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Chapter 0

Introduction

0.1 Overview

The focus of this module is on developing advanced analytical and numerical techniques to deal with

incompressible viscous flow. This is a fairly restricted aim, since many interesting phenomena arise

in treating of the other flow regimes. For example, a study of compressible flow leads to important

topics in acoustics, gas dynamics, and shockwave theory, while a study of incompressible inviscid

flow leads (in two dimensions) to the very beautiful theory of vorticity as described using complex

analysis and conformal-mapping theory. However, it is sensible to maintain a fairly restricted focus,

especially because the proposed research plan aligns with the present lecturer’s expertise. Thus, we

will study the following topics in detail:

• Linear stability analysis for the canonical physical systems of Fluid Dynamics

• Orr–Sommerfeld theory for parallel flow instability, including exact solutions in certain cases

• The subtle features of linear stability theory beyond temporal eigenvalue analysis

• Stuart–Landau analysis for simple nonlinear equations

• Introduction to turbulence using the Kolmogorov and Reynolds-averaged theories.

• Introduction to Computational Fluid Dynamics

0.2 Learning and Assessment

Learning

• One or two lectures per week
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2 Chapter 0. Introduction

• As this is an advanced module, heavy emphasis is placed on independent study. This will be

guided by lecture notes, recommended textbooks, problem sheets, and computational exer-

cises.

Assessment

• One final exam, counting for 50%. The exam will run locally.

• Two computational mini-projects, counting for 50% in total.

• Other exercises can be found throughout the book of lecture notes. They may be attempted

for practice. The final exam will be based almost entirely on these exercises.

Textbooks

Material and exercises for this module will be taken from the following textbooks:

• Hydrodynamic and Hydromagnetic Stability, S. Chandrasekhar (Dover edition, 1981) [Cha61]

• Hydrodynamic Stability, P. G. Drazin, W. H. Reid (Cambridge University Press, 2004 edi-

tion) [DR81]

• Stability and Transition in Shear Flows, P. J. Schmid and D. S. Henningson (Springer,

2001) [SH01]

• Turbulent Flows, S. Pope (Cambridge University Press, 2000) [Pop00]

Other material comes either from the top of my head or from published articles, referred to in the

remainder of the lecture notes.



Chapter 1

Rayleigh–Bénard Convection

Overview

You have already studied parallel flow instability from the point of view of linear theory. There, the

governing equation is the Orr–Sommerfeld equation, the eigenvalues of which determine the stability

of the parallel flow to small-amplitude disturbances. In general, there are no closed-form solutions

to the Orr–Sommerfeld equation, either for the eigenfunctions or the eigenvalues. Therefore, the

aim in these lectures is to look at a non-trivial but highly relevant physical system where the linear

theory admits analytical expressions. This is the case of Rayleigh–Bénard instability.

The idea behind the Rayleigh–Bénard instability is to take a uniform homogeneous fluid sandwiched

between two plates, and to heat the bottom plate so that a density gradient emerges, with a cooler,

denser layer lying on top of a hotter, less dense layer, thereby inducing an unstable stratification.

Beyond a threshold values, this configuration becomes unstable, triggering a convective motion that

counteracts the unstable stratification. The mathematics of this flow instability is introduced in

these lectures.

1.1 Governing equations

We start with the governing Navier–Stokes equations of incompressible flow in an arbitrary domain:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ µ∇2ui + ρgi,

where all the symbols have their usual meaning and the gravity vector is (g1, g2, g3) = (0, 0,−g),

such that gravity points in the negative z-direction. The Navier–Stokes equation is supplemented

3



4 Chapter 1. Rayleigh–Bénard Convection

with the incompressibility condition

∂ρ

∂t
+

∂

∂xi
(ρui) = 0.

To close the Navier–Stokes equations, further conditions (in addition to the incompressibility relation)

are required. In particular, it is necessary to prescribe the behaviour of the density function. In the

present application, we are interested in fluid behaviour in the presence of a temperature gradient,

so it is sensible to focus on a model where the density depends on temperature (T ), wherein the

simplest possible model is a linear relation:

ρ = ρ0 + δρ, δρ = −ρ0α(T − T0),

where ρ0 is the reference density, δρ is a fluctuation which depends linearly on temperature. Also,

T0 is the reference temperature, with T = T0 ⇐⇒ ρ = ρ0. Finally, the quantity α > 0 is the

coefficient of volume expansion. We are not done yet: the evolution of temperature field T (x, t)

must be precribed. However, this can be accurately modelled by an advection-diffusion equation:

∂T

∂t
+ ui

∂T

∂xi
= κ∇2T,

where κ > 0 is the thermal diffusivity. We assemble all our equations into a single mathematical

model:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ µ∇2ui + ρgi, (1.1a)

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (1.1b)

ρ = ρ0 + δρ, δρ = −ρ0α(T − T0), (1.1c)

∂T

∂t
+ ui

∂T

∂xi
= κ∇2T, (1.1d)

In practice, the density variations are quite small, and an approximation can be made wherein density

variations are considered only in the buoyancy (gravity) term. This is called the Boussinesq

Approximation (for a full justification of this approximation, see pages 16-17 in [Cha61]. Thus,

Equations (1.1a)–(1.1b) simplify to

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ ν∇2ui +

(
1 +

δρ

ρ0

gi

)
, ν = µ/ρ0, (1.2a)

∂ui
∂xi

= 0, (1.2b)

while the density and temperature laws remain unchanged. This is a great simplification, as the

density in the Navier–Stokes equations is now ‘almost’ a constant.
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1.2 The base state

We study a time-independent base state involving no flow, with ui = 0 and a static temperature

distribution, such that

∇2T = 0.

We also focus on a two-dimensional geometry for now, in the (x, z) plane, such that the solution of

the Laplace equation for temperature reads

T = T0 + Ax+Bz,

where A and B are constants. However, we specialize without loss of generality to a situation where

the temperature gradient is imposed in the z-direction only, such that A = 0. Also, we focus on

the more interesting case of an adverse temperature gradient, such that B = −β, with β > 0, and

such that

T = T0 − βz.

Thus, compared to a baseline at z = 0 where the temperature is T0, high up where z > 0 it is

relatively colder and low down where z < 0 it is relatively hotter. Next, using ρ = ρ0 + δρ =

ρ0 − αρ0(T − T0) we obtain

ρ = ρ0(1 + αβz).

Again, compared to a baseline at z = 0 where the density is ρ0, high up where z > 0 the fluid is

both relatively cool and relatively more dense while low down where z < 0 it is relatively hot and

less dense. This is the notion of an adverse temperature gradient - the temperature and density

gradients are going in opposite directions. The last part of the characterization of the base state is

the determination of the pressure. We have the w-velocity equation:

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
− ρ0g(1 + αβz) + ν∇2w.

With w = 0 this gives
∂p

∂z
= −ρ0g(1 + αβz). (1.3)

The analogous u-velocity equation gives ∂p/∂x = 0. Note that Equation (1.3) is the equation of

hydrostatic balance: the pressure drop and the gravity force are balanced. Solving Equation (1.3)

gives

p = −ρ0g
(
z + 1

2
αβz2

)
.

We now characterize the base state in full by assembling our results in one place:

ui = 0, p = −ρ0g
(
z + 1

2
αβz2

)
. (1.4a)
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T = T0 − βz, ρ = ρ0(1 + αβz). (1.4b)

1.3 Linear stability analysis

Equations (1.4) are the time-independent base state of the problem. This solution would appear

to be unstable as the stratification is (apparently) itself unstable: a denser fluid sits on top of a less

dense fluid. The idea of the remainder of this chapter is to investigate this stability problem. We

do so by introducing perturbations:

ui = 0︸︷︷︸
base state

+ ui︸︷︷︸
perturbations

and

T ′ = T0 − βz︸ ︷︷ ︸
base state

+ θ︸︷︷︸
perturbations

.

We assume that the perturbations are small in the sense that the equations of motion for (ui, T
′)

can be linearized without any loss of accuracy in the modeling. The linearized equations of motion

read

∂ui
∂t

= − ∂

∂xi

(
δp

ρ0

)
+δi,zgαθ + ν∇2ui, (1.5a)

∂ui
∂xi

= 0, (1.5b)

∂θ

∂t
= wβ + κ∇2θ. (1.5c)

Here, δp is the perturbation pressure.

Exercise 1.1 Prove Equation (1.5) by carrying out the relevant linearization.

In incompressible flow wherein the density is a fixed constant, the pressure is always a ‘bad’ variable

because it does not have its own equation (it is determined implicitly via the relation ∂iui = 0).

Thus, we always try to eliminate the pressure from the equations of motion. We do that here by
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considering again the momentum equations:

∂u

∂t
= − ∂

∂x

(
δp

ρ0

)
+ ν∇2u, (1.6)

∂w

∂t
= − ∂

∂z

(
δp

ρ0

)
+gαθ + ν∇2w, (1.7)

and by taking ∂z(1.6)−∂x(1.7); the result is

∂

∂t

(
∂u

∂z
− ∂w

∂x

)
= −gα∂θ

∂x
+ ν∇2

(
∂u

∂z
− ∂w

∂x

)
. (1.8)

We take ∂x(1.8) and obtain

∂

∂t

(
∂2u

∂x∂z
− ∂2w

∂x2

)
= −gα∂

2θ

∂x2
+ ν∇2

(
∂2u

∂x∂z
− ∂w

∂x2

)
. (1.9)

We use the incompressibility condition ∂xu+ ∂zw to write

∂2u

∂x∂z
= −∂

2w

∂z2
.

Hence, Equation (1.9) becomes

∂

∂t

(
−∂

2w

∂z2
− ∂2w

∂x2

)
= −gα∂

2θ

∂x2
+ ν∇2

(
−∂

2w

∂z2
− ∂w

∂x2

)
. (1.10)

Finally then, we obtain
∂

∂t
∇2w = +gα

∂2θ

∂x2
+ ν∇4w.

We now assemble here in one place the two closed stability equations for the perturbation velocity

and temperature:
∂

∂t
∇2w = +gα

∂2θ

∂x2
+ ν∇4w, (1.11a)

∂θ

∂t
= wβ + κ∇2θ (1.11b)

At this point, it is appropriate to discuss boundary conditions. We assume that the flow is unbounded

in the x-direction, with −∞ < x <∞, and that the flow is confined in the z-direction by two parallel

plates, located at z = 0 and z = d. The temperature is maintained at fixed values at the plate

walls, such that the temperature perturbations vanish at those walls:

θ = 0, z = 0, d.
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Also, because of the no-flux/no penetration conditions at the walls, we have

w = 0, z = 0, d.

Now, the equation to solve is fourth-order in w, so further boundary conditions are required. Because

of no-slip, we have u = 0 on the walls, hence ∂u/∂x = 0 on the walls. By continuity, this means

that
∂w

∂z
= 0, z = 0, d,

and this gives the required number of boundary conditions necessary to solve Equations (1.11).

1.4 Normal-mode solution

Because of the translational invariance of the equations (1.11) in the x-direction, it makes sense

to introduce a trial solution w ∝ eikx and θ ∝ eikx representing a plane wave, where k is the

wavenumber. Indeed, it also makes sense to introduce exponential time dependence (in a standard

way) such that the following normal-mode solution is proposed:

w = ept+ikxW (z), (1.12a)

θ = ept+ikxΘ(z). (1.12b)

Substitution of Equations (1.12) into Equations (1.11) yields

p
(
∂2
z − k2

)
W = ν

(
∂2
z − k2

)2
W−gαk2Θ,

pΘ = βW + κ
(
∂2
z − k2

)
Θ.

Before going any further, we reduce the number of parameters in these equations by rescaling as

follows: (
∂2
z − k2 − p

κ

)
Θ = −β

κ
W, (1.13a)(

∂2
z − k2

) (
∂2
z − k2 − p

ν

)
W = +

gα

ν
k2Θ. (1.13b)

We introduce a non-dimensional z-coordinate z̃ = z/d, with

d

dz
=
dz̃

dz

d

dz̃
=

1

d

d

dz̃
,
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and the equations (1.13) become(
∂2
z̃ − d2k2 − pd2

ν

ν

κ

)
Θ = −βd

2

κ
W, (1.14a)

(
∂2
z̃ − d2k2

)(
∂2
z̃ − d2k2 − pd2

ν

)
W = +

gαd2

ν
(d2k2)Θ. (1.14b)

We identify

Pr =
ν

κ
, σ =

pd2

ν
, [σ] = 1,

where Pr = ν/κ is the Prandtl number. Thus, Equations (1.14) become

(
∂2
z̃ − k̃2 − σPr

)
Θ = −βd

2

κ
W, (1.15a)(

∂2
z̃ − k̃2

)(
∂2
z̃ − k̃2 − σ

)
W = +

gαd2

ν
k̃2Θ, (1.15b)

where k̃ = dk is a dimensionless wavenumber . We combine the Θ and W -equations by taking the

W -equation and operating on it with (∂2
z − k2 − σ Pr). We obtain

(
∂2
z̃ − k̃2 − σPr

) [(
∂2
z̃ − k̃2

)(
∂2
z̃ − k̃2 − σ

)
W
]

=
(
∂2
z̃ − k̃2 − σPr

)[gαd2

ν
k̃2Θ

]
,

=
gαd2

ν
k̃2
[(
∂2
z̃ − k̃2 − σPr

)
Θ
]
,

=
gαd2

ν
k̃2

[
−βd

2

κ
W

]
,

= −gαβd
4

νκ
k̃2W.

We introduce

Ra =
gαβd4

νκ

as the Rayleigh number and we have the following single stability equation:(
∂2
z̃ − k̃2 − σPr

)(
∂2
z̃ − k̃2 − σ

)(
∂2
z̃ − k̃2

)
W = −Ra k̃2W. (1.16a)

Exercise 1.2 Show that the Rayleigh number is dimensionless.

Viewing the eigenvalue problem as an equation in the single variable W , it can be noted that the
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ordinary differential equation to solve is sixth order. We already have the boundary conditions

W = W ′ = 0, z = 0, 1, (1.16b)

giving four boundary conditions. We need two more boundary conditions to close the problem.

However, since (∂2
z − k2)(∂2

z − k2 − σ)W = (gαd2/ν)k2Θ, and since Θ = 0 on the boundaries, the

remaining two boundary conditions are given by(
∂2
z̃ − k̃2 − σ

)(
∂2
z̃ − k̃2

)
W = 0, z = 0, 1. (1.16c)

Thus, we have an ordinary differential equation in the eigenvalue σ. Before attempting various

approaches to solve for σ as a function of k explicitly, we first of all investigate the properties of

this equation using a priori methods. Following standard practice, in the remainder of this Chapter

we omit the tildes over the dimensionless variables.

Remark 1 A normal-mode trial solution is possible when a problem possesses translational symme-

try.

For, consider a generic linear problem
∂φ

∂t
= Lφ,

where φ = φ(x, t) is some scalar field and L is a linear operator depending on ∂x and higher

derivatives, such that L is translation invariant:

L(x) = L(x+ a), for all a ∈ R.

Introduce the translation operator T :

Taφ(x) = φ(x+ a).

Thus, T Lφ = LT φ, since T has no effect on L. In other words, T and L commute as operators.

There is a theorem in Linear Algebra that says that if two operators commute, then they share the

same eigenvectors (eigenfunctions). And, since eikx is an eigenfunction of T , it must also be an

eigenfunction of L.

In more detail, eikx is an eigenfunction of T because

T eikx = eik(x+a) = eikaeikx,

hence eikx is the eigenfunction with eigenvalue eika.
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1.5 A priori methods for the stability equation

Theorem 1.1 Consider the eigenvalue problem given by Equation (1.16). The eigenvalue σ is

purely real and therefore, the transition from stability to instability is given by σ = 0.

Proof: Introduce

G = (∂2
z − k2)W, F = (∂2

z − k2)(∂2
z − k2 − σ)W,

hence F = (∂2
z −k2−σ)G. The boundary conditions in Equation (1.16) imply that F = 0 at z = 0

and z = 1. Also, the eigenvalue equation can be rewritten as

(∂2
z − k2 − Prσ)F = −Ra k2W.

We multiply both sides of this equation by F ∗ and integrate from z = 0 to z = 1. Now,∫ 1

0

F ∗∂2
zF dz = −

∫ 1

0

|∂zF |2 dz,

in view of the boundary conditions on F at z = 0 and z = 1. Thus, we obtain∫ 1

0

[
|∂zF |2 + (k2 + Prσ)|F |2

]
dz = Ra

∫ 1

0

F ∗W dz.

Now consider ∫ 1

0

F ∗W dz =

∫ 1

0

W (∂2
z − k2 − σ∗)G∗ dz,

=

∫ 1

0

W∂2
zG
∗ dz − (k2 + σ∗)

∫ 1

0

WG∗ dz,

=

∫ 1

0

G∗∂2
zW dz − (k2 + σ∗)

∫ 1

0

WG∗ dz,

=

∫ 1

0

G∗
[
(∂2
z − k2)− σ∗

]
W dz,

where we have used integration by parts repeatedly to show that∫ 1

0

W∂2
zG
∗ dz =

∫ 1

0

G∗∂zW dz,
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using further the fact that W = ∂zW = 0 on z = 0, 1. Now,∫ 1

0

F ∗W dz =

∫ 1

0

G∗
[
(∂2
z − k2)− σ∗

]
W dz,

=

∫ 1

0

G∗ (G− σ∗W ) dz,

=

∫ 1

0

|G|2 dz − σ∗
∫ 1

0

G∗W,

= ‖G‖2
2 − σ∗

∫ 1

0

[(
∂2
z − k2

)
W ∗]W dz,

= ‖G‖2
2 + σ∗

∫ 1

0

(
|∂zW |2 + k2|W |2

)
dz

Putting it all together, we have

‖∂zF‖2
2 + (k2 + Prσ)‖F‖2

2 = Ra
[
‖G‖2

2 + σ∗
(
‖∂zW‖2

2 + k2‖W‖2
2

)]
Take imaginary parts on both sides of this equation:

Pr=(σ)‖F‖2
2 = −Ra=(σ)

(
‖∂zW‖2

2 + k2‖W‖2
2

)
,

where the mysterious minus sign emerges on the right-hand side because it is σ∗ that appears there,

not σ. Hence,

=(σ)
[
Pr‖F‖2

2 + Ra
(
‖∂zW‖2

2 + k2‖W‖2
2

)]
= 0.

