ACM 40990 / ACM41030
A note on Theorem 2.10
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In class on 01/02/2024 we looked at Theorem 2.10. In particular:
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This was all straightforward. We also looked at the statement the other way around:
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The strategy here was to do a proof by contradiction. But there was a small gap in the proof.
Here, | fill in the gap. Hence, suppose as stated, and for contradiction, that B is not positive-defintie.
Then, there is some non-zero direction w such that:

(w, Bw) < 0.

We look at two cases:

e Case 1: If (w, Bw) < 0. In this case, a contradiction ensues, since we would have f(x+w) <
f(z), for x = —B'a.

e Case 2: If (w, Bw) = 0. This is the case that is looked at in the lecture notes, so we can
jump right back into the lecture notes at this point and finish the proof.
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