Optimization Algorithms
 (ACM 41030)

Dr Lennon Ó Náraigh

Exercises \#6

1. Consider the OP

$$
\min (x+y) \quad \text { subject to: }\left\{\begin{array}{l}
c_{1}(\boldsymbol{x}) \geq 0 \\
c_{2}(\boldsymbol{x}) \geq 0
\end{array}\right.
$$

where $c_{1}(\boldsymbol{x})=1-x^{2}-(y-1)^{2}$ and $c_{2}=-y$. Show that the LICQ does not hold at $\boldsymbol{x}_{*}=(0,0)^{T}$.
2. Consider the feasible set:

$$
\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid y \geq 0, y \leq x^{2}\right\} .
$$

(a) For $\boldsymbol{x}_{*}=(0,0)^{T}$, write down $T_{\Omega}\left(\boldsymbol{x}_{*}\right)$ and $\mathcal{F}_{\Omega}\left(\boldsymbol{x}_{*}\right)$.
(b) Is the LICQ satisfied at \boldsymbol{x}_{*} ?
(c) If the objective function is $f(\boldsymbol{x})=-y$, verify that the KKT conditions are satisfied at \boldsymbol{x}_{*}
(d) Find a feasible sequence $\left\{\boldsymbol{z}_{k}\right\}_{k=0}^{\infty}$ approaching \boldsymbol{x}_{*} with $f\left(\boldsymbol{z}_{k}\right)<f\left(\boldsymbol{x}_{*}\right)$, for all k.
3. Consider the half-space defined by:

$$
H_{\alpha}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{a} \cdot \boldsymbol{x}+\alpha \geq 0\right\},
$$

where $\boldsymbol{a} \in \mathbb{R}^{n}$ is a constant non-zero vector and $\alpha \in \mathbb{R}$ is a constant scalar. Formulate and solve the OP for finding the point $\boldsymbol{x} \in H_{\alpha}$ with the smallest Euclidean norm
4. Consider the following modification of the example in class notes. Her, t is a parameter that is fixed prior to solving the problem:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{2}} f(\boldsymbol{x}),
$$

where

$$
f(\boldsymbol{x})=\left(x-\frac{3}{2}\right)^{2}+(y-t)^{4},
$$

subject to:

$$
\left[\begin{array}{l}
1-x-y \\
1-x+y \\
1+x-y \\
1+x+y
\end{array}\right] \geq 0 .
$$

(a) For what values of t does the point $\boldsymbol{x}_{*}=(1,0)^{T}$ satisfy the KKT conditions?
(b) Show that when $t=1$, only the first constraint is active at the solution and find the solution.
5. Solve the OP in Question 4 (part (ii)) numerically, using Matlab or Python. Compare your answer with the answer obtained previously.

