
Chapter 11

The 1-D wave equation

Overview

The wave equation describes linear oscillations in a generic field u(x, t):

1

c2

∂2u

∂t2
=

∂2u

∂x2
,

where c is the propagation speed of the oscillations. Topics: derivation; solution through separation

of variables; energy conservation.

11.1 Derivation

Figure 11.1: N particles connected in a line via identical springs (clamped boundary conditions).

Consider N identical particles arrayed in a line, and connected together by identical springs (Fig. 11.1).

The equilibrium position of the ith particle is xi = i∆x, with i = 1, 2, · · ·N , and the departure from

equilibrium is small and equal to yi. The potential energy of such a system is

U(y1, · · · , yN) = 1
2
k

N−1∑
i=1

(yi+1 − yi)
2 + Boundary terms.
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The boundary terms can be taken care of by forcing the displacements y0 = yN+1 = 0. Thus,

U(y1, · · · , yN) = 1
2
k

N∑
i=0

(yi+1 − yi)
2 , y0 = yN+1 = 0.

Hence, at interior points (i = 1, 2, · · · , N), Newton’s law gives

m
d2yi

dt2
= −∂U

∂yi

= −k [−(yi+1 − yi) + (yi − yi−1)] ,

= k(yi+1 − yi)− k(yi − yi−1).

The mass of each oscillator is m = ρ∆x, where ρ is the constant (linear density) of the system.

Thus,
d2yi

dt2
=

k∆x

ρ

(yi+1 − yi)− (yi − yi−1)

(∆x)2
.

We identify T = k∆x as the tension in the system of springs. Thus,

d2yi

dt2
=

T

ρ

(yi+1 − yi)− (yi − yi−1)

(∆x)2
.

Taking ∆x → 0 (N →∞) gives

∂2y(x, t)

∂t2
=

T

ρ

∂2y(x, t)

∂x2
,

where we identify

c2 =
T

ρ
.

Now

[c]2 =
Force

Mass/Length
=

Mass Length/Time2

Mass/Length
=

Length2

Time2 ,

and c is clearly a velocity: it is the velocity at which a wave of small oscillations propagates along

the spring system. A similar treatment of other systems yields the same linear wave equation. For

example, for small oscillations in a gas, the linear wave equation is satisfied, with

c2
gas =

γp0

ρ
,

where

• γ is the (nondimensional) ratio of specific heats;

• p0 is the equilibrium pressure;

• ρ is the mass per unit volume.
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In any case, the generic equation we study in this section is

1

c2

∂2u(x, t)

∂t2
=

∂2u(x, t)

∂x2
.

11.2 Boundary and initial conditions

The most common kind of boundary conditions is the requirement that the oscillations at the end

points of the domain Ω = [0, L] should be zero:

u(x = 0, t > 0) = u(x = L, t > 0) = 0.

In the language of Ch. 8, these are the homogeneous Dirichlet conditions. We need two

boundary conditions because the equation is second-order in space. For the diffusion equation, we

needed only one initial condition, because the equation was first-order in time. However, the wave

equation is second-order in time, so we need two initial conditions, usually taken to be

u(x, t = 0) = f(x), 0 < x < L,

ut(x, t = 0) = g(x), 0 < x < L.

11.3 Separation of variables

Consider a taut string, such as a violin string, that is plucked according to the initial conditions

u(x, t = 0) = f(x), 0 < x < L,

ut(x, t = 0) = g(x), 0 < x < L.

The string is fixed at the end points, u(0) = u(L) = 0. Solve for the vibrations in the string.

We solve by separation of variables:

u(x, t) = X(x)T (t).

Substitution into the wave equation gives

1

c2
T ′′(t)X(x) = X ′′(x)T (t).

Dividing by X(x)T (t) gives
1

c2

T ′′(t)
T (t)

=
X ′′(x)

X(x)
.
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Since the LHS is a function of time alone and the RHS is a function of space alone, the only way

for this equation to be satisfied is if both sides are in fact equal to a constant:

1

c2

T ′′(t)
T (t)

=
X ′′(x)

X(x)
= −λ.