Now, the quantity inside the square brackets is positive definite, so we are forced to conclude that

=(σ) = 0.

For the second part of the theorem, we start with the fact that the system changes from stable to

unstable when

<(σ) = 0.

However, σ is purely real, so this condition for a change in the stability amounts to

σ = 0.

This concludes the proof.

In stability theory it is of interest to construct the neutral curve <(σ) = 0 as a function of the

problem parameters (in this case (Ra,Pr, k)). For the Rayleigh–Benard convection, we have shown

that the neutral curve amounts to σ(Ra,Pr, k) = 0. In the next section we find semi-explicit

solutions for this neutral curve.
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Remark 2 Quite generally, in linear stability theory, the condition

<(σ) = 0

is called the threshold or the point of criticality. This is where the system switches between stable

and unstable states. In the case of Rayleigh–Bénard convection, the imaginary part of σ is always

zero, so for this one instance only, the point of criticality is simply σ = 0. This simplifies the next

piece of analysis.

1.6 Explicit solution for the neutral curve

From the previous section, it is known that the neutral curve occurs when σ = 0. Therefore, we set

σ = 0 in the eigenvalue problem (1.16) to obtain the following simplified equations:

(
∂2
z − k2

)3
W = −Ra k2W.

Instead of placing the plates at z = 0, 1, we instead set up the problem in a more symmetric manner,

such that z ∈ (−1/2, 1/2). Thus, the relevant boundary conditions are imposed as follows:

W = W ′ = (∂2
z − k2)2W = 0 on z = ±1

2
.

We immediately make a trial solution

W = e±qz

such that

(q2 − k2)3 = −Ra k2.

We call

Ra k2 = τ 3k6

hence

(q2 − k2)3 = −τ 3k6,

and

q2 = k2 + (−1)1/3τk2.

Note also:

τ = (Ra/k4)1/3.
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The three cube roots of unity are

(−1)1/3 = −1, 1
2

(
1± i
√

3
)
,

hence

q2 = −k2(τ − 1), q2 = k2
[
1 + τ 1

2

(
1± i
√

3
)]
.

Taking square roots, we obtain the following six square-root solutions:

±iq0, ±q, ±q∗,

where q0 = k
√
τ − 1 and

<(q) := q1 = k
[

1
2

√
1 + τ + τ 2 + 1

2

(
1 + 1

2
τ
)]1/2

, (1.17a)

=(q) := q2 = k
[

1
2

√
1 + τ + τ 2 − 1

2

(
1 + 1

2
τ
)]1/2

. (1.17b)

Exercise 1.3 Prove Equation (1.17).

In view of the symmetric nature of the problem (sandwiched between z = −1/2 and z = 1/2), we

can break up the solution into odd and even cases with respect to the centreline at z = 0. For the

even case we have a solution

W = A0 cos(q0z) + A cosh(qz) + A∗ cosh(q∗z),

where we have constructed a manifestly even solution via a linear superposition of component

solutions. There are only three linearly independent complex coefficients in the superposition, and

these can be chosen as A0, A, and A∗, since A and A∗ are linearly independent. Imposing the

boundary conditions at z = ±1/2 yields

A0 cos(q0/2) + A cosh(q/2) + A∗ cosh(q∗/2) = 0, (1.18a)

−q0A0 sin(q0/2) + qA sinh(q/2) + q∗A∗ sinh(q∗/2) = 0, (1.18b)

A0 cos(q0/2) + 1
2

(
i
√

3− 1
)
A cosh(q/2)− 1

2

(
i
√

3 + 1
)
A∗ cosh(q∗/2) = 0. (1.18c)
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This immediately leads to a determinant problem∣∣∣∣∣∣∣∣
cos(q0/2) cosh(q/2) cosh(q∗/2)

−q0 sin(q0/2) q sinh(q/2) q∗ sinh(q∗/2)

cos(q0/2) 1
2

(
i
√

3− 1
)

cosh(q/2) −1
2

(
i
√

3 + 1
)

cosh(q∗/2)

∣∣∣∣∣∣∣∣ = 0. (1.19)

We divide each row of the determinant problem by the first row to obtain∣∣∣∣∣∣∣∣
1 1 1

−q0 tan(q0/2) q tanh(q/2) q∗ tanh(q∗/2)

1 1
2

(
i
√

3− 1
)
−1

2

(
i
√

3 + 1
)
∣∣∣∣∣∣∣∣ = 0. (1.20)

Next, we subtract the first row from the third row and divide the result by −
√

3/2 to obtain∣∣∣∣∣∣∣∣
1 1 1

−q0 tan(q0/2) q tanh(q/2) q∗ tanh(q∗/2)

0
√

3− i
√

3 + i

∣∣∣∣∣∣∣∣ = 0. (1.21)

Expanding this determinant yields

=
[(√

3 + i
)
q tanh(q/2)

]
+ q0 tan(q0/2) = 0. (1.22)

Exercise 1.4 Fill in the blanks in the derivations of Equations (1.18), (1.21) and (1.22).

Since q and q0 are both functions of k and Ra, Equation (1.22) can be regarded as a condition of

the form

Φ(Ra, k) = 0,

where Φ is a function of two variables. This is the implicit equation of a curve in Ra − k space

– the neutral curve. Note that the neutral curve is independent of the Prandtl number. Thus, to

determine the onset of instability, the Prandtl number is irrelevant - only the wavenumber and the

Rayleigh number matter. The aim of the remainder of this section is to compute the neutral curve

numerically.

There are some missing steps in Equation (1.18c). Recall, this is the boundary condition (∂2
z −

k2)2W = 0, where W = A0 cos(q0z) + A cosh(qz) + A∗ cosh(q∗z). Look at the cosine component
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first, and consider

(∂2
z − k2)2 cos(q0z) =

(
∂4
z − 2k2∂2

z + k4
)

cos(q0z),

= (q2
0 + 2k2q2 + k4) cos(q0z), (note the sign),

= (q2
0 + k2)2 cos(q0z),

= [(k2τ − k2) + k2]2 cos(q0z), as q0 = k2(τ − 1),

= k4τ 2 cos(q0z).

Similarly, consider the cosh component A cosh(qz):

(∂2
z − k2)2 cosh(qz) = (q2 − k2)2 cosh(qz),

=
[(
k2 + 1

2
τk2(1 + i

√
3)
)
− k2

]
cosh(qz),

=
(
k2τω

)2
cosh(qz),

where ω = (1 + i
√

3)/2 and

ω2 = − 1

ω
= 1

2

(
i
√

3− 1
)
.

From these calculations, it is obvious that

(
∂2
z − k2

)
W = (k2τ)2A0 cos(q0z) + (k2τ)2

[
1
2

(
i
√

3− 1
)
A cosh(qz) + +c.c.

]
,

from which Equation (1.18c) follows.
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We write a Matlab code to solve for the neutral curve. First, for a given k-value, the critical Rayleigh

number can be estimated as follows:

1 f u n c t i o n Ra=m y r a y l e i g h b e n a r d 0 ( k , R a g u e s s )

2

3 Ra=f z e r o ( @myfun , R a g u e s s ) ;

4

5 f u n c t i o n y=myfun ( x )

6

7 tau =(x/k ˆ4) ˆ(1/3) ;

8 q0=k∗ s q r t ( tau−1) ;

9 temp=s q r t (1+ tau+tau ˆ2) +(1+(1/2)∗ tau ) ;

10 q1=k∗ s q r t ( temp /2) ;

11 temp=s q r t (1+ tau+tau ˆ2)−(1+(1/2)∗ tau ) ;

12 q2=k∗ s q r t ( temp /2) ;

13

14 q=q1+s q r t (−1)∗q2 ;

15

16 y=imag ( ( s q r t ( 3 )+s q r t (−1) ) ∗q∗ tanh ( q /2) )+q0∗ tan ( q0 /2) ;

17 end

18

19 end

rayleigh benard/my rayleigh benard0.m

Next, for a range of k-values, the corresponding set of critical Rayleigh numbers can be found as

follows:

1 f u n c t i o n [ k vec , Ra vec ]= m y r a y l e i g h b e n a r d 1 ( )

2

3 k v e c = 0 . 1 : 0 . 0 5 : 1 0 ;

4 Ra vec=0∗k v e c ;

5

6 Ra=m y r a y l e i g h b e n a r d 0 ( k v e c ( 1 ) ,100000) ;

7 Ra vec ( 1 )=Ra ;

8

9 f o r i =2: l e n g t h ( k v e c )

10 R a g u e s s=Ra vec ( i −1) ;

11 Ra=m y r a y l e i g h b e n a r d 0 ( k v e c ( i ) , R a g u e s s ) ;

12 Ra vec ( i )=Ra ;

13 end

14

15 end

rayleigh benard/my rayleigh benard1.m

This code can be used to plot the neutral curve (Figure 1.6) for the even case.
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Figure 1.1: Neutral curve for the Rayleigh–Benard problem (even eigensolution)

In a similar way, the neutral curve for the odd mode is found from the root of the following equation:

q0 cot(q0/2) = =
[(√

3 + i
)
q

sinh(q1)− i sin(q2)

cosh(q1)− cos(q2)

]
. (1.23)

Exercise 1.5 Starting with Equation (1.23), write a Matlab function to construct the neutral

curve of the odd eigensolution. Then, plot the odd and even neutral curves on a single graph.

Show that the critical Rayleigh number for the onset of an even unstable eigenmode is less than

the corresponding critical Rayleigh number for the odd unstable eigenmode. Argue then that

the even eigenmodes are more unstable than the odd ones.

1.7 Convection patterns

We pass from two-dimensional to three-dimensional disturbances in the coodinates (x, y, z), where

z is the wall-normal direction. It can be seen quite readily that the three-dimensional linearized

equations of motion read

∂

∂t
∇2w = +gα

(
∂2θ

∂x2
+
∂2θ

∂y2

)
+ ν∇4w, (1.24a)

∂θ

∂t
= wβ + κ∇2θ (1.24b)
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where the differential operators are now in the appropriate three-dimensional form. Under a normal-

mode decomposition

w = ei(kxx+kyy)+ptW (z), θ = ei(kxx+kyy)+ptΘ(z),

the eigenvalue equation derived previously still persists, only now the quantity k2 in the relevant

differential equation means k2 = k2
x + k2

y. Thus, there was no loss of generality in our previous

focus on the two-dimensional case. Interestingly, the theory at this stage is by no means complete,

since at the onset of criticality (i.e. for parameters along the neutral curve) there are many ways in

which the critical wavenumber k2
c can be resolved into its x- and y-components. Thus, the theory

so far does not tell us which pair (kx, ky) (with k2
x+k2

y = k2
c ) is selected. Indeed, any pair consistent

with this condition is possible and hence, a linear superposition of all such consistent pairs is the

general acceptable solution.

However, we can observe that a particular wavenumber choice corresponds to a periodic cell, repli-

cated throughout the xy-plane. Because the problem is translationally invariant in the xy-plane,

these cells should fill in the xy plane with no gaps. There is a loose analogy here with solid-state

physics: translational symmetry in a discrete crystal structure implies a lattice structure, which in

turn implies that the only possibility for the unit cell (in two dimensions) is a square, an equilateral

triangle, or a hexagon. Thus, only those wavenumber combinations that produce a square,

equilateral triangle or a hexagon as the periodic cell are allowed by the translational

symmetry of the problem. A real hexagonal convection cell is shwon in Figure 1.2.

The complete velocity field

The complete velocity field (u, v, w) can be backed out from these considerations, albeit in a re-

markably roundabout fashion. First, we note that

w = F (x, y)W (z),

where F (x, y) is that combination of complex exponentials that gives the relevant periodic unit cell,

such that (
∂2
x + ∂2

y

)
F = −k2F.

Because of its ubiquity in the following, we call

∇⊥ =

(
∂

∂x
,
∂

∂y
, 0

)
,
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Figure 1.2: A (mostly) hexagonal array of convection cells in real-life Rayleigh–Bénard convection,
from https://www.esrl.noaa.gov/psd/outreach/education/science/convection/RBCells.html,
visited 02/02/2017.

hence ∇2
⊥F = −k2F . Next, we introduce the wall-normal component of the vorticity,

ζ = ẑ · ω = ∂xv − ∂yu.

We have

∂ζ

∂x
=

∂2v

∂x2
− ∂2u

∂x∂y
, (1.25a)

∂ζ

∂y
=

∂2v

∂x∂y
− ∂2u

∂y2
. (1.25b)

In view of the incompressibility condition ∂xu+ ∂yv + ∂zw = 0, we also have

∂2u

∂x∂y
= −∂

2v

∂y2
− ∂2w

∂y∂z
, (1.26a)

∂2v

∂x∂y
= −∂

2u

∂x2
− ∂2w

∂x∂z
. (1.26b)

We combine Equations (1.25)–(1.26) now to obtain

∂ζ

∂x
=
∂2v

∂x2
+
∂2v

∂y2
+

∂2w

∂y∂z
= ∇2

⊥v +
∂2w

∂y∂z
= −k2v +

∂2w

∂y∂z
,
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hence

v =
1

k2

(
∂2w

∂y∂z
− ∂ζ

∂x

)
.

Also,
∂ζ

∂y
= −∂

2u

∂x2
− ∂2w

∂x∂z
− ∂2u

∂y2
= −∇2

⊥u−
∂2w

∂y∂z
= k2u− ∂2w

∂y∂z
,

hence

u =
1

k2

(
∂2w

∂x∂z
+
∂ζ

∂y

)
.

However, quite generally, we have the vortex stretching equation, which reads

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇2ω,

the linearization of which is
∂ω

∂t
= ν∇2ω,

and projecting on to the z-direction gives

∂ζ

∂t
= ν∇2ζ.

In normal-mode form, this gives

σζ = (∂2
z − k2)ζ.

However, we are at criticality, with σ = 0, hence

(∂2
z − k2)ζ = 0, ζ = 0 on z = ±1/2,

the only solution of which is ζ = 0. Hence, the wall-normal component of the vorticity vanishes in

this very particular case, and we are left with

u =
1

k2

∂2w

∂y∂z
, v =

1

k2

∂2w

∂x∂z
.

Letting u⊥ = (u, v), we have

u⊥ =
1

k2

∂

∂z

(
∂w

∂x
,
∂w

∂y

)
=

1

k2
W ′∇⊥F.

But w = F (x, y)W (z), hence F = w/W , hence

u⊥ =
1

k2

W ′

W
∇⊥w.
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Figure 1.3: Typical two-dimensional and three-dimensional convection cells are compared side-by
side. Schematic from Scholarpedia article on Rayleigh–Benard convection (accessed 07/01/2015).

Thus, if the gradient ∇⊥w vanishes, then so does u⊥. We now use these results to investigate the

convection cells. We examine only two-dimensional rolls in depth here: the interested reader can

study Chandrasekhar’s book for an in-depth treatment of the three-dimensional structures: rect-

angular, triangular and hexagonal cells. Typical two-dimensional and three-dimensional convection

cells are compared side-by side in Figure 1.3.

Convection rolls

Remark 3 This part was done only very briefly in class.

The simplest convection pattern is the roll, wherein ky = 0, and the problem reverts to a two-

dimensional one. Let the critical wavenumber be k. Then , the size of the convection cell is

L = 2π/k. The velocity profile is

w = W (z) cos(kx), k = 2π/L

where W (z) is the eigenfunction corresponding to the eigenvalue σ = 0. The corresponding com-

ponents of the velocity parallel to the wall are

u = −1

k
W ′ sin(kx), v = 0.

It is clear that an appropriate streamfunction for the flow is

ψ = −1

k
W sin(kx),
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Figure 1.4: Two-dimensional convection roll in Rayleigh–Bénard convection (at criticality)

with u = ∂zψ and w = −∂xψ. The streamlines can be plotted as isosurfaces of the streamfunc-

tion. For the W -component of the streamfunction, I use the approximation W ≈ z2 − 2z3 + z4,

which satisfies the symmetry condition (even function) and boundary conditions but is otherwise an

approximation of the true eigenfunction. The result of the plot is shown in Figure 1.4. The main

feature here is two counter-rotating vortices in the cell that act to redistribute the temperature.

This is the essential signature of Rayleigh–Bénard convection.

1.8 Beyond linear theory – the Nusselt Number

Beyond linear theory, the exponential growth of the convection rolls will either saturate (leading

to steady, laminar flow) or themselves become unstable – in which case a pattern of turbulent

convection ensues. The eventual outcome of these processes depends on the Rayleigh number –

the higher the Rayleigh number the less laminar the flow eventually is. In both cases, the vertical

velocity represents a highly efficient means of transporting heat from bottom to top – over and

above the heat transfer that can be achieved by diffusion alone. The enhancement is characterized

by the Nusselt number:

Nu =
〈
∫ d

0

(
wT − κ∂T

∂z

)
dz〉

κ(Thot − Tcold)
, (1.27)

where the angle brackets denote a space-time average (i.e. averaging over both time and the x-

and y-directions), w(x, y, z, t) is the instantaneous fluid velocity in the vertical (z-direction), and

T (x, y, z, t) is the corresponding instantaneous temperature field. Because these fields arise as

solutions to the full (nonlinear) Navier–Stokes equations, there is no simple way to derive a closed

form for the Nusselt number. However, some accepted correlations exist, which have been derived
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rigorously from decades of experiments and also, direct numerical simulations:

Nu =

0.54Ra1/4, 103 ≤ Ra ≤ 107, Pr ≥ 0.7,

0.15Ra1/3, 107 ≤ Ra ≤ 1011, all Pr
(1.28)

The second of these correlations is the ‘classical’ Rayleigh–Bénard scaling, which applies when the

convection rolls are fully turbulent. The scaling regime beyond Ra = 1011 is the subject of current

research [AGL09].



Chapter 2

Rayleigh–Taylor Instability

2.1 Overview

The idea behind the Rayleigh–Taylor instability is to take two distinct incompressible fluids separated

by a flat interface, such that the heavier fluid sits on top of the lighter one. This is obviously an

unstable situation: we introduce the theory that proves this. This is an important example not only

for the practical applications (some of which are nefarious) but because it is the simplest possible

example of a two-phase flow instability, the stability theory for which admits exact analytical

solutions. In this chapter we will give an account not only of the inviscid theory (wherein those

analytical solutions apply), but the viscous case also. The viscous case gives a nice introduction to

numerical spectral methods for the solution of eigenvalue problems in two-phase flows.

