Chapter 14

The 1-D wave equation: Causality

Overview

In this section we show, by examples, that information is propagated at speed c in the wave equation. Here, 'information' means initial data; we will see shortly what is meant by propagation.

14.1 Example I

Consider the wave equation

$$
u_{t t}=u_{x x}
$$

with initial data

$$
\begin{aligned}
& u(x, t=0)=f(x)=\left\{\begin{array}{ll}
F(x), & |x| \leq 1 \\
0, & |x|>1
\end{array},\right. \\
& u_{t}(x, t=0)=g(x)=0 .
\end{aligned}
$$

and with wave speed $c=1$. We are to solve for the wave. By d'Alembert's formula, the solution is

$$
u(x, t)=\frac{1}{2}[f(x+t)+f(x-t)] .
$$

We need to identify where $|x+t|$ and $|x-t|$ are less than one; outside of these regions the solution is zero.

- Case 1: $|x+t| \leq 1$ AND $|x-t| \leq 1$. Along the lines where the equalities hold, $|x+t|=1$
and $|x-t|=1$. These lines represent the boundaries of the region of interest:

$$
-1 \leq x-t \leq 1, \quad-1 \leq x+t \leq 1
$$

Note also that $d x / d t= \pm 1= \pm c$ along these lines, i.e. they are characteristic lines that give a trajectory moving at the wave speed.

We pick out the pertinent boundary lines:

$$
t \leq x+1, \quad t \leq 1-x
$$

These are lines with slopes ± 1 and a y-axis intercept at 1 . The region R_{1} is below these lines, and above the x-axis $(t=0)$.

- Case 2: $|x-t| \leq 1$ only. In other words, $-1 \leq x-t \leq 1$. The boundaries of this region are

$$
\begin{aligned}
& t \leq x+1 \\
& t \geq x-1
\end{aligned}
$$

These are characteristics.

- Case 3: $|x+t| \leq 1$ only. In other words, $-1 \leq x+t \leq 1$. The boundaries of this region are

$$
\begin{gathered}
t \leq 1-x \\
t \geq-1-x
\end{gathered}
$$

Next, we plot these different regions in spacetime (Fig. 14.1).

- In region $R_{1},|x+t| \leq 1$ AND $|x-t| \leq 1$;
- In region $R_{2},|x-t| \leq 1$ only;
- In region $R_{3},|x+t| \leq 1$ only;
- Outside of these regions, $|x+t|$ AND $|x-t|$ both exceed $1(>1)$.

Thus,

$$
u(x, t)= \begin{cases}\frac{1}{2}[F(x+t)+F(x-t)], & (x, t) \in R_{1} \\ \frac{1}{2} F(x-t), & (x, t) \in R_{2}, \\ \frac{1}{2} F(x+t), & (x, t) \in R_{3}, \\ 0, & \text { otherwise } .\end{cases}
$$

Figure 14.1: The different regions where $|x \pm t| \leq 1$.

Physical interpretation

- The initial, compactly-supported disturbance remains compactly supported for all time. The support never exceeds $x=1+c t$ and $x=-1-c t$, which are characteristics $d x / d t= \pm c$.
- In other words, the equations $x=x_{0 R}+c t=1+t$ and $x=x_{0 L}-c t=-1-t$ are an envelope within which information is carried forwards in time.
- Outside of this envelope, no information is carried forwards.
- This is the notion of causality: The initial solution affects the solution at a later time, within the boundaries set by the characteristics $x=x_{0 R}+c t$ and $x=x_{0 L}-c t$.
- In other words, causality demands that a compactly-supported initial condition always remain compactly supported, and that support should depend on the initial conditions and the characteristics.
- As can be seen from Fig. 14.1, $F(x-c t)$ represents a right-travelling disturbance, because the domain $|x-c t| \leq 1$ extends into the right half of the spacetime plane.

14.2 Example II

Consider the wave equation

$$
u_{t t}=u_{x x}
$$

with initial data

$$
\begin{aligned}
& u(x, t=0)=f(x)=0 \\
& u_{t}(x, t=0)=g(x)= \begin{cases}G(x):=\cos ^{2}(\pi x / 2), & |x| \leq 1 \\
0, & |x|>1\end{cases}
\end{aligned}
$$

and with wave speed $c=1$. We are to solve for the wave. By d'Alembert's formula, the solution is

$$
u(x, t)=\frac{1}{2}[f(x+t)+f(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} g(s) \mathrm{d} s
$$

We need to identify where $|x+t|$ and $|x-t|$ are less than one; outside of these regions the solution is zero. But we have already done this:

1. In region $R_{1},|x+t| \leq 1$ AND $|x-c t| \leq 1$;
2. In region $R_{2},|x-t| \leq 1$ only;
3. In region $R_{3},|x+t| \leq 1$ only;
4. In region $R_{4}, x-t \leq-1$ and $x+t \geq 1$;
5. In region $R_{5}, x+t \leq-1$;
6. In region $R_{6}, x-t \geq 1$.

Figure 14.2: The different regions where $|x \pm t| \leq 1$.