Let us also substitute the trial solution into the BCs and the ICs:

Initial condition: u(x, t = 0) = X(x)T (0) = f(x), 0 < x < L,

Initial condition: ut(x, t = 0) = X(x)T ′(0) = g(x), 0 < x < L,

Boundary condition: T (t)X(0) = T (t)X(L) = 0

Solving for X(x)

Focussing on the X(x)-equations, we have:

1

X

d2X

dx2
= −λ, 0 < x < L,

X(0) = X(L) = 0.

Equation in the bulk 0 < x < L:

d2X

dx2
+ λX = 0, (∗)

Different possibilities for λ:

1. λ = 0. Then, the solution is X(x) = Ax + B, with dX/dx = A. However, the BCs specify

X(0) = 0, hence B = 0. They also specify X(L) = 0, hence A = 0. Thus, only the trivial

solution remains, in which we have no interest.

2. λ < 0. Then, the solution is X(x) = Aeµx + Be−µx, where µ =
√−λ. The BCs give

A + B = AeµL + Be−µL = 0.

Grouping the first two of these equations together gives

A = −B
1− e−µL

1− eµL
.
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But A + B = 0, hence

B

[
1− 1− e−µL

1− eµL

]
= 0,

B

[
1− eµL − (1− e−µL)

1− eµL

]
= 0,

B
[−eµL + e−µL

]
= 0,

B sinh(µL) = 0,

which has only the trivial solution.

3. Thus, we are forced into the third option: λ > 0.

Solving Eq. (*) with λ > 0 gives

X(x) = A cos(
√

λx) + B sin(
√

λx),

with boundary condition

A · 1 + B · 0 = A cos(
√

λL) + B sin(
√

λL) = 0.

Hence, A = 0. Grouping the second and third equations in this string together therefore gives

B sin(
√

λL) = 0.

Of course, B = 0 is a solution, but this is the trivial one. Therefore, we must try to solve

sin(
√

λL) = 0.

This is possible, provided √
λL = nπ, n ∈ {1, 2, · · · }.

Thus,

λ = λn =
n2π2

L2
,

and

X(x) = B sin
(nπx

L

)
,

where B is a constant of integration.
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Solving for T (t)

Now substitute λn = n2π2/L2 back into the T (t)-equation:

1

T

dT 2

dt2
= −λc2 = −λnc

2.

Solving give

T (t) = C cos(c
√

λnt) + D sin(c
√

λnt).

Putting it all together

Recall the ansatz:

u(x, t) = X(x)T (t).

Thus, we have a solution

X(x)T (t) = B sin
(nπx

L

) [
C cos(c

√
λnt) + D sin(c

√
λnt)

]
.

Re-labelling the constants, this is

Xn(x)Tn(t) = sin
(nπx

L

) [
An cos(c

√
λnt) + Bn sin(c

√
λnt)

]
.

The label n is just a label on the solution. However, each n = 1, 2, · · · produces a different solution,

linearly independent of all the others. We can add all of these solutions together to obtain a general

solution of the PDE:

u(x, t) =
∞∑

n=1

Xn(x)Tn(t),

=
∞∑

n=1

sin
(nπx

L

) [
An cos(c

√
λnt) + Bn sin(c

√
λnt)

]
.

We are almost there. However, we still need to take care of the initial conditions. First IC:

u(x, t = 0) =
∞∑

n=1

sin
(nπx

L

) [
An cos(c

√
λnt) + Bn sin(c

√
λnt)

]
t=0

,

=
∞∑

n=1

An sin
(nπx

L

)
,

= f(x).
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But the functions {
sin

(nπx

L

) }∞

n=1

are orthogonal on [0, L]: ∫ L

0

sin
(nπx

L

)
sin

(mπx

L

)
dx =

L

2
δmn.

Thus, multiply both sides by sin(mπx/L) and integrate:

∫ π

0

f(x) sin
(mπx

L

)
dx =

∫ π

0

∞∑
n=1

An sin
(mπx

L

)
sin

(nπx

L

)
,

=
∞∑

n=1

An

∫ π

0

sin
(mπx

L

)
sin

(nπx

L

)
,

=
∞∑

n=1

An
L

2
δm,n,

=
AnL

2
.