2.2 Stability analysis – Inviscid case

A schematic description of the physical problem is shown in Figure 2.1. The fluid domain is (x, y) ∈
R2, and the base-state location of the interface is at z = 0. The density profile is

ρ(x, y) =

ρL, z > 0,

ρG, z < 0,

where ρG and ρL are both constant and ρG < ρL. Thus, it is as though the domain is taken up by

two distinct fluids (or phases). Both phases are however assumed for the time being to be invsicid,

with µi = 0 and i = L,G. The base-state corresponds to a situation with no flow, such that ui = 0,

again with i = L,G.

Interestingly, the equilibrium pressure field P0 is non-trivial. The z-momentum equation in the base

25
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Figure 2.1: Schematic description of the base state of the Rayleigh–Taylor instability

state reads

0 = −dP0

dz
− ρig,

hence
dP0

dz
= −ρig,

where g > 0 is the acceleration due to gravity. We integrate this equation in the bottom layer

(i = G):

P0G(z)− CG = −ρGgz,

hence P0G(z) = CG − ρGgz. Similarly, in the top layer, we obtain P0L(z) = CL − ρLgz, and the

two constants of integration must coincide so that the pressure is continuous. Thus, upon setting

the (irrelevant) constant to zero, we obtain

P (x, y) =

−ρLgz, z > 0,

−ρGgz, z < 0,

Introduction of small-amplitude perturbations

A tiny sinuousoidal perturbation is introduced on the interface separating the phases such that the

configuration of the fluid density changes:

ρ(x, y) =

ρL, z > η(x, y, t),

ρG, z < η(x, y, t).
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This change induces corresponding changes in the velocity and pressure fields, to be determined now

by the relevant linearized (Euler) equations of motion:

∂

∂t
ui = − 1

ρi
∇δpi, i = L,G,

where the perturbation velocities ui satisfy the incompressibility condition

∇ · ui = 0.

The linearized Euler equation demonstrates conservation of vorticity:

∂

∂t
(∇× ui) = 0.

We assume a two-dimensional disturbance in the xz plane and project this conservation equation

on to the y-direction to obtain
∂

∂t
(∂xw − ∂zu) = 0.

The incompressibility condition reads (correspondingly)

∂xu+ ∂yw = 0.

Thus, we introduce a streamfunction ψ, such that u = ∂zψ and w = −∂xψ. The conservation of

vorticity equation now reads
∂

∂t

(
−∂2

xψi − ∂2
zψi
)

= 0,

or
∂

∂t
∇2ψi = 0,

hence ∇2ψi = Const. But the initial configuration corresponds to no flow and no vorticity, hence

∇2ψi = 0.

We make a normal-mode decomposition ψ = eikx+σtΨ(z), hence

(
∂2
z − k2

)
Ψi = 0,

with solution

Ψi = Aie
−k|z|

(the other solutions are thrown away because they correspond to unbounded disturbances as |z| →
∞).
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It now remains to match the streamfunction across the interface. This is where the two-phase flow

aspect of the problem enters: physical jump conditions need to be prescribed at the interface

z = η.

Jump conditions

We demand continuity of velocity at the interface z = η. In particular, wi = −ikeikx+σtΨi(z) is

continuous across the interface:

wL(x, z = η) = wG(x, z = η),

ΨL(z = η) = ΨG(z = η),

ΨL(0) +
∂ΨL

∂z

∣∣
0
η + · · · = ΨG(0) +

∂ΨG

∂z

∣∣
0
η + · · · .

Linearized on to the surface z = 0, this continuity condition reads

ΨL(0) = ΨG(0).

Since Ψi = Aie
−k|z|, it follows that AL = AG = A.

The other condition is the dynamic Laplace–Young condition, which says that the jump in the

normal stress across the interface must be balanced by the surface-tension force. However, the

normal stress is just −P , where P is the total pressure, P = P0 + δp. In other words, we have

PL(x, z = η)− PG(x, z = η) = γκ,

where γ is the surface tension and κ is the (mean) curvature of the interface. We now work out

each of these contributions:

• Interfacial pressure in the upper layer: We have

PL(x, z = η) = P0L(z = η) + δpL(x, z = η),

= P0L(0) +
dP0L

dz

∣∣
0
η + δpL(x, z = 0) +

[
∂

∂z
δp

]
z=0

η + · · · ,

= −ρLgη + δpL(x, z = 0),

where we have linearized again on to the surface z = 0.

• Interfacial pressure in the upper layer: This is similar to the upper layer, and we have

PG(x, z = η) = −ρGgη + δpG(x, z = 0),
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• Mean curvature: By a standard formula, we have

κ =
ηxx

(1 + η2
x)

3/2
.

Applying the linearization and the normal-mode decomposition, this is

κ = −k2η.

Hence, the jump condition on the pressure now reads

[−ρLgη + δpL(x, z = 0)]− [−ρGgη + δpG(x, z = 0)] = −γk2η.

This is re-arranged as

δpL − δpG = (ρL − ρG)gη − γk2η.

It remains to connect the pressure to the streamfunction and hence to write down an eigenvalue

problem.

The eigenvalue problem

We return to the perturbation equation for the u-velocity:

∂ui
∂t

= − 1

ρi

∂

∂x
δpi.

Going over to the normal-mode and streamfunction representations, this equation can be written as

σ∂zψ = − 1

ρi
ikδpi,

where ψ = eikx+σtΨ(z) is the total streamfunction. Hence,

δpi =
1

k
iρiσ∂zψ,

and the jump condition on the pressure can now be rewritten as

1

k
iσ (ρL∂zψL − ρG∂zψG) = (ρL − ρG)gη − γk2η.

We use again the fact that ΨL = Ae−kz and ΨG = Aekz to rewrite this further as

− iσ(ρL + ρG)Aeikx+σt = (ρL − ρG)gη − γk2η, (2.1)



30 Chapter 2. Rayleigh–Taylor Instability

Let η = η0eikx+σt, where η0 is a complex number. Hence, Equation (2.1) becomes

−iσ(ρL + ρG)ψ(0) = (ρL − ρG)gη0 − γk2η0,

Some further work is needed to express η in terms of the streamfunction. We use kinematic

condition, which says that fluid particles on the interface follow the motion of the interface itself:

∂η

∂t
+ u

∂η

∂x
= w,

or, in a linearized version,
∂η

∂t
= w,

and finally, in the normal-mode and streamfunction representation,

ση0 = −ikΨ(0),

hence η0 = −ikΨ(0)/σ. Thus, the jump condition can be re-expressed as

−iσ(ρL + ρG)Ψ(0) =
[
(ρL − ρG)g − k2γ

]
[−ikΨ(0)/σ] .

Tidying up, the result is

σ2 =
ρL − ρG
ρL + ρG

gk − γk3

ρL + ρG
,

and finally,

σ =

√
ρL − ρG
ρL + ρG

gk − γk3

ρL + ρG
.

The quantity (ρL − ρG)/(ρL − ρG) > 0 is called the Atwood number:

At =
ρL − ρG
ρL + ρG

;

the relationship between the growth rate σ and the wavenumber k is called the dispersion relation:

σ(k) =

√
Atgk − γk3

ρL + ρG
. (2.2)

Implications

When γ = 0 the surface tension vanishes, and the dispersion relation reads

σ(k) =
√

Atgk.
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Figure 2.2: Sample dispersion relation showing the bifurcation from shortwave neutral capillary waves
to longwave unstable gravitational disturbances. Model parameters: At = g = γ/(ρL + ρG) = 1.

In this case, the growth rate σ is purely real and positive, and waves of arbitrary wavelength

are unstable. In contrast, for γ 6= 0, there is a critical wavenumber k0 where the radicand in

Equation (2.2) changes sign:

Atg =
γ

ρL + ρG
k2

0,

such that

σ =


√

Atgk − γk3

ρL+ρG
, k < k0,

±i
√

γk3

ρL+ρG
− Atgk, k ≥ k0,

where the long-wave (k < k0) case corresponds to pure unstable motion and the short-wave case

corresponds to neutral travelling capillary travelling waves. Thus, surface tension stabilizes short-

wave disturbances. A sample dispersion relation showing this bifurcation in the nature of the

eigensolutions is shown in Figure 2.2.

2.3 Viscous case

The base state is unchanged. The first main change is in the linearized equation of motion:

∂

∂t
ui = − 1

ρi
∇δpi +

µi
ρi
∇2ui, i = L,G,

which now contains a viscous term. As before, we take the curl on both sides to eliminate the

pressure:
∂

∂t
ωi =

µi
ρi
∇2ωi,
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and we project on to the y-direction to obtain

∂

∂t
(∂xw − ∂zu) =

µi
ρi
∇2 (∂xw − ∂zu) .

As before, we introduce the streamfunction and the equation of motion reduces to

∂

∂t
∇2ψ =

µi
ρi
∇4ψ.

A normal-mode decomposition is made, such that ψ = eikx+σΨ(z), and the relevant eigenvalue

equation now reads

σ
(
∂2
z − k2

)
Ψi =

µi
ρi

(
∂2
z − k2

)4
Ψi.

It is clear that the boundary conditions are

Ψi = Ψ′i = 0, as |z| → ∞.

However, we now have a fourth-order equation to match across the interface at z = 0, which requires

four matching conditioins (previously we had two matching conditions for a second-order equation).

This requires more physics.

Matching Conditions

As before, we impose continuity of velocity. Continuity of the w-component of velocity gives

ΨL(0) = ΨG(0).

We also have continuity of the u-component of velocity, where u = ∂zψ, and where ψ = eikx+σtΨ(z)

is the full streamfunction. We have

uL(x, z = η) = uG(x, z = η),

=⇒ uL(x, z = 0) = uG(x, z = 0),

=⇒ ∂zψL(x, z = 0) = ∂zψG(x, z = 0),

hence

∂zΨL(z = 0) = ∂zΨG(z = 0).

Thus, both Ψ and its first derivative are continuous across the interface.

The next condition relevant for viscous flow is the continuity of tangential stress across the
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interface. Recall, the stress tensor associated with the Navier–Stokes equations is

T = −pI + µ
(
∇u+∇uT

)
,

and the tangential stress is

n̂ · T · t̂,

where

t̂ =
(1, ηx)√
1 + η2

x

≈ (1, ηx)

is the unit tangent vector to the interface and

n̂ =
(−ηx, 1)√

1 + η2
x

≈ (−ηx, 1)

is the unit normal vector.

Now n̂ · I · t̂ = n̂ · t̂ = 0, so the tangential stress is

µn̂ ·
(
∇u+∇uT

)
· t̂ = µ

2∑
i,j=1

ni

(
∂ui
∂xj

+
∂uj
∂xi

)
tj,

= µn1t1

(
∂u1

∂x1

+
∂u1

∂x1

)
+mun1t2

(
∂u1

∂x2

+
∂u2

∂x1

)
+

µn2t1

(
∂u2

∂x1

+
∂u1

∂x2

)
+ µn2t2

(
∂u2

∂x2

+
∂u2

∂x2

)
The only term that survives the linearization is proportional to n2t1, hence the tangential stress is

µn2t1

(
∂u2

∂x1

+
∂u1

∂x2

)
= µ

(
∂w

∂x
+
∂u

∂z

)
,

which in streamfunction form is

µ
(
∂2
z + k2

)
ψ.

Hence,

µL
(
∂2
z + k2

)
ψL = µG

(
∂2
z + k2

)
ψG.

The final condition relevant for viscous flow is the familiar jump condition for tangential stress

across the interface. The normal stress is n̂ ·T · n̂, and the jump in the normal stress is balanced

by the surface-tension force:

[n̂ ·T · n̂]LG = −γκ.
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We now work out the linearized normal stress. Note that

n̂ · (pI) · n̂ = pn̂ · n̂ = p.

Also, each term in the sum

n̂ ·
(
∇u+∇uT

)
· n̂ =

2∑
i,j=1

ninj

(
∂ui
∂xj

+
∂uj
∂xi

)

is proportional to ninj. The only contribution to survive in a linearization is i = 2 and j = 2 (with

n2
2 = 1)

n̂ ·
(
∇u+∇uT

)
· n̂ = 2

∂w

∂z
.

Thus, the linearized normal stress in the ith phase is

−pi + 2µi
∂wi
∂z

Thus, the final matching condition at the interface reads[
−pL + 2µL

∂wL
∂z

]
−
[
−pG + 2µG

∂wG
∂z

]
= γk2η.

Re-arranging and using the by-now familiar streamfunction representation gives

(−pL)− (−pG)− ik (2µL∂zψL − 2µG∂zψG) = γk2η.

Now, the computation of the jump in pressures is the same as before, so we are left with the

matching condition

g (ρL − ρG) η + (−δpL + δpG)z=0 − ik (2µL∂zψL − 2µG∂zψG) = γk2η,

or

(−δpL + δpG)z=0 − ik (2µL∂zψL − 2µG∂zψG) = −g (ρL − ρG) η + γk2η.

It now remains to work out the pressure perturbation for the viscous fluid. We start with the

u-component of the velocity equation:

∂

∂t
ui = − 1

ρi

∂

∂x
δpi +

µi
ρi
∇2ui,

which in streamfunction-normal-mode form reads

σ∂zψ = − ik

ρi
δpi +

µi
ρi

(∂2
z − k2)∂zψ.
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Hence,

ρiσ∂zψ − µi(∂2
z − k2)∂zψ = −ikδpi,

and finally,

− i

k
ρiσ∂zψi +

i

k
µi∂

3
zψi − ikµi∂zψ = −δpi.

We assemble the results:

(−δpL + δpG)− 2ik (µL∂zψL − µG∂zψG)

=

(
− i

k
ρLσ∂zψL +

i

k
µL∂

3
zψL − ikµL∂zψL

)
−
(
− i

k
ρGσ∂zψG +

i

k
µG∂

3
zψG − ikµG∂zψG

)
− 2ik (µL∂zψL − µG∂zψG)

=

(
− i

k
ρLσ∂zψL +

i

k
µL∂

3
zψL − 3ikµL∂zψL

)
−
(
− i

k
ρGσ∂zψG +

i

k
µG∂

3
zψG − 3ikµG∂zψG

)
which is all equal to −(ρL − ρG)η + γk2η:

σ

(
− i

k
ρL∂zψL +

i

k
ρG∂zψG

)
+

[(
i

k
µL∂

3
zψL − 3ikµL∂zψL

)
−
(

i

k
µG∂

3
zψG − 3ikµG∂zψ

)]
= −g(ρL − ρG)η + γk2η

Multiply up by −k/i for the final result:

σ (ρL∂zψL − ρG∂zψG) +
[(

3k2µL∂zψL − µL∂3
zψL

)
−
(
3k2µG∂zψG − µG∂3

zψG
)]

= −ik
[
(ρL − ρG)− γk2

]
η. (2.3)

Now, if we used the kinematic condition here to write η = −ikψ(0)/σ, we would end up with σ2 in

the matching condition. This is not advisable: we want a linear eigenvalue problem in the variable

σ. Therefore, we leave Equation (2.3) as-is, and include η as an extra variable. Let us assemble the

results here. We have the following ordinary differential equations in the eigenvalue σ valid in the

bulk parts of the domain:

σρL
(
∂2
z − k2

)
ΨL = µL

(
∂2
z − k2

)2
ΨL, z > 0, (2.4a)

σρG
(
∂2
z − k2

)
ΨG = µG

(
∂2
z − k2

)2
ΨG, z < 0. (2.4b)
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The following matching conditions apply at z = 0:

ΨL(0) = ΨG(0), (2.4c)

∂zΨL(0) = ∂zΨG(0), (2.4d)

µL
(
∂2
z + k2

)
ΨL = µG

(
∂2
z + k2

)
ΨG, (2.4e)

σρL∂zΨL + µL
(
3k2∂zΨL − µL∂3

zΨL

)
= σρG∂zΨG + µG

(
3k2∂zΨG − ∂3

zΨG

)
−ik

[
g(ρL − ρG)k − γk3

]
η0. (2.4f)

Here, again, η = η0eikx+σt and η0 is the phase, determined by the kinematic condition

ση0 = −ikΨ(0). (2.4g)

Finally, the following boundary conditions apply:

ψL, ∂zψL → 0 as z →∞, ψG, ∂zψG → 0 as z → −∞. (2.4h)

These are the equations we now solve. Although it is possible to solve these equations semi-

analytically, it is in fact more revealing (and easier) to solve them numerically. We introduce a

convenient numerical method in the next chapter – numerical spectral methods.

Exercise 2.1 Rayleigh–Taylor instability in a porous medium: Consider the stability of

a basic flow in which two incompressible fluids move with a horizontal interface and uniform

vertical velocity in a uniform porous medium. You are given that motion of a fluid in a porous

medium is governed by Darcy’s Law, namely that u = ∇φ, where φ = −k(p+ gρz)/µ, ρ is the

density and µ the dynamic viscosity of the fluid, and k is the permeability of the medium to the

fluid.

Let the lower fluid have density ρ1 and viscosity µ1 and the upper fluid ρ2 and µ2; let the medium

have permeability k1 to the lower and k2 to the upper fluid, and let the basic velocity be W ẑ.

Then show that the flow is stable if and only if(
µ1

k1

− µ2

k2

)
W + g(ρ1 − ρ2) ≥ 0.

Hints: Decompose the velocity potential in each phase as φi + δφi, where φi is the base-state

contribution. Use (and prove) the following intermediate steps if necessary:

• ∇2φi = ∇2δφi = 0 in the interior of each fluid domain.
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• Write δφi = eλt+iαxΦi, hence (∂2
z − α2)Φi = 0.

• Continuity of normal velocity across the perturbed interface at z = η(x, t) = η0eλt+iαx

implies Φ1 = Aeαz and Φ2 = −Ae−αz. Also, obtain the kinematic condition λη0 = Aα.

• Continuity of pressure across the perturbed interface implies that(
∂p1

∂z
− ∂p2

∂z

)
η =

µ1

k1

δφ1 −
µ2

k2

δφ2.

