortran

Overview

We discuss dynamic memory allocation, particularly suitable for large arrays. We extend the model

Poisson problem to three dimensions and solve it numerically. We develop postprocessing tools for

handling the large files produced from such three-dimensional calculations.

14.1 Dynamic versus static; heap versus stack

So far in Fortran we have declared variables to be of a definite type, for example, integers, doubles,

and characters. Additionally, we have created arrays of doubles, where these arrays are of a fixed

size. The syntax for the array allocation is really quite definite and hints at the immutability of

arrays so created:

integer :: Nx,Ny

parameter (Nx = 201, Ny = 101)

double precision, dimension(1:Nx,1:Ny) :: C

Here, the array C gets a fixed size that cannot be altered. We say that the array C is static.

Because the amount of memory necessary for the creation of this array is known precisely, the array

C can be placed in that highly-structured part of memory known as the stack (See Chapter 3). In

contrast, there are situations where static arrays are not desirable:

• If the size of the array C needs to change in the course of a calculation;

• If the size of the array C is simply too large to fit in the stack.

94
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In these situations, it is better to allocate the array C dynamically, on the heap. The syntax for

the dynamic allocation of the array C is shown here:

integer :: Nx,Ny

parameter (Nx = 201, Ny = 201, Nz=101)

double precision, allocatable, dimension(:,:) :: C

...

...

! **************************************************************

! Allocate variables

allocate(C(1:Nx,1:Ny))

C=0.d0

! **************************************************************

When the array C is no longer needed it needs to be deallocated, thereby freeing up space in

memory:

deallocate(C)

Typically, this is done at the end of the main code, but this is not necessarily the case.

Performance issues

Memory allocation and deallocation is expensive. Allocation on the heap is typically avoided. In

particular, dynamic memory allocation in subroutines is a bad idea, because such subroutines tend

to be called repeatedly. In a worst-case scenario, one would have a dynamically-allocated array in

a subroutine that is called many times, thereby creating successive calls to allocate and free up

memory, over and over again. For this reason, dynamic memory allocation tends only to be used in

the main part of the code, and the allocation is done on a once-off basis.
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Good Programming Practice:

When dealing with large arrays that are passed to subroutines, my practice is to allocate

the array dynamically in the main code, and then to allocate copies of the array statically

in any subroutines. Then, if I get a segmentation fault due to an excessively large request

for memory that does not exist, I can copy the chunk of code for dynamic array allocation

into the subroutine.

Of course, having dynamic array allocation in a subroutine that is called repeatedly should

be viewed as a last resort.

14.2 Poisson code in three dimensions

In the next example (downloadable, not included here in the notes), I have solved the model Poisson

problem in three dimensions, with periodic boundary conditions in the x- and y-directions, and

Neumann boundary conditions in the z-direction.

Exercise 14.1 Compile and run the model three-dimensional code and benchmark its perfor-

mance under OMP parallelism.
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Handling data in large files

Overview

We examine new Matlab postprocessing tools to examine large three-dimensional files. We look

at string maniuplation to postprocess files in which the data is not structured into neat, ordered

columns.

15.1 Example

Consider the code poisson sor1.f90 from Chapter 14, and the resulting output files:

• poisson.dat

• poisson slice.dat

The file poisson slice.dat contains a slice of the three-dimensional array C(x, y, z), at y = Ly/2,

and can be viewed using the two-dimensional Matlab postprocessing tools we have constructed

before. As well as viewing this file and plotting the result, it is also instructive to take a look at the

data file itself. The first 10 lines of the file can be viewed in Linux by typing

head -10 poisson_slice.dat

I get this:

>> bash-3.2$ head -10 poisson_slice.dat

0.000000000000000E+000 0.000000000000000E+000 4.668321307964320E-003

1.000000000000000E-002 0.000000000000000E+000 4.666004491564717E-003
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2.000000000000000E-002 0.000000000000000E+000 4.659109419590812E-003

3.000000000000000E-002 0.000000000000000E+000 4.647589883399717E-003

4.000000000000000E-002 0.000000000000000E+000 4.631510159553213E-003

5.000000000000000E-002 0.000000000000000E+000 4.610833365189051E-003

6.000000000000000E-002 0.000000000000000E+000 4.585632448160086E-003

7.000000000000001E-002 0.000000000000000E+000 4.555879996932404E-003

8.000000000000000E-002 0.000000000000000E+000 4.521657342747652E-003

9.000000000000000E-002 0.000000000000000E+000 4.482946653571969E-003

Obviously, there are three columns containing the various values of X, Y , and C, which are then

read into a Matlab file and reshaped into square arrays.