Region 1: $|x+t| \leq 1$ and $|x-t| \leq 1$. This implies that

$$
-1 \leq x-t \leq x+t \leq 1
$$

Do the G-integral. Note:

$$
\int_{a}^{b} \cos ^{2}(\pi x / 2) \mathrm{d} x=\int_{a}^{b} \frac{1}{2}[1+\cos (\pi x)] \mathrm{d} x=\frac{1}{2}(b-a)+\frac{1}{2} \frac{\sin (\pi b)-\sin (\pi a)}{\pi} .
$$

Inside region 1,

$$
-1 \leq x-t \leq x+t \leq 1
$$

so $G(s)=g(s)$ everywhere in the integral:

$$
\begin{aligned}
\int_{x-t}^{x+t} G(s) \mathrm{d} s & =\int_{x-t}^{x+t} \cos ^{2}(\pi s / 2) \mathrm{d} s \\
& =t+\frac{\sin (\pi(x+t))-\sin (\pi(x-t))}{2 \pi} \\
& =t+\frac{1}{\pi} \cos (\pi x) \sin (\pi t)
\end{aligned}
$$

Finally, in region 1,

$$
u_{1}(x, t)=0+\frac{1}{2} t+\frac{1}{2 \pi} \cos (\pi x) \sin (\pi t) .
$$

Region 2: $|x-t| \leq 1$. Inspection of Fig. 14.2 shows that the region boundaries are

$$
-1 \leq x-t \leq 1 \text { AND } x+t>1
$$

so that $x-t \geq-1$ and $x+t \geq 1$. Now $G(s)=g(s)$ for $s \in[x-t, 1]$ and is zero elsewhere. Hence,

$$
\begin{aligned}
\int_{x-t}^{x+t} G(s) \mathrm{d} s & =\int_{x-t}^{1} \cos ^{2}(\pi s / 2) \mathrm{d} s \\
& =\frac{1}{2}[1-(x-t)]+\frac{\sin (\pi)-\sin (\pi(x-t))}{2 \pi} \\
& =\frac{1}{2}[1-x+t]-\frac{\sin (\pi(x-t))}{2 \pi}
\end{aligned}
$$

Finally, in region 2,

$$
u_{2}(x, t)=\frac{1}{4}[1-x+t]-\frac{\sin (\pi(x-t))}{4 \pi} .
$$

Region 3: $|x+t| \leq 1$. Inspection of Fig. 14.2 shows that the region boundaries are

$$
-1 \leq x+t \leq 1 \text { AND } x-t<-1
$$

so that $x-t \leq-1$ and $x+t \leq 1$. Now $G(s)=g(s)$ for $s \in[-1, x+t]$ and is zero elsewhere.
Hence,

$$
\begin{aligned}
\int_{x-t}^{x+t} G(s) \mathrm{d} s & =\int_{-1}^{x+t} \cos ^{2}(\pi s / 2) \mathrm{d} s \\
& =\frac{1}{2}[x+t-(-1)]+\frac{\sin (\pi(x+t))-\sin (\pi(-1))}{2 \pi} \\
& =\frac{1}{2}[x+t+1]+\frac{\sin (\pi(x+t))}{2 \pi}
\end{aligned}
$$

Finally, in region 3,

$$
u_{2}(x, t)=\frac{1}{4}[x+t+1]+\frac{\sin (\pi(x+t))}{4 \pi} .
$$

Region 4: Fig. 14.2,

$$
x-t \leq-1, \quad x+t \geq 1
$$

so $G(s)=g(s)$ for $s \in[-1,1]$ and is zero elsewhere.

$$
\begin{aligned}
\int_{x-t}^{x+t} G(s) \mathrm{d} s & =\int_{-1}^{1} \cos ^{2}(\pi s / 2) \mathrm{d} s \\
& =\frac{1}{2}[1-(-1)]+\frac{\sin (\pi)-\sin (\pi(-1))}{2 \pi} \\
& =1
\end{aligned}
$$

Finally, in region 4,

$$
u_{4}(x, t)=\frac{1}{2}
$$

Region 5: $x+t<-1$, hence $G(s)=0$.

Region 6: $x-t>1$, hence $G(s)=0$.

Putting it all together,

$$
u(x, t)= \begin{cases}u_{1}(x, t), & (x, t) \in R_{1} \\ u_{2}(x, t), & (x, t) \in R_{2} \\ u_{3}(x, t), & (x, t) \in R_{3} \\ u_{4}(x, t), & (x, t) \in R_{4} \\ u_{5}(x, t), & (x, t) \in R_{5} \\ u_{6}(x, t), & (x, t) \in R_{6}\end{cases}
$$

or,

$$
u(x, t)= \begin{cases}\frac{1}{2} t+\frac{1}{2 \pi} \cos (\pi x) \sin (\pi t), & (x, t) \in R_{1}, \\ \frac{1}{4}[1-x+t]-\frac{\sin (\pi(x-t))}{4 \pi}, & (x, t) \in R_{2}, \\ \frac{1}{4}[x+t+1]+\frac{\sin (\pi(x+t))}{4 \pi}, & (x, t) \in R_{3}, \\ \frac{1}{2}, & (x, t) \in R_{4}, \\ 0, & (x, t) \in R_{5}, \\ 0, & (x, t) \in R_{6},\end{cases}
$$

Notes:

- Region 4 gives a contribution here. If there is no initial velocity $\left(u_{t}(x, t=0)=0\right)$, there is no contribution from this region.
- I have sketched the d'Alembert solution in Fig. 14.3, using the code wavesolve_-exact.m.
- There is also available my webpage, a finite-difference code integrate__sde.m. One can test the finite-difference code and the exact-solution code and they give the same answer, for all times.