Exercise 2.2 Rayleigh–Taylor stability of superposed fluids confined in a vertical cylin-

der: Consider an inviscid incompressible fluid of density ρ1 at rest beneath a similar fluid of

density ρ2, the fluids being confined by a long vertical rigid cylinder with equation r = a and

there being surface tension γ at the interface with equation z = 0. Here cylindrical polar co-

ordinates (r, θ, z) are used and Oz is the upward vertical. Then show, much as in the analysis

throughout this chapter, that small irrotational disturbances of the state of rest may be found

in terms of the normal modes of the form

φ = cosnθJn(kr)e−k|z|+λt,

where φ is the velocity potential of the disturbance, n = 0, 1, 2, · · · , and where

λ2 =
g(ρ2 − ρ1)k − γk3

ρ1 + ρ2

.

Here, the wavenumber k is determined by the condition that ka equals the mth positive zero

j′n,m of the derivative J ′n of the Bessel function for m = 1, 2, · · · . Deduce that there is stability

if

a2g(ρ2 − ρ1) < γj2
1,1.



Chapter 3

Spectral methods in fluid dynamics

3.1 Overview

We introduce numerical spectral methods in the context of a simple two-point boundary-value

problem. We then extend the method to the problem of determining the eigenvalues of the viscous

Rayleigh–Taylor problem. The following books might help in understanding this last chapter:

• Chebyshev and Fourier spectral methods, J. P. Boyd, Dover Publications (2000). Boyd himself

has put a copy of this on his website and is therefore available for free in pdf form [Boy01].

• Spectral methods in Matlab, L. N. Trefethen, SIAM Publications (2001) [TTTD93].

3.2 A simpler problem

Consider the equation
d2f

dy2
= −λf, y ∈ [−L/2, L/2] , (3.1)

which is to be solved with vanishing boundary conditions

f(−L/2) = f(L/2) = 0.

This is an eigenvalue problem in the eigenvalue λ. However, we already know the solution: it is

f(y) = fn(y) = sin(
√
λny), λn =

4π2

L2
n2, n = 1, 2, · · ·

or

f(y) = fn(y) = cos(
√
λny), λn =

4π2

L2

(
n+ 1

2

)2
, n = 0, 1, · · ·

38
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where the apparently free parameter λ is now forced to take discrete values, λ = λn.

We are now going to ‘shoot a pigeon with a cannon’, and solve this problem numerically. We are

going to expand the solution in terms of a set of basis functions,

f(y) =
∞∑
n=0

anTn(x), x =
2

L
y,

where {Tn(x)}∞n=0 are a complete set of basis functions on the interval [−1, 1] called the Chebyshev

polynomials:

Tn(x) = cos(n arccos(x)).

Although this does not really look like a polynomial in x, it is!. The first few are shown here:

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1.

For more information on the properties of these functions, you may, in this instance, check out the

Wikipedia article. I can personally vouch for this article since I have contributed to it myself!

Just as {
1, sin

(
2nπ

L
x

)
, cos

(
2nπ

L
x

)}∞
n=1

are a good set of basis functions for periodic functions on an interval [−L/2, L/2], so too are

the Chebyshev polynomials for arbitrary functions on the same interval. Thus, we in expanding

the solution in terms of these exotic functions, instead of familiar sines and cosines, we are taking

into account the fact that the solution is not necessarily periodic. Of course, we must truncate the

expansion in a numerical framework, so we work with the approximate solution

fN(y) =
N∑
n=0

anTn(x).

There are N+1 undetermined coefficients and two boundary conditions. That leaves N−1 conditions

to obtain. We therefore evaluate the ODE at N − 1 interior points to give N + 1 constraints on
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the coefficients:

fN(−L/2) = 0,

d2fN
dy2

∣∣∣
y1

= −λfN(y1),

...
...

d2fN
dy2

∣∣∣
yN−1

= −λfN(yN−1),

fN(+L/2) = 0,

or

N∑
n=0

anTn(−1) = 0,

N∑
n=0

an

(
2

L

)2

T ′′n (x1) = −λ
N∑
n=0

anTn(x1),

...
...

N∑
n=0

an

(
2

L

)2

T ′′n (xN−1) = −λ
N∑
n=0

anTn(xN−1),

N∑
n=0

anTn(+1) = 0.

The interior points are NOT arbitrary: we evaluate at the N − 1 points

x1, x2, · · · , xN−1 = cos
( π
N

)
, cos

(
2
π

N

)
, · · · , cos

(
(N − 1)

π

N

)
;

these are the collocation points.

But now we have a generalised eigenvalue problem:

La = λMa,

where

L =



T0(−1) · · · TN(−1)

(2/L)2T ′′0 (x1) · · · (2/L)2T ′′N(x1)
...

...

(2/L)2T ′′0 (xN−1) · · · (2/L)2T ′′N(xN−1)

T0(+1) · · · TN(+1)


,
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M = −



0 · · · 0

T0(x1) · · · TN(x1)
...

...

T0(xN−1) · · · TN(xN−1)

0 · · · 0


,

and

a = (a0, · · · , an)T .

This is a standard problem, and can be solved using a numerical package, such as ‘eig’ in Matlab.

• Typing

d=eig(L,M);

in Matlab yields the first N + 1 eigenvalues.

• We must then check that the eigenvalues are real (a check for bugs in the code):

plot(imag(d),’o’)

• Having done that, we sort the eigenvalues in increasing order:

d=sort(d);

• Then, we plot the results.

plot(d,’o’)

• Typically, the solver yields an accurate answer only for the first few eigenvalues. Suppose

we want to find the first two eigenvalues accurately. We fix N and compute the first two

eigenvalues. We then increase N and compute the eigenvalues again. We continue increasing

N until the first two eigenvalues do not change upon varying N . The solver is then said to

have converged.

Happily, these solvers such as ‘eig’ tell us the eigenvectors as well as the eigenvalues. Typing

[V,D]=eig(L,M);

gives two (N+1)×(N+1) matrices. The matrix D is diagonal and corresponds to the eigenvalues,
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Figure 3.1: The spectrum of the problem f ′′(y) = −λf(y): comparison between numerical method
and theory. Here N = 100 and L = 2π.

for i=1:(N+1)

d(i)=D(i,i);

end

while the matrix V corresponds to the eigenvectors. Suppose we want to find the leading eigenvector.

We would pick out the leading eigenvalue:

[maxd,imax]=max(d);

(do NOT sort them!). The corresponding eigenvector is

a=V(:,imax),

i.e. the imaxth column of the matrix V . Finally then, our guess for the leading vector is

fN(y) =
n∑
n=0

anTn(x), x =
2

L
y.

The results of implementing this algorithm, with N = 100, are shown in Fig. 3.1. The first ten

numerically-generated modes are shown in the figure (dots), along with the analytical modes: red

lines for λ = (n + 1/2)2, and black lines for λ = n2 (Here L = 2π). The two calculations agree

exactly. I have also picked out the first two modes and computed the corresponding eigenfunctions

(Fig. 3.2). These eigenfunctions are ψ = cos(y/2) (lowest), and ψ = sin(y) (second lowest). Again,

the exact calculation and the numerical calculation agree very well. In the next section, we answer

the question, ‘how well?’ First, the Matlab codes used to generate the numerical solution in this

section are referenced here:



3.3. Exponential convergence 43

(a) (b)

Figure 3.2: The first two eigenfunctions of the problem f ′′(y) = −λf(y). Here N = 100 and
L = 2π.

• Calculation of eigenvalues: simple.m

• Calculation of eigenfunctions: make eigenfunction simple

Exercise 3.1

1. Solve the eigenvalue problem (3.1) analytically, this time with the Neuman boundary

conditions

f ′(−L/2) = f ′(L/2) = 0.

2. Modify the Matlab codes above to solve the eigenvalue problem above in (1) numerically.

Compare the analytical and numerical results, both for the eigenfunctions and eigenvalues.

3.3 Exponential convergence

In this section we examine some numerical issues surrounding the Chebyshev collocation method.

So far we have been quite casual in our use of nomenclature. For definiteness, we work on the

interval [−1, 1]. We start with the operator problem

Lf = λMf,
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and construct the approximate solution

f(y) ≈ fN(y) =
N∑
n=0

anTn(x), x ∈ [−1, 1] .

Until now, we have called this a truncation, although really it is an interpolation. Let’s see why

the latter label is more appropriate.

First, recall the following result, due to Lagrange:

Theorem 3.1 Let f(x) be some function whose value is known at the discete points x0, x1, · · · , xN .

Then there exist polynomials C0(x), C1(x), · · · , CN(x) such that the function

PN(x) =
N∑
i=0

f(xi)Ci(x)

agrees with f(x) at the points x0, x1, · · · , xN :

PN(xi) = f(xi), i = 0, 1, · · · , N.

Proof: Take

Ci(x) =
N∏

j=0,j 6=i

x− xj
xi − xj

.

Noting that

Ci(xk) = δik,

the result follows. This result establishes the existence of interpolating polynomials, but does not

tell us which ones are best. It turns out that the Chebyshev polynomials are among the better

polynomials, and that the non-uniform Chebyshev grid is best. In what follows, we explain why.

For illustration purposes, consider the problem Lf = λMf where boundary conditions are not

important. We pose the interpolation approximation

fN(x) = 1
2
b0T0(x) +

N−1∑
n=1

bnTn(x) + 1
2
bNTN(x)

We impose the condition that fN(x) and f(x) agree exactly at the points x0, x1, · · · , xN . We do

not know the value of f(x), but we do know the differential equation it solves. Thus, we have

LfN(xk) = λMfN(xk), k = 0, 1, · · ·N.

Then the following theorem holds:
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Theorem 3.2 Let the interpolation grid be given by

xk = cos(kπ/N), k = 0, 1, · · ·N.

Let fN(x) be the interpolating polynomial of degree N which interpolates to f(x) on this grid:

fN(x) = 1
2
b0T0(x) +

N−1∑
n=1

bnTn(x) + 1
2
bNTN(x),

fN(xk) = f(xk)

Finally, let {αn}n be the coefficients of the exact expansion of f(x) in Chebyshev polynomials:

f(x) = 1
2
α0T0(x) +

∞∑
n=1

αnTn(x)

Then,

bn =
2

N

[
1
2
f(x0)Tn(x0) +

N−1∑
k=0

f(xk)Tn(xk) + 1
2
f(xN)Tn(xN)

]
,

which leads to the following bound:

|f(x)− fN(x)| ≤ 2
∞∑

n=N+1

|αn|.

The proof of this theorem is straightforward but the reader is referred to Boyd [Boy01] for the

details. We focus instead on the following corollary.

Theorem 3.3 If the problem Lf = λMf is analytic, then the convergence of the interpolation

approximation in Theorem 3.2 is exponential.

Proof: If there are no singularities in the problem Lf = λMf , then a power-series solution is

possible, with finite radius of convergence. Continuing the power series into the complex plane gives

a solution that has derivatives of all order. Thus, we may assume that

|f (p)(x)| ≤Mp,

where the bound is independent of x ∈ [−1, 1].

Next, we note that a Chebyshev series is but a Fourier series in disguise! For, let θ = arccos(x).

Then,

f(x) = 1
2
α0 +

∞∑
n=1

αnTn(x) = 1
2
α0 +

∞∑
n=1

αn cos(nθ).
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Differentiating both sides p times with respect to θ gives

∞∑
n=1

αnn
p<
(
ipeinθ

)
=
dpf

dθp
.

But note:

df

dθ
=

dx

dθ

df

dx
= − sin θ

df

dx
,

d2f

dθ
= sin2 θ

d2f

dx2
− cos θ

df

dx
,

and so on, implying that |dpf/dθp| ≤ M̃p, where the bound is independent of θ or x. Hence,∣∣∣∣∣
∞∑
n=0

αnn
p<
(
ipeinθ

)∣∣∣∣∣ ≤ M̃p,

and this is a convergent series. It follows that the general term tends to zero:

lim
n→∞

|αn|np = 0.

At worst,

|αn| ≤ A′e−γ
′nδ , n→∞,

for some positive parameters A′, γ′, and δ that are independent of n. Consider log |αn|/n as n→∞;

this is

log |αn|/n ∼ −γnδ−1, with R = lim
n→∞

log |αn|/n.

Three possibilities emerge:

1. R = ∞, corresponding to δ > 1 and supergeometric behaviour. This implies that the true

analytic eigensolution is an entire function in the complex plane (analytic continuation);

2. R = Const, corresponding to δ = 1 and geometric behaviour. This implies that the true

analytic eigensolution that is a meromorphic in the complex plane got by analytically continuing

the real solution, or has branch cuts, where these singularties are far from the (real) interval

of interest.

3. R = 0, corresponding to subgeometric behaviour.

In any case, given the assumed regularity of the ODE to be solved, only cases 1 and 2 pertain, and

thus, in a worst-case sceario, we have the geometric case, so we can conclude that for the problems

of interest,

|αn| ≤ Ae−γn, n→∞,
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for some further positive parameters A and γ that are independent of n. Hence, there exists N0 ∈ N
such that

|αn| < Ae−γn, for all n > N0.

Returning to the bound in the Theorem 3.2, we have

|f(x)− fN0(x)| ≤ 2
∞∑

n=N0+1

|αn|,

≤ 2A
∞∑

n=N0+1

e−γn,

≤ 2Ae−γ(N0+1)

∞∑
r=0

e−γr,

≤ Be−γN0

The error is thus proportional to e−γN0 and we therefore say that the Chebyshev collocation method

converges exponentially. Typically, this result generalizes to situations where the boundary con-

ditions are built in to the interpolation coefficients.

3.4 The Rayleigh–Taylor instability revisited

I have implemented a numerical spectral method for the computation of the eigenvalues of the

Rayleigh–Taylor instability. The eigenvalue problem is solved in a finite domain z ∈ [−H,H]. In

numerical methods, it is convenient to nondimesnionalize the problem. The curious thing about the

Rayleigh–Taylor problem is that there is no natural unit of length, and even in the finite domain, using

the scale H as the standard lengthscale is problematic. Thus, we introduce an arbitrary lengthscale

h0 and non-dimesnionalize with respect to that, as well as the typical velocity scale U0 =
√
gh0.

Densities and viscosities are scaled relative to the bottom-layer density and viscosity – ρG and µG

respectively. The non-dimensional problem to solve reads

σrL
(
∂2
z − k2

)
ΨL =

mL

Re

(
∂2
z − k2

)2
ΨL, z ∈ (0, νL), (3.2a)

σrG
(
∂2
z − k2

)
ΨG =

mG

Re

(
∂2
z − k2

)2
ΨG, z ∈ (−νG, 0). (3.2b)
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The following matching conditions apply at z = 0:

ΨL(0) = ΨG(0), (3.2c)

∂zΨL(0) = ∂zΨG(0), (3.2d)

mL

(
∂2
z + k2

)
ΨL = mG

(
∂2
z + k2

)
ΨG, (3.2e)

σrL∂zΨL +
mL

Re

(
3k2∂zΨL − ∂3

zΨL

)
= σrG∂zΨG +

mG

Re

(
3k2∂zΨG − ∂3

zΨG

)
−ik

[
(rL − rG)k − Sk3

]
η0. (3.2f)

Here, η = η0eikx+σt and η0 is the phase, determined by the kinematic condition

ση0 = −ikΨ(0). (3.2g)

Finally, the following boundary conditions apply:

ψL, ∂zψL → 0 as z →∞, ψG, ∂zψG → 0 as z → −∞. (3.2h)

The dimensionless quantities are defined here as follows. First, we have νL = νG = H/h0 ∈ (0,∞),

which are variable parameters. For the densities, we have

rL = ρL/ρG ∈ [1,∞), rG = ρG/ρG = 1,

For the viscosity parameters, we have

mL = µL/µG ∈ [0,∞), mG = µG/µG = 1,

The Reynolds number is Re = U0h0ρG/µG, also variable. Finally, S = γ/(ρGhU
2
0 ) is a dimensionless

surface-tension parameter.

It is not necessary for the students to write a code to solve the RTI eigenvalue problem (I have done

that already). Instead, you can take the codes

• OS rti.m

• call OS rti.m

and study them yourself. In particular, carry out the following exercise:

Exercise 3.2 Take the RTI eigenvalue solver. Take Re = 1000 and mL = mG = 1. Choose

further appropriate values for the other parameters. Show in this parameter regime of large
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Figure 3.3: Comparison between the inviscid theory and the numerical method

Reynolds number that the numerical results agree very closely with the earlier inviscid analysis.

Justify this finding.

Example: With Re = 1000, mL = mG = 1, νL = νG = 2, NL = NG = 100 and S = 0 the

results in Figure 3.3 were obtained. Excellent agreement is obtained. The small discrepancies at

long wavelengths (small α) have been investigated by an M.Sc. student and are found to arise due

to the confinement of the numerical domain.



Chapter 4

Stability of viscous parallel flow

Overview

We introduce the Orr–Sommerfeld equation for the stability of parallel flow. We demonstrate

one particular instance where exact solutions for the eigenvalue problem are obtainable. We then

pass over to numerical spectral methods to calculate the critical Reynolds number for the onset of

instability in Poiseuille channel flow.

4.1 Parallel flow

We consider the Navier–Stokes equations for a wall-bounded flow, such that z ∈ [0, H], and such

that the velocity vanishes at z = 0 and z = H (no-slip). Suppose that the flow is characterized by

a typical velocity V . The Navier–Stokes equations then non-dimensionalize in a standard fashion:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, ∇ · u = 0, (4.1a)

where u and p have their usual meanings and

Re =
V Hρ

µ
(4.1b)

is the (dimensionless) Reynolds number. Here, ρ and µ are the fluid density and viscosity respectively.

We henceforth work with these non-dimensional equations of motion.