Good Programming Practice:

Never try opening a large file in its entirety - you will run out of memory and crash

your computer. Instead, use tools like ‘head’, ‘tail’, ’more’, and ‘grep’ to extract or view

relevant information.

Next, we should try to write a Matlab postprocessing file to do the same thing for the full three-

dimensional data file. However, before we try anything, we should not assume a priori that the data

is ordered into columns (why should we?). Thus, I typed

head -10 poisson.dat

and got

>> bash-3.2$ head -10 poisson.dat

0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

-5.252804656865423E-002

1.000000000000000E-002 0.000000000000000E+000 0.000000000000000E+000

-5.250215979901304E-002

2.000000000000000E-002 0.000000000000000E+000 0.000000000000000E+000

-5.242439421169698E-002

3.000000000000000E-002 0.000000000000000E+000 0.000000000000000E+000

-5.229495753177844E-002

4.000000000000000E-002 0.000000000000000E+000 0.000000000000000E+000

-5.211384677229017E-002
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Obviously, there are four columns containing the various values of X, Y , Z, and C. However, C

has been pushed on to a second line! In short, in printing to files, unpredictable things can happen,

and our Matlab file-reading tools need to be able to take account of these things.

I have written a Matlab file to take account of this line-jumping:

1 f u n c t i o n [X,Y, Z ,C]= o p e n s i n g l e d a t f i l e 3 d ( )

2

3 Nx=201;

4 Ny=201;

5 Nz=101;

6

7 n l i n e s=Nx∗Ny∗Nz ;
8

9 f i l e n ame=’ po i s s o n . dat ’ ;

10 f i d=fopen ( f i l e n ame ) ;

11

12 X=0∗(1: n l i n e s ) ;

13 Y=0∗(1: n l i n e s ) ;

14 Z=0∗(1: n l i n e s ) ;

15 C=0∗(1: n l i n e s ) ;

16

17 f o r i =1: n l i n e s

18 c1=f g e t l ( f i d ) ;

19 vec temp=s s c a n f ( c1 , ’%f ’ ) ;

20 x temp=vec temp (1) ;

21 y temp=vec temp (2) ;

22 z temp=vec temp (3) ;

23

24 X( i )=x temp ;

25 Y( i )=y temp ;

26 Z( i )=z temp ;

27

28 c1=f g e t l ( f i d ) ;

29 vec temp=s s c a n f ( c1 , ’%f ’ ) ;

30 c temp=vec temp (1) ;

31

32 C( i )=c temp ;

33

34 i f (mod( i , 100000)==0)

35 f r a c =100∗( i / n l i n e s ) ;

36 d i s p l a y ( s t r c a t ( num2str ( f r a c ) , ’% done ’ ) )

37 end

38

39 end

40
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41 X=re shape (X, Nx , Ny , Nz) ;

42 Y=re shape (Y, Nx , Ny , Nz) ;

43 Z=re shape (Z , Nx , Ny , Nz) ;

44 C=re shape (C , Nx , Ny , Nz) ;

45

46 f c l o s e ( f i d ) ;

47

48 end

codes/poisson code threed/open single dat file 3d.m

It is a simple extension to what has been done before, and exploits the fact that variable fid labels

the current line in the open file, and that upon reading a line, the variable is incremented by one so

as to label the next line.

