Optimization Algorithms
(ACM 41030)

Dr Lennon O Naraigh
Exercises #5

1. Does the OP
min f(x) = (y + 100)* + T T

subject to y — cosx > 0 have a finite or infinite number of local solutions?
Use the KKT conditions to justify your answer.

Let
L(x,\) = (y + 100)* + 5> = Ay — cos ) .
We solve V,L = 0. We have:

oL

e 2 — Asin(z),
oL

— =2 100) — A.
oy~ 2w+ 100)

The following are the KTT conditions for the problem:

(Lo — Asin(z) = 0, 2(y +100) — A =0
y — cos(z) >0,

A>0,

No Equality Constraints,

| A(y — cos(z)) = 0.

We look at two cases.

Case 1: We take A = 0, hence z = 0 and y = —100. This is the global minimum,
it is not feasible, so Case 1 is ruled out.

Case 2: We take A # 0. So y = cos(x). We have:

~r = Asin(z),
2y +100) = A
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Divide these equations one by the other:

1

2100 4 con(a)] ~ S (1)

Hence, = = 100[100 + cos(z)]sin(x). This is a root-finding problem. It can be
solved graphically by looking at the curves y;(x) = x and yo(z) = 100[100 +
cos(x)] sin(z). The points of intersection of the two curves, y;(x) = y2(x) give
the roots.

Notice that the curve yi(x) is unbounded while the curve ys(x) is bounded by
+100 x 101. Thus, there will only be finitely many points of intersection where
y1(z) = y2(x) and hence, only finitely many roots.

Another way to look at this problem is to start with the result that the constraint
is active, such that y = cos(z). Then, the cost function can be re-parametrized
as: B

fx,y = cos(z)) = [cos(x) + 100]* + 52’ = f(x).

The critical points are at df(z)/dz = 0, hence
2 [cos(z) + 100] sin(z) = &,

which is exactly Equation (1) again. Furthermore, for large x, f(z) ~ z%/100,
and df/dx ~ x/50. Thus, df/dx = 0 for x sufficiently large. Hence, the roots
of Equation (1) must be contained in an interval (—R, R) and as the roots can
only be discrete, there are only finitely many of them.
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2. Let v : R® — R™ be a smooth vector function, and consider the unconstrained

OoP
min f(2),
where

Reformulate this (generally non-smooth problem) as a smooth constrained
problem.

We look at an example first:
T, = arg min {max [v1(,y), va(z, y)] } (2)

(z,y)€R?

We look at the surfaces z = v1(x,y) and z = vy(z,y) in R3, shown in Figure 1.
The figure suggests that the OP problem (2) can be recast as:

12

N X
|
)

AN

>

Figure 1:
min 2z,
(z,y,2)€Q

where
Q= {(2,y,2) € Rz > vi(x,y), 2 > va(x,9)}.

This suggests the general reformulation of the OP in the original question is to
introduce

and we further introduce:

Q={z e R"™M 2> v (x), -, 2> v.(z)}.
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We then consider the reformulated OP

min z.
e

3. Can you perform a smooth reformulation of the previous question when f is
defined by:

f(x) = ZE{Bmm} vi(x).

Why or why not?

No. Inspect Figure 1 again. The min

is possibly unbounded.
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Figure 2:
4. Consider the OP
min(x + y), subject to 2 — 2% — y* = 0.

Specify two feasible sequences that approach the maximizing point (1,1)7
and show that neither sequence is a decreasing sequence for f.

Let ¢, = (1,1)” = v/2(cos /4, sin7/4)". We have:
Q= {x € R*|2* +¢* =2},

see Figure 2.

Consider the path

o(6) = V2 (cos(m/4 + ¢),sin(r /4 + o))" .

Introduce
flo) = fla(@)),
= V2[cos(m/4+ @) +sin(r/4 + ¢)]

We have: ~ 07

A el

fe=0=2 F| =0 o =2
Hence,

~ _ 7 ﬁ lﬁv 24 ...

flo) = FO+ 5| o+agal o

= 2—-¢*+HO.T.
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We look at feasible sequences:
wn:w(¢n)7 n e {1a27"'}7

where ¢, = 1/n or ¢, = —1/n, such that , € Q, for all n € {1,2,---} and
such that @,, — x. as n — 0o. Hence,

f(wn> = f<¢n)a
=22 — (£1/n)%

Thus, as n — oo,

1 1
f(mn-‘,-l) *f<wn) - 7(774—1)2 ‘f“ﬁa

—n?+ (n+ 1)
n%(n+1)2
2n +1

= - >0,
n?(n+1)32 /

and
f(@ns1) = f(zn), n — oo.

Hence finally, we see that f(x,) is non-decreasing along the sequences x,, and
f(xn) = f(x,) as n — 0.
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(a) Option 1 (b) Option 2

Figure 3:

5. If fis convex and the feasible region (2 is convex, show that local solutions of
the OP

2, = argmin f(z)

are also global solutions.

Hint: Review Theorem 2.8 in the class notes.

Suppose that x, is a local but not a global minimizer. Then we can find a point
y € Q such that f(y) < f(x.). By convexity of 2, the line segment

L = {@(a)|z(a) = ay + (1 — a)a, a € [0, 1]},
lies entirely in 2. By convexity of f, we also have:
fl(e) < af(y)+ (1 —a)f(z.).

Refer to Figure 3. Any neighbourhood N around @, contains a piece of the
line segment L, so there exists an & € €2 such that f(x) < f(x.), which is a
contradiction. Hence, x, is the global minimizer.