Consider now a parallel flow U0(z) shown schematically in Figure 4.1. The origin of such a flow

profile will be discussed in later sections in this chapter. For now, it suffices to notice that a flow u =

(U0(z), 0, 0) is an equilibrium solution of the Navier–Stokes equation (4.1a). A small perturbation

50
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around this base state is now introduced (it suffices to consider two-dimensional perturbations in

the first instance), such that the following perturbed velocity field is considered:

u = (U0(z) + u′(x, z, t), 0, w′(x, z, t))

This functional form for the velocity is substituted into the Navier–Stokes equations and the equa-

tions are linearized. One obtains

∂u′

∂t
+ U0

∂u′

∂x
+ w′

dU0

dz
= − ∂

∂x
δp+Re−1∇2u′, (4.2a)

∂w′

∂t
+ U0

∂w′

∂x
= − ∂

∂z
δp+Re−1∇2w′, (4.2b)

∂u′

∂x
+
∂w′

∂z
= 0. (4.2c)

We carry out our favourite trick by taking ∂z(4.2a)−∂x(4.2b). We obtain

∂

∂t
(∂zu

′ − ∂xw′) + U0 (∂xzu
′ − ∂xxw′) +

dU0

dz

(
∂u′

∂x
+
∂w′

∂z

)
+ w′

d2U0

dz2
= Re−1∇2 (∂zu

′ − ∂xw′) .

The term (dU0/dz) (∂xu
′ + ∂zw

′) obviously drops out because of incompressibility. To make further

progress, we introduce the streamfunction ψ(x, z, t), such that u′ = ∂zψ and w′ = −∂xψ, leaving(
∂

∂t
+ U0∂x

)
∇2ψ − ∂ψ

∂x

d2U0

dz2
= Re−1∇4ψ.

As in previous work on stability theory, we now make a normal-mode decomposition ψ(x, z, t) =

eλt+ikxΨ(z). One obtains

(λ+ ikU0)
(
∂2
z − k2

)
Ψ− ikU ′′0 Ψ = Re−1

(
∂2
z − k2

)2
Ψ.

It is standard to write λ = −ikc, where c is a wave speed. Thus, we obtain the following equation:

ik
[
(U0 − c)

(
∂2
z − k2

)
Ψ− U ′′0 Ψ

]
= Re−1

(
∂2
z − k2

)2
Ψ. (4.3)
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Equation (4.3) is the celebrated Orr–Sommerfeld equation. When supplemented with the no-slip

boundary conditions

Ψ(0) = Ψ′(0) = Ψ(1) = Ψ′(1)

it is an eigenvalue problem in the eigenvalue c.

4.2 Couette flow

Consider again the two parallel plates in Figure 4.1. Suppose that the upper plate moves at a

constant velocity V . We work out the base state of the Navier–Stokes equations in this instance:

simply

∇2u = 0,

with u = (U0, 0, 0) for a parallel flow, hence d2U0/dz
2 = 0, hence U0 = A + Bz. The no-slip

condition at the lower wall gives A = 0. Now, at the upper wall, no slip means ‘no relative motion’:

the plate and the fluid-at-the-plate should move at exactly the same velocity, hence U0(H) = V ,

hence BH = V , hence

U0(z) = zV/H.

This is the celebrated Couette flow. Going over to non-dimensional variables, this is simply U0 = z,

and the corresponding Orr–Sommerfeld equation reads

ik (z − c)
(
∂2
z − k2

)
Ψ = Re−1

(
∂2
z − k2

)2
Ψ. (4.4)

Analytical progress can be made with respect to Equation (4.4). Call v = (∂2
z − k2) Ψ. Then, we

are left with the equation

ik (z − c) v = Re−1
(
∂2
z − k2

)
v. (4.5)

Certainly, the trivial solution is a possibility for Equation (4.5), leaving v = (∂2
z − k2) Ψ = 0, hence

Ψ = cosh(kz), Ψ = sinh(kz).

However, because the eigenvalue equation is fourth order, two other linearly independent solutions

can be found. We re-write Equation (4.5) as

d2v

dz2
−Reik

(
z − c− ik

Re

)
v = 0.
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Let z̃ = z − c− ik/Re. Hence, we obtain

d2v

dz̃2
−Reikz̃v = 0.

Introduce ξ = λz̃, where λ is constant. We have

d

dz̃
=
dξ

dz̃

d

dξ
.

Hence,

λ2d
2v

dξ2
− ikRe

λ
ξv = 0.

Choosing λ3 = ikRe gives Airy’s equation:

d2v

dξ2
− ξv = 0,

with solutions

v = Ai(ξ), v = Bi(ξ).

We also choose the particular cube root of i1/3 = eiπ/6.

We must now solve the equations

(∂2
z − k2)Ψ = Ai(ξ), (∂2

z − k2)Ψ = Bi(ξ). (4.6)

These are linear second-order inhomogeneous equations. We use the method of variation of param-

eters. We study first the solutions of the homogeneous problem

Ψ1(z) = cosh(kz), Ψ2(z) = sinh(kz).

Let’s focus for definiteness on the case where the right-hand side is Ai(ξ). We construct the

Wronskian

W (z) =

∣∣∣∣∣ Ψ1(z) Ψ2(z)

Ψ′1(z) Ψ′2(z)

∣∣∣∣∣ =

∣∣∣∣∣ cosh(kz) sinh(kz)

k sinh(kz) k cosh(kz)

∣∣∣∣∣ ,
which gives W (z) = k. Next, we form the Wronskians Wi(z), which is identical to W (z) except

that the ith column is replaced by (0, Ai(ξ))T . We have

W1(z) =

∣∣∣∣∣ 0 sinh(kz)

Ai(ξ) k cosh(kz)

∣∣∣∣∣ = − sinh(kz)Ai(ξ).
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Also,

W2(z) =

∣∣∣∣∣ 0 sinh(kz)

k cosh(kz) Ai(ξ)

∣∣∣∣∣ = cosh(kz)Ai(ξ).

The particular integral in the method of variation-of-parameters by given by

Ψ =
2∑
i=1

Ψi(z)

∫
Wi(z

′)

W (z′)
dz.

Hence,

Ψ =
1

k

[
− cosh(kz)

∫
sinh(kz′)Ai(ξ)dz′ + sinh(kz)

∫
cosh(kz′)Ai(ξ)dz′

]
.

Using a trigonometric identity here, this becomes

Ψ =
1

k

∫
sinh[k(z − z′)]Ai(ξ)dz′.

Finally, we call this solution ξ1(z) and we fill in for ξ:

χ1(z) =
1

k

∫ z

0

sinh[k(z − z′)]Ai
[
(ikRe)1/3

(
z′ − c− ik

Re

)]
dz′,

Here, the limits of integration have been chosen such that χ1(0) = χ′1(0) = 0, such that χ1(z)

satisfies the boundary conditions at z = 0. A similar trick can be performed when the right-hand

side of Equation (4.6) is equal to Bi(ξ), one obtains the solution χ2(z), where

χ2(z) =
1

k

∫ z

0

sinh[k(z − z′)]Bi
[
(ikRe)1/3

(
z′ − c− ik

Re

)]
dz′,

with χ2(0) = χ′2(0) = 0.

We have the following solution of the eigenvalue problem:

Ψ = AΨ1(z) +BΨ2(z) + Cχ1(z) +Dχ2(z).

The vanishing of the streamfunction at the boundaries implies that∣∣∣∣∣∣∣∣∣∣
1 0 0 0

0 k 0 0

cosh(k) sinh(k) χ1(1) χ2(1)

k sinh(k) k cosh(k) χ′1(1) χ′2(1)

∣∣∣∣∣∣∣∣∣∣
= 0.
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This determinant problem simplifies dramatically to

k [χ1(1)χ′2(1)− χ2(1)χ′1(1)] = 0. (4.7)

The right-hand side can be viewed as a complex-valued function of k, Re, and c (the latter a complex

variable). We therefore have the condition

F (k,Re, c) = 0,

which is a rootfinding condition, with a set of roots cn(k,Re) such that F (k,Re, cn) = 0.

Analytical progress based on Equation (4.7) is difficult if not impossible [DR81]. Indeed, there is

a celebrated theorem due to Romanov [Rom73] that states that ci(k,Re) ≤ 0 for all finite real

values of k and Re, indicating the unconditional linear stability of plane Couette flow. However,

this theorem uses a completely different approach in the proof, and the dispersion relation (4.7) is

therefore something of a dead end. Therefore, in a later part of this chapter, we introduce numerical

spectral methods for solving the generic Orr–Sommerfeld equation.

4.3 Poiseuille flow

Consider the two parallel plates in Figure 4.1. Suppose now that both plates are stationary but that

a constant pressure drop dP/dL < 0 is applied along the length of the channel We work out the

base state of the Navier–Stokes equations in this instance:

0 = −dP
dL

+ µ∇2u,

0 = ∇2w.

We assume only a z-dependence for the velocity, giving d2w/dz2 = 0, with w(0) = w(H) = 0,

hence w = 0. Thus, the equations to solve reduce to

−dP
dL

+ µ
d2U0

dz2
= 0,

where the base state in the streamwise (x-direction) is denoted now by U0(z). The equation is

integrated twice to yield

U0 = A+Bz +
1

2µ

dP

dL
z2.

The no-slip condition at the lower wall gives A = 0. At the upper wall z = H, the same condition

gives

B = − 1

2µ

dP

dL
H,
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hence

U0 = − 1

2µ

dP

dL

(
zH − z2

)
.

This is tidied up slightly here to give

U0 =
H2

2µ

∣∣∣∣dPdL
∣∣∣∣ [ zH − ( zH)2

]
.

As before, it is necessary to introduce a velocity scale V , and to nondimensionalize the problem

based on the scales V and H. We choose V to be the so-called friction velocity,

ρV 2 = µ
dU0

dz

∣∣
z=0

,

hence

ρV 2 =
1

2

∣∣∣∣dPdL
∣∣∣∣H =⇒ V =

√
H

2ρ

∣∣∣∣dPdL
∣∣∣∣.

Introduce also z̃ = z/H, such that the base-state velocity profile reads

U0 =
H2

2µ

∣∣∣∣dPdL
∣∣∣∣ [ zH − z

H

2
]
.

We have

Ũ0 =
U0

V
,

=

H2

2µ

∣∣dP
dL

∣∣ (z̃ − z̃2)√
H
2ρ

∣∣dP
dL

∣∣ ,

=

ρH
µ

H
2ρ

∣∣dP
dL

∣∣ (z̃ − z̃2)√
H
2ρ

∣∣dP
dL

∣∣ ,

=
ρH

µ

√
H

2ρ

∣∣∣∣dPdL
∣∣∣∣ (z̃ − z̃2

)
,

=
ρV H

µ

(
z̃ − z̃2

)
,

= Re∗
(
z̃ − z̃2

)
,

where

Re∗ =
ρV H

µ
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is the Reynolds number based on the friction velocity and the channel depth H. We now omit all

ornamentation over the dimensionless variables and write down the Orr–Sommerfeld equation

ik
[
(U0 − c)

(
∂2
z − k2

)
− U ′′0

]
Ψ = Re−1

∗
(
∂2
z − k2

)2
Ψ, U0(z) = Re∗z(1− z). (4.8)

It is now of pressing urgency to introduce a numerical method to obtain a reliable solution of both

Equation (4.8) for the Poiseuille problem, but also to illuminate the dispersion relation of the Couette

flow problem in Equation (4.4). We do this in the next section.

4.4 Spectral methods for the generic Orr–Sommerfeld equa-

tion

We start with the generic Orr–Sommerfeld equation

ik
[
(U0 − c)

(
∂2
z − k2

)
− U ′′0

]
Ψ = Re−1

∗
(
∂2
z − k2

)2
Ψ, z ∈ (0, 1), (4.9)

together with the necessary boundary conditions

Ψ(z) = Ψ′(z) = 0, z = 0, 1.

A trial solution

ΨN(z) =
N∑
i=0

AnTn(η)

is made, with η = 2z − 1, such that η = 0 and η = 1 denote the boundaries. This is substituted

into Equation (4.9):

N∑
n=0

An

{
ik
[
(U0 − c)

(
∂2
z − k2

)
− U ′′0

]
Tn(η)

}
= Re−1

N∑
n=0

An
(
∂2
z − k2

)2
Tn(η) (4.10)

This equation is now evaluated at N − 4 collocation points

ηj = cos

(
πj

N − 3

)
, j = 1, · · · , N − 3
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and the following set of equations is obtained:

λ

N∑
j=0

Aj
[
s2T ′′n (ηj)− k2Tn(ηj)

]
+

ik
N∑
j=0

Aj
[
s2U0(zj)T

′′
n (ηj)− k2U0(zj)Tn(ηj)− U ′′0 (zj)Tn(ηj)

]
= Re−1

N∑
n=0

An
[
s4T (iv)

n (ηj)− 2k2s2T 2
n(ηj) + k4Tn(ηj)

]
, (4.11)

where s = dη/dz = 2 and zj = 2ηj − 1. We now introduce a number of matrices:

d0Tij = Tj(ηi),

d2Tij = s2T ′′j (ηi),

d4Tij = s4T
(iv)
j (ηi),

d0Td0Uij = U0(zi)Tj(ηi),

d0Td2Uij = U ′′0 (zi)Tj(ηi),

d2Td0Uij = s2U0(zi)T
′′
j (ηi),

A = (A0, · · · , AN)T ,

such that Equation (4.11) can now be written in matrix form as follows:

λ
(
d2T− k2d0T

)
A = −ik

(
d2Td0U− k2d0Td0U− d0Td2U

)
A

+Re−1
(
d4T− 2k2d2T + k4d0T

)
A.

However, since i = 0, 1, · · · , N − 3 and j = 1, 2, · · ·N + 1, this equation set is not complete (four

rows are missing). We now impose the boundary conditions. ΨN(0) = 0 implies that

N∑
j=0

Tj(−1)Ai = 0.

Similarly, Ψ′N(0) = 0 implies that
N∑
j=0

T ′j(−1)Aj = 0.
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and so on for the other boundary conditions. Thus, we now form a new linear problem:

λ



0 0 · · · 0

0 0 · · · 0

d2T− k2d0T

0 0 · · · 0

0 0 · · · 0


A

=



T0(−1) T1(−1) · · · TN(−1)

T ′0(−1) T1; (−1) · · · T ′N(−1)

−ik (d2Td0U− k2d0Td0U− d0Td2U)

+Re−1 (d4T− 2k2d2T + k4d0T)

T0(1) T1(1) · · · TN(1)

T ′0(1) T ′1(1) · · · T ′N(1)


A

or in a more abstract notation,

λMA = LA, (4.12)

which is now a straightforward finite-dimensional generalized-eigenvalue problem that can be solved

in Matlab (or any other linear algebra package). Obviously, the number of Chebyshev polynomials

N should be adjusted until numerical convergence is achieved.

Couette flow

Equation (4.12) is solved for U0(z) = z for various Reynolds numbers in the range Re = 100 up to

Re = 100, 000, and in each instance N = 100 is sufficient for convergence. The results are shown

in Figure 4.1 confirming (but by no means proving) the stability of Couette flow to infinitesimal

disturbances.

Poiseiulle flow

Equation (4.12) is solved for U0(z) = Re∗z(1−z) and the results shown in Figure 4.2 for Re∗ = 100

and Re∗ = 1000. It can be seen that for the lower Reynolds number the flow is stable at all

wavenumbers, while for Re∗ = 1000, there is a range of wavenumbers within which the flow is
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Figure 4.1: Numerically-generated dispersion relation for Couette flow for range of different Reynolds
numbers. Solid line: Re = 100. Dashed line: Re = 1000. Dotted line: Re = 10, 000. Dot-dashed
line: Re = 100, 000. It can be seen that the disturbances become less stable as Re increases but
the curve corresponding to the growth rate never crosses the horizontal axis, which underscores
the analytical result that Couette flow is stable to infinitesimal disturbances at all finite Reynolds
numbers.

Figure 4.2: Numerically-generated dispersion relation for Poiseuille flow for range of different
Reynolds numbers. Solid line: Re = 1000, linearly unstable. Dotted line: Re = 100, linearly
stable. In each instance N = 100 is sufficient for convergence.
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unstable. This therefore suggests a critical Reynolds number Re∗c at which the growth rate curve

just barely touches the horizontal axis. The numerical code indicates that to three significant figures,

Re∗c = 214.8

It is of interest to examine the Reynolds numbmer

Re =
Umax(H/2)ρ

µ
,

where Umax is the centreline velocity. Now

Umax

V
= Re∗/4.

Also,

Re =
Umax(H/2)ρ

µ
,

=
V Hρ

µ

(
1
2

Umax

V

)
,

= 1
2
Re∗ (Re∗/4) ,

= 1
8
Re2
∗,

hence

Rec = 1
8
Re∗c ≈ 5772

to four significant figures. This is the famous and oft-quoted result of Orzag [Orz71].

4.5 Analytical validation of the numerical method by long-

wave perturbation theory

How do we know that the numerical results in the previous section are correct? The answer is

that they have been validated with respect to known analytical solutions. Those solutions are

constructed in the present section and pertain to the longwave limit where k → 0.

We start by looking at the case k = 0, where we are to solve the equation

∂4
zΨ = Re(ikz + λ)∂2

zΨ =⇒ ∂4
zΨ = Reλ∂2

zΨ, z ∈ [0, 1].
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For simplicity, we change coordinates to η = z − 1/2, and the equation to be solved now reads

d4Ψ

dη4
= Reλ

d2Ψ

dη2
, η ∈ [−1/2, 1/2]. (4.13)

with boundary conditions

Ψ(η) = Ψ′(η) = 0, η = ±1/2. (4.14)

It is clear from Equation (4.13) and from the relevant boundary conditions that the eigenvalue

problem is self-adjoint and hence the eigenvalues are real. Moreover, that the four linearly

independent eigensolutions are

Ψ = 1, η, cosh(kη), sinh(kη),

where k =
√
λRe. We split the eigensolutions up into odd and even cases.

Ψeven = A+B cosh(kη), Ψodd = Aη +B sinh(kη).

where A and B are complex constants. We consider the even case first. The boundary conditions

are applied at η = +1/2 to yield ∣∣∣∣∣ 1 cosh(k/2)

0 k sinh(k/2)

∣∣∣∣∣ = 0,

hence k = 0 or

sinh(k/2) = 0

which has solutions k = 2inπ, where n ∈ Z. But k =
√
λRe, hence

λn,even = −4n2π2

Re
, n ∈ N,

where we do not include n ≤ 0 so as to avoid double-counting.

Next for the odd case. The boundary conditions are again applied at η = 1/2 to yield∣∣∣∣∣ 1
2

sinh(k/2)

1 k cosh(k/2)

∣∣∣∣∣ ,
hence

(k/2) cosh(k/2) = sinh(k/2).