Having read the data file into Matlab, the challenge is to view it in three dimensions. There is a

useful isosurface feature in Matlab, which will plot a level surface of a three-dimensional function

C(x, y, z). Recall, that

C(x, y, z) = Const.

is a two-dimensional manifold surface embedded in R3, and can therefore be plotted. This is precisely

the definition of a level surface. A analogue in R2 is a level line, or, in other words, a contour. There

is a tremendous amount of machinery that comes with the isosurface function in Matlab, including

how the surface is ‘lit’, and from what angle it is viewed. The best way to learn about this is to

experiment, and use the ‘help’ pages. As a starting point for this experimentation, one can use

the following code which genreates a level surface from the following four three-dimensional arrays:

(X, Y, Z, C):

1 f u n c t i o n [ ]= make i so (X,Y, Z ,C , v a l )

2

3 f v=i s o s u r f a c e (X,Y, Z ,C , v a l ) ;

4

5 h=f i g u r e ;

6 p=patch ( f v ) ;

7 s e t (p , ’ FaceCo lo r ’ , ’ r ed ’ , ’ Edgeco l o r ’ , ’ none ’ )

8 a x i s equa l

9 v iew (30 ,30)

10 a x i s t i g h t

11 cam l i gh t ( ’ h e a d l i g h t ’ )

12 s e t (h , ’ Rende re r ’ , ’ z b u f f e r ’ ) ;

13 l i g h t i n g phong

14 g r i d on

15 s e t ( gca , ’ f o n t s i z e ’ ,18 , ’ fontname ’ , ’ t imes new roman ’ )

16 x l a b e l ( ’ x ’ )
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17 y l a b e l ( ’ y ’ )

18 z l a b e l ( ’ z ’ )

19 drawnow

20

21 f i g f i l e n am e=s t r c a t ( ’ i s o s u r f a c e v a l ’ , ’ . f i g ’ ) ;

22 s a v ea s (h , f i g f i l e n am e )

23

24 end

codes/poisson code threed/make iso.m

Here, ‘val’ is the level at which the isosurface is to be made. A sample result is shown in Figure 15.1

Figure 15.1: Isosurface for the Poisson problem, with C = 0.015.

15.2 Challenge problem

Exercise 15.1 Write and execute a code to solve the three-dimensional diffusion equation whose

steady-state solution is given by the Poisson problem discussed in this chapter. Postprocess the

results in an appropriate fashion.

Some notes:

• This will take a long time to run, and the results will involve a large amount of data.
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• A family of isosurface plots might be the most appropriate way of showing the results. Some

families of two-dimensional slices might also be appropriate.

• For the isosurfaces, the most appropriate isosurface level suitable for conveying the maxmum

amount of information will vary over time. You should develop either an analytical formula or

a numerical postprocessing tool to determine this level. Both approaches will involve studying

the maximum of C(x, y, z, t) over the domain, as a function of time.

15.3 Further challenge problem

Consider the following two files that can be downloaded from the website:

• File A: ’3dchannel 7000.dat’

• File B: ’3dchannel 65000.dat’

These files contain outputs from numerical simulations at different points in time. The simulations

are from a two-phase Navier–Stokes solver. Ideally, the data should be structured into eight columns:

[X, Y, Z, U, V,W, P,Φ], where X, Y , and Z are coordinates, U , V , and W are velocities, P is a

pressure, and Φ is the so-called level-set function, which tracks which phase is which: with Φ < 0

in the more viscous phase of the simulation, and Φ > 0 in the less viscous phase. The numerical

grid is of size 304× 152× 152, and the files contain two header lines.

Exercise 15.2 Use appropriate Linux tools to characterize the structure of the data in these

files.

In addition, the number of lines in each file can be estimated as follows:

wc -l filename

This should be equal to 304× 152× 152 + Number of header lines.

Now, as it turns out, in file A, the data have been output in a straightforward way, in strict column

form.

Exercise 15.3 Write a Matlab code to extract the data from file A, and to generate an isosurface

plot, at Φ = 0.
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Good Programming Practice:

For this assignment, it is a good idea to create two Matlab functions for the two sub-tasks

that appear here. In this way, should the isosurface task fail, you will still have available

data from the file-reading part of the task. This means that when you start over writing

the isosurface task, you will be starting from a relatively advanced point. This will save

a lot of time, given the intensity of the data-reading task to be performed.

Here is a snippet of a ‘good’ isosurface plot command for this problem:

fv = isosurface(X,Y,Z,Phi,0);

p=patch(fv);

set(p,’FaceColor’,’red’,’Edgecolor’,’none’)

axis equal

view(30,30)

axis tight

zlim([0.1,0.5])

camlight(’headlight’)

set(h,’Renderer’,’zbuffer’);

lighting phong

Now, as it turns out, in file B, the data have been printed to the file in a truly bizarre way (which

nevertheless saves some space; file B is smaller than file A):

1. For each gridpoint, the variables [X,Y, Z, U, V,W, P,Φ] extend over two lines in the output

file.

