# Optimization Algorithms <br> (ACM 41030) 

Dr Lennon Ó Náraigh

## Exercises \#5

1. Does the OP

$$
\min f(\boldsymbol{x})=(y+100)^{2}+\frac{1}{100} x^{2}
$$

subject to $y-\cos x \geq 0$ have a finite or infinite number of local solutions? Use the KKT conditions to justify your answer.
2. Let $\boldsymbol{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth vector function, and consider the unconstrained OP

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x}),
$$

where

$$
f(\boldsymbol{x})=\max _{i \in\{1,2, \cdots, m\}} v_{i}(\boldsymbol{x}) .
$$

Reformulate this (generally non-smooth problem) as a smooth constrained problem.
3. Can you perform a smooth reformulation of the previous question when $f$ is defined by:

$$
f(\boldsymbol{x})=\min _{i \in\{1,2, \cdots, m\}} v_{i}(\boldsymbol{x}) .
$$

Why or why not?
4. Consider the OP

$$
\min (x+y), \quad \text { subject to } 2-x^{2}-y^{2}=0 .
$$

Specify two feasible sequences that approach the maximizing point $(1,1)^{T}$ and show that neither sequence is a decreasing sequence for $f$.
5. If $f$ is convex and the feasible region $\Omega$ is convex, show that local solutions of the OP

$$
\boldsymbol{x}_{*}=\arg \min _{\boldsymbol{x} \in \Omega} f(\boldsymbol{x})
$$

are also global solutions.
Hint: Review Theorem 2.8 in the class notes.