Hence,

An =
2

L

∫ π

0

f(x) sin
(mπx

L

)
dx.

Second IC:

ut(x, t = 0) =
∞∑

n=1

sin
(nπx

L

) d

dt

{ [
An cos(c

√
λnt) + Bn sin(c

√
λnt)

] }

t=0

,

=
∞∑

n=1

Bnc
√

λn sin
(nπx

L

)
,

=
∞∑

n=1

Bnnπc

L
sin

(nπx

L

)
,

= g(x).

Taking the scalar product with sin(mπx/L), we get

∫ L

0

g(x) sin
(mπx

L

)
dx =

L

2

Bnnπc

L
,

hence

Bn =
L

nπc

2

L

∫ L

0

g(x) sin
(mπx

L

)
dx.

and, substituting back into the general solution, we have
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u(x, t) =
∞∑

n=1

sin
(nπx

L

) [
An cos(c

√
λnt) + Bn sin(c

√
λnt)

]
, (11.1)

An =
2

L

∫ L

0

sin
(nπx

L

)
f(x) dx,

Bn =
L

nπc

2

L

∫ L

0

sin
(nπx

L

)
g(x) dx.

which is a solution to the wave equation that satisfies the boundary and initial conditions.

Note: Proving that this series converges to the solution is difficult, because we do not have decaying

exponentials like e−n2π2Dt/L2
as in the diffusion equation, thus making it difficult to apply the

Weirstrass M -test

11.4 Physical interpretation of solution

We have found the following solution to the wave equation:

u(x, t) =
∞∑

n=1

sin
(nπx

L

) [
An cos

(
n

cπ

L
t
)

+ Bn sin
(
n

cπ

L
t
)]

,

which vanishes at the boundaries u(0) = u(L) = 0.

• The component

sin
(nπx

L

) [
An cos

(
n

cπ

L
t
)

+ Bn sin
(
n

cπ

L
t
)]

is called the nth normal mode of vibration.

• The solution is a sum over all normal modes.

• Each normal mode is a periodic function of time, with period

n
cπ

L
τn = 2π =⇒ τn =

2

n

L

c
,
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• The frequency of a normal mode is given by

ωn =
2π

τn

,

= 2π
nc

2L
,

= 2π
n

2L

√
T

ρ
,

upon restoration of the original interpretation of the wave speed. This is probably the nicest

result of high-school physics: Modes of vibration of a string are periodic, and each

frequency is an integer multiple of a basic or fundamental frequency, given by

ω1 = 2π
1

2L

√
T

ρ
,

• In a given complex disturbance (i.e. multiple frequencies), each mode is characterised by its

frequency ωn and by the quantities An and Bn, which tell us the intensity of the contribution

made by the nth normal mode. However, we can re-write the disturbance:

u(x, t) =
∞∑

n=1

sin
(nπx

L

) [
An cos

(
n

cπ

L
t
)

+ Bn sin
(
n

cπ

L
t
)]

,

=
∞∑

n=1

sin
(nπx

L

)
Cn sin

(
n

cπ

L
t + γn

)
.

The quantity

C2
n = A2

n + B2
n

is thus the amplitude of the nth normal mode and

γn = arctan(An/Bn)

is its phase.

Note: Let

z = Bn + iAn,

and write θn = nπct/L, and

cos θn + i sin θn = eiθn .
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We have

zeiθn = (Bn + iAn) (cos θn + i sin θn) ,

= Bn cos θn − An sin θn + i (Bn sin θn + An cos θn) ,

= (
zeiθn

)
= An cos θn + Bn sin θn.

The complex number z can be re-written with its Cartesian coordinates as (Bn, An) = (|z| cos γn, |z| sin γn),

hence tan γn = An/Bn, and z = |z|eiγn , with |z| = √
A2

n + B2
n. Thus,

zeiθn = |z|ei(θn+γn),

and

= (
zeiθn

)
=

√
A2

n + B2
n sin(θn + γn) = An cos θn + Bn sin θn.