By inspection, this equation has no solution in real values of k, and complex values are ruled out

because of the reality of the eigenvalues. However, purely imaginary solutions are possible, with
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k = ik̂, where k̂ is real. We must therefore solve

1
2
k̂ cos(k̂/2) = sin(k̂/2)

In addition to k̂ = 0, this equation has an infinite family of roots ±xn, with xn ∈ R+, the lowest

value of which is x1 = 8.987. But k = ik̂ = ±ixn =
√
λRe, hence

λn,odd = − x
2
n

Re
, n ∈ N.

We have

λ1,even = −39.4784/Re,

λ2,odd = −80.7662/Re,

λ1,even = −157.9137/Re,

λ2,odd = −238.7025/Re.

Hence, the least stable mode is even, with n = 1, eigenvalue λ = −4π2/Re and corresponding

eigenfunction

Ψ = cos(2πη) + 1.

We now make a regular perturbation expansion

λ = λ0 + kλ1 + · · ·

and

Ψ = Ψ0 + kΨ1 + · · ·

and substitute into the Orr–Sommerfeld equation. At order k0 we obtain

Reλ0∂
2
ηΨ0 = ∂4

ηΨ0,

which is precisely the eigenvalue problem at k = 0 with the already-computed solutions. At first

order in k, the perturbation theory gives the following equation:

Re [iU0(η) + λ1] ∂2
ηΨ0 − iReU ′′0 Ψ0 + λ0∂

2
ηΨ1 = ∂4

ηΨ1.

Here is the trick: multiply both sides of this equation by Ψ∗0 and integrate from η = −1/2 to
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η = 1/2. The result is

iRe

∫ 1/2

−1/2

U0Ψ∗0∂
2
ηΨ0 dη − iRe

∫ 1/2

−1/2

U ′′0 |Ψ0|2 dη +Reλ1〈Ψ0, ∂
2
ηΨ0〉+ λ0〈Ψ0, ∂

2
ηΨ1〉 = 〈Ψ0, ∂

4
ηΨ1〉.

Re-arrange slightly:

iRe

∫ 1/2

−1/2

U0Ψ∗0∂
2
ηΨ0 dη− iRe

∫ 1/2

−1/2

U ′′0 |Ψ0|2 dη+Reλ1〈Ψ0, ∂
2
ηΨ0〉 = −〈λ0Ψ0, ∂

2
ηΨ1〉+ 〈Ψ0, ∂

4
ηΨ1〉,

where we have used the reality of λ0 to take it inside the inner product

〈f, g〉 =

∫ 1/2

−1/2

f ∗g dη.

We next use the self-adjointness of the operators ∂2
η and ∂4

η with respect to the imposed boundary

conditions to obtain

iRe

∫ 1/2

−1/2

U0Ψ∗0∂
2
ηΨ0 dη− iRe

∫ 1/2

−1/2

U ′′0 |Ψ0|2 dη+Reλ1〈Ψ0, ∂
2
ηΨ0〉 = −〈∂2

ηλ0Ψ0,Ψ1〉+ 〈∂4
ηΨ0,Ψ1〉,

or

iRe

∫ 1/2

−1/2

U0Ψ∗0∂
2
ηΨ0 dη − iRe

∫ 1/2

−1/2

U ′′0 |Ψ0|2 dη +Reλ1〈Ψ0, ∂
2
ηΨ0〉 = 〈−λ0∂

2
ηλ0Ψ0 + ∂4

ηΨ0,Ψ1〉,

where the right-hand side is now manifestly zero because Ψ0 satisfies the lowest-order eigenvalue

problem, hence

λ1 = i

∫ 1/2

−1/2
U ′′0 |Ψ0|2 dη

〈Ψ0, ∂2
ηΨ0〉

− i

∫ 1/2

−1/2
U0Ψ∗0∂

2
ηΨ0 dη

〈Ψ0, ∂2
ηΨ0〉

,

or

λ1 = −i

∫ 1/2

−1/2
U ′′0 |Ψ0|2 dη

〈∂ηΨ0, ∂ηΨ0〉
+ i

∫ 1/2

−1/2
U0Ψ∗0∂

2
ηΨ0 dη

〈∂ηΨ0, ∂ηΨ0〉
,

For Couette flow, U ′′0 = 0, and the correction λ1 contains only one term. However, it is clear that

the numerator is identically zero: Ψ∗0∂
2
ηΨ0 is an even function while U0 = η is an odd function, and

the integral is over a symmetric interval, hence

λ = λ0 +O(k2)

for Couette flow. On the other hand, for Poiseuille flow, we have U0 = Re∗z − Re∗z2 and U ′′0 =
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(a) (b)

−2Re∗, hence U0 = Re∗[(1/4)− η2] and

λ1 = 2iRe

∫ 1/2

−1/2
|Ψ0|2 dη

〈∂ηΨ0, ∂ηΨ0〉
+ 1

4
iRe

∫ 1/2

−1/2
Ψ∗0∂

2
ηΨ0 dη

〈∂ηΨ0, ∂ηΨ0〉
− iRe

∫ 1/2

−1/2
η2Ψ∗0∂

2
ηΨ0 dη

〈∂ηΨ0, ∂ηΨ0〉
,

We have the following results: ∫ 1/2

−1/2
|Ψ0|2 dη

〈∂ηΨ0, ∂ηΨ0〉
=

3
2

2π2
(4.15a)∫ 1/2

−1/2
Ψ∗0∂ηΨ0 dη

〈∂ηΨ0, ∂ηΨ0〉
= −1, (4.15b)

(4.15c)∫ 1/2

−1/2
η2Ψ∗0∂

2
ηΨ0 dη

〈∂ηΨ0, ∂ηΨ0〉
=

1
2π

(
−1

3
π3 + 7

2
π
)

2π2
(4.15d)

hence

λ1 = iRe
(

3
2π2 − 1

4
+ 1

12
− 7

8π2

)
= iRe

(
5

8π2 − 1
6

)
= −(0.103340926890206 · · · )iRe. (4.16)

Exercise 4.1 Prove Equations (4.15) and hence prove Equation (4.16).

These results are now examined in the context of the numerical solution for the dispersion relation

Poiseuille flow (Figure 6.2). Clearly, excellent agreement is obtained, inspiring confidence in our OS

solver.
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Exercise 4.2 Some analytical progress is possible for the Orr–Sommerfeld equation when Re =

∞. Then, the eigenvalue equation to be solved reverts to the Rayleigh equation:

(U0 − c)
(
∂2
z − k2

)
φ− U ′′0 φ = 0, z ∈ (0, 1)

with no-penetration boundary conditions φ = 0 at z = 0, 1. The Rayleigh equation has a

singular point if U0(z) = c somewhere, which is called a critcal layer. No critical layer exists if

ci 6= 0. In this question, assume that the flow is unstable, namely that ci > 0.

• By rewriting the Rayleigh equation as

(
∂2
z − k2

)
φ =

U ′′0
U0 − c

φ,

show that ∫ 1

0

U ′′0
|U0 − c|2

|φ|2dz = 0,

and conclude that U ′′0 must change sign at least once in (0, 1).

• Using the two results ∫ 1

0

U ′′0 (U0 − cr)

|U − c|2
|φ|2dz = −‖∂zφ‖2

2 − k2‖φ‖2
2,

and ∫ 1

0

U ′′0
|U0 − c|2

|φ|2dz = 0,

show that ∫ 1

0

U ′′0 (U0 − U0s)

|U0 − c|2
|φ|2dz < 0, U ′′0 (zs) = 0, U(zs) = U0s

and hence conclude for an unstable flow, U ′′0 (U0−U0s) < 0 somewhere in the flow domain.

This is Fjortoft’s theorem.
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Exercise 4.3 Stability of an inviscid triangular jet: Let U0(z) = 1 − |z| for |z| < 1 and

U0(z) = 0 for |z| ≥ 1. Show that the eigenvalue relation for the sinuous mode (φ even) is

2k2c2 + k(1− 2k − e−2k)c− [1− k − (1 + k)e−2k] = 0.

Hints:

• For the inviscid case, it suffices to solve the Rayleigh equation in region I with z > 1 and

region II with 0 < z < 1. At the boundary between any two regions labelled by i and j,

the continuity of normal velocity implies that

φi = φj

where φ(z) is the streamfunction in a normal-mode decomposition. Continuity of pressure

implies that

(U0i − c)
∂φi
∂z
− φiU ′0i = (U0i − c)

∂φj
∂z
− φjU ′0j

at the same boundary.

• At the boundary z = 0 the same conditions apply. Call the region −1 < z < 0 region III.

We have φIII(0) = φ(0−) and φII = φ(0+). Working with the even mode, we have

φ(0−) = φ(0+), ∂zφ(0−) = −∂zφ(0+).



Chapter 5

Absolute Instability

5.1 Overview

The response of the linearized dynamics to a delocalized plane-wave initial disturbance is obviously

of great interest. However for parallel flows, a more pertinent question is to ask what is the response

of the system to a localized impulsive forcing. In other words, we want to find out if a localized

impulsive disturbance grows in situ at the initial source of the disturbance (absolute instability)

or grows merely as it is convected downstream by the base flow (convective instability). Absolute

instability can be thought of as ‘more dangerous’ as under such a situation the growing disturbances

constantly renew themselves and contaminate the whole system for all time. In contrast, in a

convective instablity the unstable disturbance does grow but is convected harmlessly downstream

and eventually leaves the system. In this section we formulate a mathematical criterion that is

‘usually’ able to distinguish between the two types of instability.

5.2 Simplified Model Problem

Instead of starting our study with the full Orr–Sommerfeld equation for parallel flow, we begin instead

with the following greatly simplified model problem, which nonetheless captures the essential features

of absolute versus convective instability:

∂u

∂t
+ U0

∂u

∂x
= µu+ γ

∂2u

∂x2
, (5.1)

where µ ∈ C, γ ∈ C, with <(γ) > 0, and U0 ∈ R+. The idea here is that u(x, t) represents some

disturbance that is convected by the constant base flow U0. The problem is posed on the whole real

line, with initial conditions to be prescribed in what follows.

68
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We first of all note that Equation (5.1) is amenable to a modal analysis, wherein a normal-mode

solution u(x, t) = e−iωt+iαx is possible, provided the following dispersion relation is satisfied:

ω = i
(
µ− γα2

)
+ αU0 (5.2)

In this context, a complex diffusion coefficient with positive imaginary part is necessary to give

a growth rate ωi = µ − γrα
2 that is negative for short wavenumbers, leading to a well-posed

problem. This is a minimal model of linear instability, and it includes longwave growth and shortwave

stabilization. Clearly, the flow is unstable if µ > 0, where instability exists for a band of wavenumbers

with α2 < γr/µ.

More importantly, we have a minimal model of absolute instability when the following initial condition

is prescribed:

u(x, t = 0) = δ(x− x0). (5.3)

This initial condition represents an impulsive disturbance localized at x0. By direct computation,

the solution to Equation (5.1) with the initial data (5.3) reads

G(x, x0, t) =
1

2
√
πγt

exp

{
t

[
µ− 1

4γ

(
x− x0

t
− U

)2
]}

, γr > 0. (5.4)

The flow is absolutely unstable if limt→∞G(x, x0, t) =∞, i.e. if

µ− 1
4
U2<(1/γ) > 0. (5.5)

Intriguingly, the condition (5.5) can be recast as follows:

ωi(α0) > 0,
dω

dα

∣∣∣∣
α0

= 0, (5.6)

i.e. α0 is the (complex) saddle point of the dispersion relation (5.2). The derivation of Equa-

tions (5.2) involves the computation of a Gaussian integral over all wavenumbers. Here lies the wide

applicability of CGL theory: a wide class of dispersion relations in fluid mechanics is locally quadratic

in wavenumber, enabling a saddle-point approximation of the generic Green’s function, such that all

Green’s functions in this class resemble Equation (5.4) in the limit as t → ∞. Thus, for this wide

class of fluid-mechanical dispersion relations, the condition for absolute instability is simply that the

imaginary part of the frequency at the saddle point be positive [HM90]. Of course, there is a variety

of fluid-mechanical problems where naive application of the saddle-point criterion (5.6) fails [tS13].

These issues are discussed below.
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Exercise 5.1

1. Using Fourier transforms, show that the solution of Equation (5.1) with the initial

data (5.4) reads

u(x, t) =

∫ ∞
−∞

uα(t)
eiαx

2π
, (5.7)

where
duα
dt

= λαuα,

where λα is to be determined.

2. Evaluate the integral in Equation (5.7). Hence, derive Equation (5.4)

3. Find a formula for u(x = 0, t). Hence, derive the criterion for the flow to be absolutely

unstable.

5.3 Parallel flows and the adjoint eigenvalue problem

We are interested in the following Cauchy problem:

∂

∂t
∇2ψ + U0(z)∇2∂ψ

∂x
− U ′′0 (z)

∂ψ

∂x
=

1

Re
∇4ψ, (5.8a)

with boundary conditions

ψ = ψz = 0, at z = 0, 1, (5.8b)

and

lim
|x|→∞

ψ = lim
|x|→∞

ψx = 0, (5.8c)

subject to an initial impulsive disturbance

ψ(x, z, t = 0) = δ(x− x0)δ(z − z0). (5.8d)

Obviously, a particular solution to the parallel-flow problem is the plane-wave solution ψ(x, z, t) =

eλt+iαxφ(z), where φ solves the Orr–Sommerfeld eigenvalue problem:

Lφ = λMφ, (5.9a)
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where

L =
1

Re

(
∂2
z − α2

)2 − iαU0(z)(∂2
z − α2) + iαU ′′0 (z), (5.9b)

and

M = (∂2
z − α2). (5.9c)

Denote by (φn, λn) a particular eigensolution of Equation (5.9). We are interested also in the adjoint

eigenvalue problem, solved by a pair (ξnmun):

L+ξn = µnM+ξn,

where the adjoint operator is obtained with respect to the usual inner product in the z-variable in

the interval [0, 1]. We have the following theorem:

Theorem 5.1 〈φn,Mξm〉 ∝ δnm

Proof: From the definition of the adjoint operators, it is obvious that if λn is an eigenvalue of the

direct problem, then λ∗n is an eigenvalue of the adjoint problem1. Therefore, consider

Lφn = λnMφn,

L+ξm = λ∗mM+ξm,

Take inner products of both these equations: the first with ξm and the second with φn. We have:

〈ξm,Lφn〉 = λn〈ξm,Mφn〉,

〈L+ξm, φn〉 = λm〈M+ξm, φn〉,

Take the adjoint of the second relation to obtain the following equation pair:

〈ξm,Lφn〉 = λn〈ξm,Mφn〉,

〈ξm,Lφn〉 = λm〈ξm,Mφn〉,

Subtract to obtain

(λn − λm)〈ξm,Mφn〉 = 0,

1For finite-dimensional vector spaces, this really is obvious by looking at the characteristic polynomial
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or

〈ξm,Mφn〉 ∝ δnm,

and by the self-adjointness of the M operator (with M = ∂2
z − α2), we also have

〈φn,Mξm〉 ∝ δnm,

5.4 The solution of the Cauchy problem

Equation (5.8a) is rewritten in Orr–Sommerfeld operator form as follows:

∂

∂t
MOS[∂x, ∂z]ψ(x, z, t) = LOS[∂x, ∂z]ψ(x, z, t) + F (x, z, t), ψ(x, z, t = 0) = 0. (5.10)

Here, F (x, z, t) represents the momentum source; this can either be continuous-in-time, or be an

initial impulse imposed on the system. In the impulsive case, the source can be written as δ(t)F (x, z),

with Laplace transform F (x, z). We proceed with the general case, and specialize to the impulsive

case as required. The solution can be written in terms of Fourier transforms as follows:

ψ(x, z, t) =

∫ ∞
−∞

dα

2π
eiαxψ̃α(z, t),

where the Fourier coefficients ψ̃α(z, t) satisfy

∂

∂t
MOS[iα, ∂z]ψ̃α(z, t) = LOS[iα, ∂z]ψ̃α(z, t) + F̃α(z, t).

Each Fourier component ψ̃α(z, t) can be decomposed further via an inverse Laplace tranform:

ψ̃α(z, t) =
1

2πi

∫
B

dλ eλtψ̃αλ(z),

where B is the Bromwich contour. The components ψ̃αλ(z) of the inverse Laplace tranform in turn

satisfy

λMOS(iα, z)ψ̃αλ(z) = LOS(iα, ∂z)ψ̃αλ(z) + F̃α(z, λ), (5.11)

where the Laplace transform of the force function S has been taken with respect to time. This is

the Orr–Sommerfeld eigenvalue problem.

The (formal) solution to Equation (5.11) reads

ψ̃αλ(z) = − [LOS − λMOS]−1 F̃α(z, λ)
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This purely formal solution is understood as follows. We write the solution of Equation (5.11) as

ψ̃αλ(z) =
∑

n anφαn(z). Here, the φαn’s are the eigenfunctions of the Orr–Sommerfeld equation at

wavenumber α. Equation (5.11) is therefore re-written as

λ
∑
n

anMOSφαn(z) =
∑
n

anLOSφαn(z) + F̃α(z, λ). (5.12)

The eigenfunctions φ+
αm(z) of the adjoint OS problem satisfy∫

dz
[
φ+
αm(z)

]∗MOSφαn(z) = δnm.

We multiply both sides of Equation (5.11) by [φ+
m(z)]

∗ and integrate with respect to z; the result is

am =
1

λ− λm

∫
dz
[
φ+
αm(z)

]∗
F̃α(z, λ) :=

1

λ− λm
〈φ+

αm, F̃α(z, λ)〉,

and

ψ̃αλ(z) = [LOS − λMOS]−1 F̃α(z, λ) =∑
n

φαn(z)

λ− λn

∫
dz
[
φ+
αn(z)

]∗
F̃α(z, λ) :=

∑
n

φαn(z)Fαn(λ)

λ− λn
.