2. Each piece of information is separated by a comma (not a space or a tab).

3. For each gridpoint, if a variable appears twice, it is stored only once. Thus, if at a certain

gridpoint, X = Y , then instead of printing [X, Y, Z, U, V,W, P,Φ], [2 ∗ X,Z, U, V,W, P,Φ]

is printed instead.

4. Similarly, ifX = Y = Z, then [X,Y, Z, U, V,W, P,Φ] is not printed; instead, [3∗x, U, V,W, P,Φ]

is printed.

Obviously, one could at runtime specify explicitly and strictly how the I/O is to be performed.

However, I realised after the fact what had taken place, and it is wasteful to perform these large-

scale simulations more than once, only to recreate the results a second time in a slightly-different
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output format. Thus, it is necessary to write a Matlab script to account for all of these variations,

and to gather the results into large three-dimensional arrays for isosurface plotting.

Exercise 15.4 Write a Matlab code to extract the data from file B, and to generate an isosurface

plot, at Φ = 0.

Hint: before doing so investigate the following built-in Matlab commands:

• fgetl

• strrep – for replacing characters in a string by new characters

• strcat – for joining two strings together

• sscanf – for reading strings into arrays of a specfied type

The result will be a beautiful picture like Figure 15.2.

Figure 15.2: Isosurface plot at Φ = 0, for file B



Appendix A

Facts about Linear Algebra you should

know

Overview

In this appendix, let V be a real vector space with dimension n < ∞, and equipped with a scalar

product

(·|·) : V × V → R

x,y 7→ (x|y).

A.1 Orthogonality

• Two vectors x, y are said to be orthogonal if (x|y) = 0.

• The set {x1, · · · ,xn} is called a basis for V if

– x1, · · · ,xn are linearly independent;

– x1, · · · ,xn span V .

Thus, for any x ∈ V , there exist real scalars α1, · · · , αn such that

x =
n∑

i=1

αixi.

• A basis {xi}ni=1 for V is said to be orthonormal if

(xi|xj) = δij.
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Given an orthonormal basis {xi}ni=1, we have, for arbitrary x ∈ V ,

x =
n∑

i=1

αixi,

(xj|x) =
n∑

i=1

αi(xj|xi),

(xj|x) =
n∑

i=1

αiδij,

hence

αj = (xj|x), x =
n∑

j=1

(xj|x)xj. (A.1)

In Quantum Mechanics, Equation (A.1) is called the completeness relation.

A.2 The Spectral Theorem

Throughout this section, let V = Rn. The usual basis means

e1 = (1, 0, 0, · · · , 0, 0),

e2 = (0, 1, 0, · · · , 0, 0),
... = ,

en = (0, 0, 0, · · · , 0, 1).

An arbitrary vector in Rn is written as a Cartesian n-tuple, x = (x1, · · · , xn)
T , which can be written

in terms of the usual basis as

x =
n∑

i=1

xiei.

In this section, we are interested in real, square (n×n) symmetric matrices; let A be such a matrix:

A : Rn → Rn,

x 7→ Ax,

such that (Ax)i =
∑n

j=1Aijxj. The symmetricness of A means that

Aij = Aji.

We have a simple lemma:
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Lemma A.1 The eigenvalues of A are real, and eigenvectors corresponding to distinct eigenvalues

are orthogonal.

A deeper result is the following:

Theorem A.1 The eigenvectors of A span Rn and can be chosen to form an orthonormal set.

This is a special case of the celebrated spectral theorem – the crowning achievement of Linear

Algebra.

A.3 Diagonalizabillity

Here, we let A ∈ Rn×n. For situations where the eigenvectors span Rn, with

Axi = λixi, S (x1, · · · ,xn) = Rn,

then we can form the matrix

P =


| |
x1 · · · xn

| |

 ,

such that

AP = PD, D =


λ1

...
...

λn

 ,

Given the assumption that the eigenvectors span Rn, the eigenvectors are all linearly independent,

hence P−1 exists, and we have

P−1AP = D.

A.4 Jordan decomposition

Of course, not all matrices are diagonalizable. Sometimes (but not necessarily) the presence of a

non-simple root in the characteristic polynomial may signal the non-diagonalizability of a matrix.