11.5 Energy

For the diffusion equation ut = Duxx, either

E1 =

∫

Ω

u(x, t)dx,

or

E2 = 1
2

∫

Ω

u2(x, t)dx,

has the interpretation of energy, depending on the physical context. Both of these are decreasing

functions of time, since the general solution is

|u(x, t)| =
∣∣∣∣∣
∞∑

n=1

Bn sin
(nπx

L

)
e−n2π2Dt/L2

∣∣∣∣∣ ≤ |u(x, 0)|.

In this section we formulate an energy for the wave equation and show that it is conserved.

To do this, we recall the discrete starting point for the wave equation. We took N identical particles

arrayed on a line, connected together by identical springs. The equilibrium position of the ith particle

is xi = i∆x, and the departure from equilibrium is small and equal to yi. The potential energy of

such a system is

U(y1, · · · , yN) = 1
2
k

N∑
i=0

(yi+1 − yi)
2 , y0 = yN+1 = 0.
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At interior points (i = 1, 2, · · · , N), Newton’s law gives

m
d2yi

dt2
= −∂U

∂yi

= k [(yi+1 − yi)− (yi − yi−1)] .

This is an equation of the type

m
d2y

dt2
= −∇yU(y), y = (0, y1, · · · , yN , 0)T .

If we take the dot product of this equation with dy/dt we obtain

m
dy

dt
· d2y

dt2
= −dy

dt
· ∇yU(y),

m
d

dt

(
dy

dt

)2

= − d

dt
U(y),

or

1
2
m

(
dy

dt

)2

+ U(y) = E = Const.

In other words,

1
2
m

N∑
i=1

(
dyi

dt

)2

+ 1
2
k

N∑
i=0

(yi+1 − yi)
2 = E = Const., y0 = yN+1 = 0.

As before, let m = ρ∆x and let k∆x = T = Const.. Hence, k = T/∆x and

1
2
ρ

N∑
i=1

∆x

(
dyi

dt

)2

+ 1
2
T

N∑
i=0

∆x
(yi+1 − yi)

2

(∆x)2
= E.

Now take ∆x → 0. The sums become Riemann integrals and the finite differences become deriva-

tives.

1
2

∫

Ω

dx ρ

(
∂u

∂t

)2

+ 1
2
T

∫

Ω

dx

(
∂u

∂x

)2

= E.

Thus, our candidate for conserved pseudo-energy is

E :=

∫

Ω

[
1

c2

(
∂u

∂t

)2

+

(
∂u

∂x

)2
]

dx.

(I call it a pseudo-energy because strictly speaking, it does not have dimensions of energy.) Now

finally, let’s double check that the wave equation c−2∂ttu = ∂xx with the zero BCs conserves the
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pseudo-energy:

dE
dt

=

∫

Ω

[
1

c2

∂u

∂t

∂2u

∂t2
+

∂u

∂x

∂2u

∂t∂x

]
,

=

∫

Ω

[
1

c2

∂u

∂t

∂2u

∂t2
+

∂u

∂x

∂

∂x

∂u

∂t

]
dx,

=

∫

Ω

[
1

c2

∂u

∂t

∂2u

∂t2
+

∂

∂x

(
∂u

∂t

∂u

∂x

)
− ∂u

∂t

∂2u

∂x2

]
dx,

=

∫

Ω

[
1

c2

∂u

∂t

∂2u

∂t2
− ∂u

∂t

∂2u

∂x2

]
dx +

(
∂u

∂t

∂u

∂x

)L

0

,

=

∫

Ω

[
1

c2

∂2u

∂t2
− ∂2u

∂x2

]
∂u

∂t
dx +

∂u(L, t)

∂t︸ ︷︷ ︸
=0

(
∂u

∂x

)

x=L

− ∂u(0, t)

∂t︸ ︷︷ ︸
=0

(
∂u

∂x

)

x=0

,

= 0− 0.