Thus, the solution to the Cauchy problem (5.10) becomes

ψ(x, z, t) =
1

2πi

∫ ∞
−∞

dα

2π
eiαx

∫
B

dλ eλt
∑
n

φαn(z)Fαn(λ)

λ− λn
, (5.13)

where the Bromwich contour C is a straight line parallel to the imaginary axis, to the right of all

the eigenvalues {λn} of the Orr–Sommerfeld equation. A key property of Equation (5.13) is the

absence of any contributions from a continuous spectrum: for a bounded domain z ∈ [0, 1], the

spectrum of the Orr–Sommerfeld equation is entirely discrete. Using the theory of residues, one

obtains for the innermost integral

ψ(x, z, t) =
∑
n

∫ ∞
−∞

dα

2π
eiαx+λntFαn(λn)φαn(z). (5.14)

The outermost (α-) integral can be computed in certain special cases. This is discussed in the next

two sections.
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5.5 Explicit asymptotic solutions

5.5.1 Monochromatic forcing

For monochromatic, impulsive forcing, F (x, z, t) = eiα0xδ(t)f(z), F̃α(z, λ) = 2πf(z)δ(α−α0), and

Fαn(λ) = δ(α− α0)

∫
dz
[
φ+
α0n

(z)
]∗
f(z) := δ(α− α0)fα0n.

From Equation (5.14),

ψ(x, z, t) =
∑
n

eiα0x+λn(α0)tfα0nφα0n(z). (5.15)

Thus,

lim
t→∞

ψ(x, z, t) =
[
fα0nmaxeiα0x+λnmax (α0)

]
φα0nmax(z),

where nmax is that eigenvalue whose real part is maximal over the entire spectrum {λn(α0)}. Note

also,

lim
t→∞
‖ψ‖2(t) = ‖φα0nmax‖2 |fα0nmax| e<[λnmax (α0)]t,

where ‖ · ‖2(t) is the transient L2 norm; for a function Φ(x, z, t),

‖Φ‖2(t) :=
(x

dxdz|Φ(x, z, t)|2
)1/2

.

Thus, as t→∞, the disturbance grows exponentially fast, at a rate

<[λnmax(α0)].

This is called the most-dangerous mode. Obviously, if <[λnmax(α0)] > 0 the system is (convec-

tively) unstable. The system is completely linearly stable if <[λnmax(α0)] < 0.

5.5.2 Localized impulsive forcing

For localized impulsive forcing, F (x, z, t) = δ(x)δ(z − z0)δ(t), with F̃α(z, λ) = δ(z − z0), and

Fαn(λ) = [φ+
αn(z0)]∗

Thus,

ψ(x, z, t) =
∑
n

∫ ∞
−∞

dα

2π
eiαx+λnt[φ+

αn(z0)]∗φαn(z). (5.16)
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This integral can be regarded as being in the form

ψ(x, z, t) =
1

2π

∑
n

∫ ∞
−∞

dαFn(α, z)eλn(α)t,

where

Fn(α, z) = eiαx[φ+
αn(z0)]∗φαn(z)

This integral is now in a form where the saddle-point method can be applied. We need the following

additional assumptions:

Assumption 5.5.1

1. The phase function λn(α) has a single dominant saddle point;

2. The saddle point is not degenerate.

3. If the phase function or the Fn(α)’s do have singularities, they are located ‘far away’ from

the saddle point, in the sense that they do not prevent us from deflecting the contour α ∈
(−∞,∞) to pass through the dominant saddle point.

For the dominant saddle point, we compute

1. Saddle-point location: α0, such that (dλn/dα)α0 = 0.

2. The value λn(α0),

3. The derivative λ′′n(α0)

4. The phase ϕn = 1
2
π − 1

2
arg(λ′′n(α0))

5. Fn(α0).

Applying the saddle-point method to the integral (5.16), we get

ψ(x, z, t) ∼ 1

2π

∑
n

√
2πeiα0x[φ+

α0n
(z0)]∗φα0n(z)eλn(α0)teiϕn

|tλ′′n(α0)|1/2
(5.17)

We assume a dominant saddle point, taken over the full OS spectrum. We therefore take α0,nmax

to be the mode corresponding to

sup
n
< [λ(α0,n)]

Then, the limit (5.17) simplifies further:

lim
t→∞

ψ(x, z, t) =
eiϕnmax

√
2π

[φ+
α0nmax

(z0)]∗φα0nmax(z)∣∣∣td2λnmax

dα2

∣∣
α0

∣∣∣1/2 eiα0x+λnmax (α0)t. (5.18)
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Absolute instability

From Equation (5.18), we see that the instability grows (asymptotically) at the source x = 0 if

< [λnmax(α0)] > 0. This is the notion of linear absolute instability. Of course, the simplification that

leads from Equation (5.16) to Equation (5.18) is possible only when the phase function possesses

no singularities close to the saddle point, and when the saddle point is non-degenerate.

The pinching criterion

Recall the formal solution to Cauchy problem (5.10) (Equation (5.13)):

ψ(x, z, t) =

∫ ∞
−∞

dα

2π
eiαx

∫
B

dλ eλt
∑
n

φαn(z)Fαn(λ)

λ− λn
, (5.19)

where the λ-integration is done first. To get a self-consistent answer, it should be possible to reverse

the order of integration, doing the α-integral first, to arrive at a result identical to Equation (5.18).

However, only so-called pinching saddles satisfy this self-consistency property. A pinching saddle

is one where the α-curves of constant ω (in particular, curves of constant ω, with ωi = ωi(α0))

ramify into different half-planes. See [HM90].

5.6 Example and exercise

Consider the base flow

U0(z) = 1− Λ +
2Λ

1 + sinh2N [z sinh−1(1)]
,

where Λ < 0 and N ≥ 1 are real parameters. This is a model for the wake flow past a bluff

body and was introduced in the paper by Monkewitz [Mon88]. The boundary between absolute and

convective instability in the (Λ, N) parameter space is derived in that paper and is reproduced below

in Figure 5.1.

Exercise 5.2 Download the Matlab codes from the module website. Choose one parameter set

corresponding to absolute instability and another corresponding to convective instability. Run

the Orr–Sommerfeld solver in each case for a range of complex-valued α-values and reproduce

the saddle point(s) in both cases.
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Figure 5.1: Boundary between the absolute and convective regions for differennt Reynolds numbers.
Curves without symbols correspond to direct OS eigenvalue calculations in the complex α-plane and
agree exactly with the results in [Mon88]. Curves with symbols correspond to the semi-analytical
cubic approximation of [NS13]. Dashed curve: Re = 20; solid curve: Re = 100.



Chapter 6

Transient Growth

Overview

We have already seen that plane Couette flow is linearly stable at all finite Reynolds numbers, while

plane Poiseuille flow is stable below a critical Reynolds number Re ≈ 5772. However, it is well

known that such linearly stable flows undergo a transition to a complicated chaotic time-dependent

state (turbulence) below the threshold for the onset of linear instability. This is called the subcritical

transition to turbulence. Below we introduce a toy model to explain this phenomenon and then

connect the toy model back to the Orr–Sommerfeld equation.

6.1 The basic idea

Historically, the linear stability of a system of evolutionary equations was tackled via eigenvalue

analysis. Consider a generic evolutionary system ∂tu = F (u;µ), where u(t) is a trajectory in Cn

and µ is a real parameter. A base state u0 of the system is a solution of the equation F (u0;µ) = 0.

The linearization around the base state refers to the following equation: ∂tu = Ju, where J is the

Jacobian matrix, with Jij = (∂Fi/∂uj)(u0,µ). Let {λ1, · · · , λn} = spec(J), and let λ0 denote the

eigenvalue with largest real part. The full system is said to be linearly stable if <(λ0) < 0. Suppose

for a critical parameter value µ = µc we have <(λ0) < 0 for µ < µc and <(λ0) > 0 for µ > µc.

Then the system undergoes a bifurcation from linearly stable to linearly unstable at the critical value

µ = µc. The same analysis can usually be applied to spatially extended systems by projecting the

evolutionary equation on to a set of basis functions of dimension n and taking n → ∞, assuming

that the weak solutions so constructed tend to a strong solution.

Such systems can exhibit transient growth in a subcritical parameter regime whereby for suitable

initial conditions involving a superposition of eigenmodes, the L2 norm (or some other more ap-

78



6.2. The toy model 79

propriate measure of the energy) of the solution grows initially before eventually decaying at a rate

dictated by λ0. This can happen in two ways. If the eigenvectors do not form a complete set

spanning Cn, then the solution to the initial-value problem will involve contributions such as tpeλjt,

where p ≥ 1 and j ∈ {1, · · · , n}, such that transient algebraic growth is possible before the onset

of the asymptotic decay of the solution. We do not consider this case further here (but see Refer-

ence [SH01]). Instead, we consider situations where the eigenvectors of J do indeed span Cn but are

non-orthogonal, corresponding to a situation where J is not a normal operator. In such a scenario,

the L2 norm of solutions involving certain combinations of eigenvectors can grow transiently before

eventually decaying, with transient growth factors ‖u(t)‖2/‖u(t = 0)‖2 that can be as high as

O(105) (e.g. Reference [CC97]). This is the phenomenon of transient growth.

6.2 The toy model

In this section a two-level system is introduced that exhibits the twin effects of non-normality and

nonlinearity. The aim is to start with a set of linear equations and to quantify the influence of the

non-normality on the transient growth at subcritical parameter regimes. Next, a cubic nonlinearity

is introduced and an exact solution for the global mode (and its stability) is obtained. The section

concludes with a crucial discussion about the physical relevance of the system in optics.

6.2.1 Non-normal linear model

We consider the following two-level system

i
∂u

∂t
= Hu+ i (µ0I + G)u, u ∈ C2, (6.1)

where

H =

(
E0 A

A E0

)
, G =

(
−g1 0

0 −g2

)
,

where E0, A, µ0, g1, g2 are positive real numbers, and where H and µ0I+G are Hermitian matrices,

with [H,G] 6= 0, where [·, ·] denotes the matrix commutator. Note that [H,G] 6= 0 implies that the

operator on the right-hand side of Equation (6.1) is non-normal. One writes down the trial solution

u(t) = u0e−iωt to obtain the following eigenvalues:

ωr = E0± 1
2

√
4A2 − (g1 − g2)2, ωi = µ0− 1

2
(g1+g2), 4A2 > (g1−g2)2, Case 1, (6.2)

and

ωr = E0, ωi = µ0− 1
2
(g1+g2)± 1

2

√
(g1 − g2)2 − 4A2, 4A2 < (g1−g2)2, Case 2, (6.3)
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The corresponding eigenvectors for both Case 1 and Case 2 are

u0+ =

(
e−iϕ/2

eiϕ/2

)
, u0− =

(
−eiϕ/2

e−iϕ/2

)
, ϕ = sin−1

(
g1 − g2

2A

)
.

For Case 1, we have |(g1 − g2)/2A| < 1, hence ϕ ∈ R, while for Case 2, ϕ is complex. For

both cases, the eigenvectors are non-orthogonal; the degree of non-orthogonality is expressed by

the relation 〈u0+, u0−〉 = 2i(g2 − g1)/2A. Here, 〈·, ·〉 denotes the usual scalar product on C2, with

〈u,v〉 = uTv, for all column vectors u,v in C2. Orthogonality of eigenvectors is regained for

g1 = g2; this corresponds precisely to [H,G] = 0 and the normality of the (symmetric) operator

H + iG. The crossover between Cases 1 and 2, where (g1 − g2)2 = 4A2 is referred to as a diabolic

point in the literature concerning non-Hermitian quantum mechanics [Gra09, Rot09]; this point truly

is fiendish, since the eigenvectors degenerate and fail to span C2 in this instance. However, in this

work, consideration is given strictly to Case 2, for reasons given in what follows.

Exercise 6.1

1. Call L = H + (µ0I + G). Compute explicitly [L,L†], where the dagger denotes the

Hermitian conjugate of the matrix. Hence veryify that [L,L†] 6= 0. This is the definition

of a non-normal operator.

2. Drive the eigenvalules and eigenvectors for Case 2.

For all possible parameter values, the intrinsic non-Hermiticity of the operator in Equation (6.1)

implies the following nontrivial evolution equation for the L2 norm of the general solution u(t):

‖u‖2
2 := 〈u, u〉, 1

2

d

dt
‖u‖2

2 = 〈u, (µ0 + G)u〉. (6.4)

The quadratic form on the right-hand side can be evaluated in the eigenbasis of the operator G and

a bound on the growth of the L2 norm is obtained:

1
2

d

dt
‖u‖2

2 ≤ [µ0 −min(g1, g2)] ‖u‖2
2. (6.5)

In this work, we focus on models that exhibit transient growth. Since this relies on the ‘mixing’ of

eigenstates with eigenfrequencies whose imaginary parts are distinct, we are forced by this constraint

to work in Case 2 (this rules out of consideration the diabolic point). With reference to this case,
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and to Equation (6.3), transient non-asymptotic growth is possible in the paramter range

min(g1, g2) < µ0 <
1
2
(g1 + g2)−

√
(g1 − g2)2 − 4A2. (6.6)

This is the ‘sweet’ operational range where the system is subcritical, in the sense that ωi < 0 for

both eigenvalues, but where the balance between forcing and dissipation is ambiguous, so that the

sign of the upper bound of the growth rate in Equation (6.5) is not definite.

6.2.2 Introduction of nonlinear terms

We add non-linearity to the problem by modifying Equation (6.1) as follows:

i
∂u

∂t
= Hu+ i (µ0I + G)u+ a

(
|u1|2 0

0 |u2|2

)
u, (6.7)

where a is real. The evolution of the L2 norm ‖u‖2
2 is again unchanged under the addition of the

nonlinear term: the quantity ‖u‖2
2 still evolves according to the norm-evolution first written down for

the linear problem (i.e. Equation (6.4)). However, in contrast to the linear model, Equation (6.7)

has a nonlinear periodic solution, which we find by making the trial solution

u = Re−iΩtu0, ‖u0‖2
2 = 1, Ω ∈ R. (6.8)

Substitution of Equation (6.8) into Equation (6.7) yields the following eigenvalue problem for u0:

Ωu0 = Lu0 + aR2

(
|u01|2 0

0 |u02|2

)
u0, L = H + i (µ0I + G) . (6.9)

In general, Equation (6.9) has a family of solutions labelled by the continuous parameter R, with

corresponding eigenvalues Ω(R). However, there is a finite number of R-values consistent with

the requirement =[Ω(R)] = 0; all other R-values correspond to eigensolutions of Equation (6.9)

that are nonetheless inconsistent with Equation (6.8). It is as if we are solving a nonlinear double

eigenvalue problem in the parameters Ω and R (the analogous double eigenvalue problem of linear

algebra is addressed elsewhere [BC78]). Solutions of this double eigenvalue problem are called self-

consistent in the remainder of this work, and can be found analytically for the simple two-level

system considered in this section. Indeed, we have the following theorem:

Theorem 6.1 Let g2 < µ0 < g1, and let

X2 = −(µ0 − g1)(µ0 − g2)

A2
. (6.10a)
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Assume that X2 < 1. Then Equation (6.9) has the following self-consistent solution:

Ω = E0 + aR2, R2 =
g1 − g2

a

√
1

X2
− 1, u0 =

(
reiϕ

x

)
, (6.10b)

where

r =

√
µ0 − g2

g1 − g2

, x =

√
g1 − µ0

g1 − g2

, ϕ = − sin−1(X). (6.10c)

Proof The so-called self-consistent nonlinear eigenvalue problem refers to the solution u0 of Equa-

tion (6.9) with the constraint that

〈u0, (µ0 + G)u0〉 = 0. (6.11)

To obtain such a solution, we take

u0 =

(
reiϕ(R)

x

)
, r, ϕ, x ∈ R, r2 + x2 = 1; (6.12)

this amounts to a fixed choice for the (arbitrary) global phase of u0. Substitution into Equation (6.11)

yields

r2 (µ0 − g1) + x2 (µ0 − g2) = 0, r2 + x2 = 1, (6.13)

hence

r =

√
µ0 − g2

g1 − g2

, x =

√
g1 − µ0

g1 − g2

, (6.14)

where r and x are both real because g2 < µ0 < g1. The phase ϕ is not determined by this analysis;

this is obtained by consideration of the full nonlinear eigenvalue problem, which is written out in full

as follows:

Ωreiϕ = L11re
iϕ + L12x+ aR2r3eiϕ, (6.15a)

Ωx = L21re
iϕ + L22x+ aR2x3. (6.15b)

The imaginary part of the second equation is set to zero to yield a root-finding condition for ϕ:

L(r)
21 sinϕ+ L(i)

21 cosϕ+ L(i)
22 (x/r) = 0. (6.16)

Because the operator L is symmetric, setting the imaginary part of the first equation to zero yields

precisely the same condition for ϕ. Equation (6.16) simplifies drastically, once the coefficients L(r)
21
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etc. are filled in:

A sinϕ+ (µ0 − g2)(x/r) = 0.

Using Equations (6.13)–(6.14), this expression can be written as an explicit function of the problem

parameters alone:

A sinϕ± (µ0 − g2)

√
−µ0 − g1

µ0 − g2

= 0,

where the two branches come from taking x = ±
√

1− r2 in Equation (6.14), and where the radicand

is positive because of the constraints on the parameters in Theorem 6.1. Hence,

ϕ = ∓ sin−1

(√
−(µ0 − g1)(µ0 − g2)

A2

)
= ∓ sin−1(X), (6.17)

with ϕ ∈ [−π/2, π/2]. Upon satisfaction of the condition (6.17), Equations (6.15a) and (6.15b) are

consistent, but only in the sense that both equations now imply that Ω is real. The equations (6.15a)

and (6.15b) are made totally consistent by choosing a value of R such that the value of Ω in both

these equations is the same. In terms of the explicit values of the L-matrix, we have

Ω = E0 + A cosϕ(x/r) + aR2r2,

= E0 + A cosϕ(r/x) + aR2x2.

This is a simple quadratic equation in R, for which R has a single real positive root:

R2 =
g1 − g2

a

√
1

X2
− 1.

This procedure therefore picks out two isolated pairs (∓ϕ,R) that leads to a self-consistent solution

of the nonlinear double eigenvalue problem.

Further analytical progress is possible with respect to Equation (6.9): the family of complex-valued

eigenvalues Ω(R) can be controlled in the following manner:

Theorem 6.2 Take as given the non-linear eigenvalue problem (6.9), with eigenvalues Ω(R) ∈ C
for R ≥ 0. Then

(µ0 − g2)− (g1 + g2) ≤ =(Ω) ≤ µ0 − g2.