One should note carefully that this is not a necessary condition for non-diagonalizability; e.g. A = I
is trivially diagonalizable, with a single repated root in the associated characteristic equation. Putting

aside this discussion, in general, in situations of non-diagonalizability, there is a weaker result (i.e.

weaker than the Spectral Theorem), namely the Jordan decomposition:
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Theorem A.2 Let A be any matrix in over the field of complex numbers. Then there exists an

intertible matrix P such that

P−1AP =


J1

...
...

Jk

 , k ≤ n,

where each Jr is a square matrix of the form

Jr =


λr 0 · · · · · · 0

1 λr · · · · · · 0

· · · ... λr
...

0 0 · · · 1 λr

 , r ≤ n

with eigenvalues λr on the diagonal, ones just below the diagonal, and zeros everywhere else.

Note that the convention that the submatrices have 1s on the superdiagonal instead of the subdi-

agonal is also used, e.g.

http://mathworld.wolfram.com/JordanCanonicalForm.html

A.5 The operator norm

Definition A.1 (The L2-norm of a matrix) Let A ∈ Rn×n be a real matrix. We define the

L2-norm of A as follows:

∥A∥2 = sup
x̸=0

∥Ax∥2
∥x∥2

.

Throughout the rest of this course, we refer to the L2 norm of a matrix as the operator norm.

Theorem A.3 (Properties of the operator norm) Let A ∈ Rn×n be a real matrix. We have

the following set of properties of the operator norm:

1. Positive-definite: ∥A∥2 ≥ 0, ∥A∥2 = 0 =⇒ A = 0,

2. Linearity under scalar multiplication:

∥µA∥2 = |µ|∥A∥2,

3. The triangle inquality:

∥A+B∥2 ≤ ∥A∥2 + ∥B∥2,
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4. Cauchy–Schwarz-type inequalities

∥AB∥2 ≤ ∥A∥2∥B∥2, ∥Ax∥2 ≤ ∥A∥2∥x∥2,

for all A,B ∈ Rn×n, x ∈ Rn, and all µ ∈ R.

Lemma A.2 Let A ∈ Rn×n be a real matrix. Then,

1. ATA is symmetric;

2. The eigenvalues of ATA are non-negative.

Proof:

1. We have

(ATA)T = AT (AT )T = ATA,

hence ATA is symmetric.

2. Let

(ATA)x = λx.

We dot both sides by x using the ordinary dot product. For brevity, we use the following

notation:

x · y ≡ xTy ≡ (x,y).

We have,

(
x,ATAx

)
= λ (x,x) ,

(Ax,Ax) = λ∥x∥22,

hence, ∥Ax∥22 = λ∥x∥22, and λ ≥ 0.

Theorem A.4 (An explicit method to compute the operator norm) LetA ∈ Rn×n be a real

matrix. We have the following identity:

∥A∥2 =
√

λmax

where λmax denotes the largest eigenvalue of the matrix ATA.
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Proof: We have,

∥Ax∥22 = (Ax,Ax) ,

=
(
ATAx,x

)
,

=
(
x,ATAx

)
.

Now ATA is a real, symmetric n× n matrix so by the spectral theorem, the eigenvectors of ATA

span Rn and are orthonormal. Thus, we can write

x =
∑
i

αixi,
(
ATA

)
xi = λixi, (xi,xj) = δij.

Thus, we have

(
x,ATAx

)
=

(∑
i

αixi

)
·

(∑
j

λjαjxj

)
,

=
∑
ij

αiαjλjδij,

=
∑
i

α2
iλi.

Hence,

∥Ax∥22 =
(
x,ATAx

)
=
∑
i

α2
iλi. (A.2)

Let λmax = maxi λi, and let imax be the index of the maximal eigenvalue. The expression (A.2) is

maximized by taking αi = 0 unless i = imax, i.e. x ∝ ximax . Note that this argument is not affected

by the presence of eigenspaces of dimension higher than one, i.e. it is not affected by degenerate

eigenvalues. Thus,

∥Ax∥22 = α2
imax

λmax,

and
∥Ax∥22
∥x∥22

= λmax.

In other words,

sup
x̸=0

∥Ax∥2
∥x∥2

=
√
λmax,

as required.