Proof Take re−iϕ [Eq. (6.15a)] + x [Eq. (6.15b)] to obtain

Ω = E0 + 2Arx cosϕ+ aR2(r4 + x4) + i(µ0 − g1r
2 − g2x

2).

Since x2 + r2 = 1, we have

=(Ω) = (µ0 − g2)− (g1 + g2)r2,
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with 0 ≤ r2 ≤ 1, hence (µ0 − g2)− (g1 + g2) ≤ =(Ω) ≤ µ0 − g2.

Thus, the range of allowed values of =(Ω) is bounded above and below. In order for =(Ω) = 0 to be

achievable, the upper bound must be non-negative, so that a necessary condition for the existence

of a global mode is µ0 > g2. By Equation (6.5), this is the same necessary condition as the one

required for linear transient growth to occur.

6.2.3 Stability of nonlinear oscillatory state

The stability of the self-consistent oscillatory state is investigated by consideration of a trial solution

u = Re−iΩtu0 + δu,

where R = Rc, and where u0 is the solution of the nonlinear eigenvalue problem. Linearization

around the periodic state yields the following ODE:

i
d

dt
δu = Lδu+ 2R2a

(
|u01|2 0

0 |u02|2

)
δu+R2e−2iΩt

(
u2

01 0

0 u2
02

)
δu,

:= A δu+ e−2iΩtB δu. (6.18)

The manifestly time-dependent term is removed by making the trial solution δu = δve−iΩt, such

that Equation (6.18) becomes

i
d

dt
δv = (A− Ω) δv + Bδv. (6.19)

Equation (6.19) can be further simplified by breaking it up into real and imaginary parts. We take

δv = (a+ ib, u+ iv)T , where a, b, u, and v are real-valued functions of t. We also take B = β̂+ iγ̂,

where β̂ and γ̂ are real matrices. Similarly, we write <(A − Ω) := Ĥ. Finally, we note that

=(A− Ω) = µ0I + G. Using this notation, we obtain the following real system of equations:

d

dt


a

b

u

v

 =


µ0 − g1 + γ̂11 Ĥ11 − β̂11 0 A

−Ĥ11 − β̂11 µ0 − g1 − γ̂11 −A 0

0 A µ0 − g2 + γ̂22 Ĥ22 − β̂22

−A 0 −Ĥ22 − β̂22 µ0 − g2 − γ̂22




a

b

u

v

 . (6.20)
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The results of Theorem 6.1 are now used to fill out the entries in the matrix in Equation (6.20) with

closed-form expressions involving the model parameters:

d

dt



a

b

u

v


=



µ0 − g1 aR2(2r2 − 1) 0 A

+aR2r2 sin 2ϕ −aR2r2 cos 2ϕ

−aR2(2r2 − 1) µ0 − g1 −A 0

−aR2r2 cos 2ϕ −aR2r2 sin 2ϕ

0 A µ0 − g2 −aR2(2r2 − 1)

−aR2(1− r2)

−A 0 aR2(2r2 − 1) µ0 − g2

−aR2(1− r2)





a

b

u

v


(6.21)

Based on this expression of the stability equations, we prove the following theorem:

Theorem 6.3 The oscillatory state in Equation (6.10) is asymptotically unstable.

Proof We write (a, b, u, v)T = eσt(a0, b0, u0, v0), and search for eigensolutions where a0, b0, u0 and

v0 are real. Calling the matrix in Equation (6.21) M, it can be shown by direct computation

that det(M) = 0 identically (e.g. using a symbolic algebra package), such that the characteristic

equation of the matrix M is

σ
[
σ3 − tr(M)σ2 +m1σ +m2

]
= 0, (6.22)

where m1 and m2 are real constants that depend on the problem parameters. A further direct

computation yields

m2 = 8A2(1−X2)
[
µ0 − 1

2
(g1 + g2)

]
. (6.23)

Under the twin assumptions that we are in the operating range given by Equation (6.6) and that

0 < X2 < 1, we have that m2 < 0, such that the cubic polynomial in the square brackets

[· · · ] in Equation (6.22) has at least one real positive root, with a corresponding real eigenvector

(a0, b0, u0, v0)T . The corresponding real eigenvalue therefore has σ > 0, hence the system (6.21) is

asymptotically unstable.

6.3 Illustrative numerical examples

It is of interest to examine whether the periodic unstable state has any bearing on the dynamics of

Equation (6.7). Thus, temporal numerical simulations of the same equation are performed. We use
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the parameter values

E0 = 1, A = 0.1, g2 = 0.01, g1 = g2 + (4A2 + 0.012)1/2, a = 1,

µ0 = 0.95

[
1
2

(g1 + g2)−
√

(g1 − g2)2 − 4A2

]
. (6.24)

Also, the initial condition was taken to be (A0/
√

2)(i, 1)T , where A0 is taken to be small in an ap-

propriate sense, so that the early-stage dynamics correspond to linear theory. The parameters (6.24)

correspond to a subcritical case: both eigenfrequencies of the linearized dynamics possess negative

imaginary parts. However, the same parameters are appropriate for (linear) transient growth, as

outlined in Equation (6.6).

The results are shown in Figure 6.1. The numerical solutions are obtained using an eight-order accu-

rate Runge–Kutta scheme [Gov]. Solutions under the linearized dynamics are shown in Figure 6.1(a).

(a) (b)

Figure 6.1: Solutions of (a) the non-Hermitian linear Schrodinger equation; (b) the non-Hermitian
nonlinear Schrödinger equation. The initial data are the parameters are the same in (a) and (b).

Significant transient growth occurs for the initial data and parameter values in Equation (6.24), in

spite of the negatativity of the linear growth rates, i.e. = [spec (L)] ≤ 0: the maximum amplifi-

cation is over 500% in the figure. In contrast, solutions under the nonlinear dynamcis are shown

in Figure 6.1(b). The linear transient growth operates in the same manner as in Figure 6.1, up to

t ≈ 80. Thereafter, a range of possibilities exists, depending on the initial amplitude of the distur-

bance. First, one notes that there is a critical initial amplitude A0c such that limt→∞ ‖u‖2 = Rc;

this is precisely the critical radius for which the nonlinear oscillatory state exists, as in the analysis in

Equation (6.9). Also, for initial amplitudes above this threshold, the same nonlinear oscillatory state

is excited, but is subsequently destabilized, and indefinite exponential growth takes place. Finally,

for initial amplitudes below the same threshold, the nonlinear oscillatory state cannot be maintained,

and the linear dissipation eventually causes the disturbance to decay to zero. For the case A0 > A0c,
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one obtains the eery result that the disturbance grows exponentially fast, in spite of the fact that

the eigenfrequencies of the linearized problem possess negative imaginary parts. This is a subcritical

transition to (nonlinear) instability.

These results point to the following conclusion: linear transient growth by itself is not sufficient

to induce a transition from a regime of small-amplitude disturbances to one of nonlinear instability

in the model equation (6.7). Rather, the transient growth must have available an excitable non-

linear eigenmode, and moreover, the operating parameter regime must be such that the nonlinear

eigenmode is linearly (asymptotically) unstable or neutral. These findings are consistent with the

literature on a vastly more complicated system, namely the subcritical transition to turbulence in

parallel shear flows [SH01, Gro00], where a combination of transient growth and the secondary

instability of coherent states [Wal95, Wal98] is required for subcritical transition to turbulence.

Exercise 6.2

1. The maximum transient growth rate is defined as

γ(t) = sup
u6=0

‖eLtu‖
‖u‖

, (6.25)

where the L2 norm is taken. Show that at each time t the disturbance u that realises the

maximum in Equation (6.25) is the solution of the eigenvalue problem

eL
†teLtut = λut, (6.26)

where the subscript t indicates that ut is the disturbance that maximizes the growth rate

γ(t) at the particular time t. The quantity ut is called the optimal disturbance at time

t.

2. Use the parameters (6.24) and the solution (6.26) to generate numerically the curve γ(t),

with 0 < t < 300, say.

3. Download the “.m” code from the website. Run the linear and noninear version of the

code with the initial condition u(t = 0) = u50 (say). Plot the L2 norm of the solution

versus t and compare with Figure 6.1.
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6.4 Interlude: Three-dimensional disturbances in plane par-

allel flows and Squire’s Theorem

Before applying the theory of transient growth to plane parallel flows, we must first all make a

digression and consider in more detail the notion of three-dimensional disturbances to a plane

parallel flow U0(z), with u = U0(z)x̂ + δu, where δu = (δu, δv, δw), such that the perturbed

velocity u has three non-trivial components. The reason for this is that we will find out that the

optimal disturbance is three-dimensional.

As before, the basic non-dimensional equation of motion is

∂

∂t
δu+ U0

∂

∂x
δu+ x̂δw

dU0

dz
= −∇p+Re−1∇2δu,

where δp is the perturbation pressure. We operate on both sides with the curl to obtain the linearized

vorticity equation:

∂

∂t
δω + U0

∂

∂x
δω − U ′0 (x̂∂xδv − ŷ∂xδu) + U ′0 (ŷ∂zδw + ẑ∂yδw) + ŷU ′′0 δw = Re−1∇2ω

Call η = ẑ · δ~ω. Clearly,
∂η

∂t
+ U0

∂η

∂x
+ U ′0∂yδw = Re−1∇2η. (6.27)

Next, consider δωx = x̂ · δω and δωy = ŷ · δω. We have

∂

∂t
δωx + U0

∂

∂x
δωx − U ′0

∂

∂x
δv = = Re−1∇2δωx, (6.28a)

∂

∂t
δωy + U0

∂

∂x
δωy + U ′0

∂

∂x
δu+ U ′0

∂

∂z
δw + U ′′0 δw = Re−1∇2δωy, (6.28b)

We go over to a normal-mode decomposition with δω ∝ eiαx+iβy, such that ∂x = iα and ∂y = iβ.

Thus, the two vorticity components δωx and δωy become

δωx = ∂yδw − ∂zδv = iβδw − ∂zδv,

δωy = ∂zδu− ∂xδw = −iαδw + ∂zδu.

Put these into Equation (6.28):

∂

∂t
(iβδw − ∂zδv) + U0iα (iβδw − ∂zδv)− U ′0iαδv = Re−1∇2 (iβδw − ∂zδv) , (6.29a)
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∂

∂t
(−iαδw + ∂zδu) + U0iα (−iαδw + ∂zδu)

+ U ′0iαδu+ U ′0∂zδw + U ′′0 δwRe
−1∇2 (−iαδw + ∂zδu) , (6.29b)

Take iβ(6.29a):

∂

∂t

(
−β2δw − iβ∂zδv

)
+ iαU0

(
−β2δw − iβ∂zδv

)
− iαU ′0 (iβδv) = Re−1∇2

(
−β2δw − iβ∂zδv

)
. (6.30a)

Also, take iα(6.29b):

∂

∂t

(
α2δw + iα∂zδu

)
+ iαU0

(
α2δw + iα∂zδu

)
+ iαU ′0 (iαδu) + iαU ′0∂zδv + iαU ′′0 δw = Re−1∇2

(
α2δw + iα∂zδu

)
. (6.30b)

Subtract:

∂

∂t

(
−β2δw − α2δw − iβ∂zδv − iα∂zδu

)
+ iαU0

(
−β2δw − α2δw − iβ∂zδv − iα∂zδu

)
+ iαU ′0 (−iβδv − iαδu− ∂zδv)− iαU ′′0 δw = Re−1∇2

(
−β2δw − α2δw − iβ∂zδv − iα∂zδu

)
Use incompressibility:

iαδu+ iβδv + ∂zδw = 0

hence

∂2
zδw − iαδu− iβδv,

and thus
∂

∂t
∇2δw + iαU0∇2δw − iαU ′′0 δw = ∇4δw.

Going over to the normal-mode decomposition, this is

∂

∂t

(
∂2
z − k2

)
δw + iαU0

(
∂2
z − k2

)
δw − iαU ′′0 δw =

(
∂2
z − k2

)2
δw, k2 = α2 + β2.

With δw ∝ e−iαct this is

iα (U0 − c)
(
∂2
z − k2

)
δw − iαU ′′0 δw = Re−1

(
∂2
z − k2

)2
δw, (6.31a)

which is precisely the Orr–Sommerfeld equation. However, we have a further equation for the

wall-normal vorticty (Equation (6.27)) which now reads

iα(U0 − c)η + iβU ′0δw = Re−1(∂2
z − k2)η. (6.31b)
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Equations (6.31) are the Orr–Sommerfeld–Squire equations.

Equation (6.31a) can be mapped into a two-dimensional Orr–Sommerfeld equation by the introduc-

tion of the variables

α2D = k =
√
α2 + β2, (6.32a)

Re2D =
α

α2D

Re =

√
α2

α2 + β2
Re. (6.32b)

Thus, Equation (6.31a) can be rewritten as

iα2D (U0 − c)
(
∂2
z − α2

2D

)
δw − iαU ′′0 δw = Re−1

2D

(
∂2
z − α2D

)2
δw,

which is precisely the Orr–Sommerfeld equation in two dimensions. From Equation (6.32) we have

Re2D < Re.

Thus, we have shown the following result:

Lemma 6.1 To each three-dimensional Orr–Sommerfeld–Squire mode there corresponds a two-

dimensional Orr–Sommerfeld mode at a lower Reynolds number.

This enables us to prove Squire’s theorem:

Theorem 6.4 Given ReL as the critical Reynolds number for the onset of linear instability for

a given (α, β), the Reynolds number Rec below which no exponential instabilities exist for any

wavenumbers satisfies

Rec := min
α,β

ReL(α, β) = min
α
ReL(α, 0).

Thus, parallel shear flows fisrt become unstable to two-dimensional wavelike perturbations at a

value of the Reynolds number that is smaller than any value for which unstable three-dimensional

perturbations exist. That is the reason why no generality was lost to date in studying only the

two-dimensional disturbances for the plane parallel flows.

The proof of Squire’s theorem follows directly from the Squire transformation (6.32): if a three-

dimensional mode is unstable, then a two-dimensional mode is unstable at a lower Reynolds number.

We also have the following result for so-called pure Squire modes (A solution of the Orr–Sommerfeld–

Squire equations with w = 0 is called a pure Squire mode):

Theorem 6.5 The eigenvalues of all pure squire modes are damped, i.e. ci < 0 for all α, β and

Re, for all pure Squire modes
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The proof here is straightforward: we take w = 0 in the Squire equation (6.31b). We then multiply

by η∗ and integrate from z = 0 to z = 1:

λ

∫ 1

0

|η|2 dz + iα

∫ 1

0

U0|η|2 = Re−1

∫ 1

0

η∗
(
∂2
z − k2

)
η, λ = −iαc. (6.33)

Since η = ẑ ·δω = iαδv− iβδu we have η = 0 at z = 0, z = 1. This enables us to do integration by

parts on the right-hand side of Equation (6.33) and to set the boundary terms to zero. We obtain

λ

∫ 1

0

|η|2 dz + iα

∫ 1

0

U0|η|2 = −Re−1

∫ 1

0

(
|∂zη|2 + k2|η|2

)
dz.

Taking real parts, we have

λr‖η‖2
2 = −Re−1

(
‖∂zη|22 + k2‖η‖2

2

)
hence λr‖η‖2

2 < 0, hence ci < 0 as required.

Transient behaviour

It is tempting to ask why wave introduced the Orr–Sommerfeld Squire equations when the end

result has been a theorem showing that as far as eigenvalues are concerned, the three-dimensional

disturbances are not important. The answer is that stability theory is about more than eigenvalues.

Eigenvalue analysis is only valid as t → ∞. For finite times, we must consider the full initial value

problem. The initial value problem for the Squire equation reads

∂η

∂t
+ iαU0(z)η + iβU ′0δw = Re−1

(
∂2
z − k2

)
η.

For α = 0 this reads
∂η

∂t
+
α2

Re
η =

1

Re
∂2
zη + iβU ′0δw. (6.34)

Let us further focus on the large-Reynolds number flows, and focus on the case where we can take

Re→∞, such that Equation (6.34) reads

∂η

∂t
= −iβU ′0δw.

This is a first-order separable ODE, with solution

η(z, t) = η(z, 0)− iβU ′0(z)

∫ t

0

δw(z, t) dt.
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For short times we can take δw(z, t) outside the integrand, leaving

η(z, t) ≈ η(z, 0)− iβU ′0δw(z, 0)t (6.35)

Thus, the vorticity grows linearly with time for short times. This is the notion of a transient

instability. Of course, what happens as t → ∞ is not predicted by Equation (6.35) – that is

determined by the eigenvalue analysis. But it is of interest to study in a systematic way the transient

behavior of the Orr–Sommerfeld–Squire equations at finite times, i.e. before the eigenvalue analysis

becomes the factor determining the time evolution. We do this in the next section.

6.5 Transient growth in plane parallel flows

6.5.1 Formulation

The Orr–Sommerfeld–Squire equation for a generic problem in the hydrodynamic stability of a

parallel flow can be written down in generic form as follows:

Lχ = λMχ, (6.36)

The stability problem is solved at a particular set of wavenumbers (α, β), and the Orr–Sommerfeld–

Squire matrices L and M and the eigenvalue λ all depend on the wavenumbers. Recall, the

state vector χ is obtained by writing the wall-normal velocity and vorticity in a finite Chebyshev

approximation:

w(z) =
N∑
i=0

AiTi(x), η =
N∑
i=0

BiTi(x), x = 2z − 1,

such that

χ = (A0, · · · , An, B0, · · · , Bn)T .

Now, it can be shown that the matrices in Equation (6.36) can be used to solve the corresponding

initial-value problem (e.g. Reference [ÓNSS13]). The initial-value problem is formulated as follows:

∂

∂t
Mχ = Lχ, t > 0, (6.37a)

with initial condition

χ(t = 0) = χ0, χ0 = (x0, · · · , xn, y0, · · · , yn)T , (6.37b)
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and where

x0 =
1

π

∫ 1

−1

T0(x)w
(

1
2
(x+ 1), t = 0

) dx√
1− x2

, (6.38a)

xi =
2

π

∫ 1

−1

Ti(x)w
(

1
2
(x+ 1), t = 0

) dx√
1− x2

, i 6= 0, (6.38b)

y0 =
1

π

∫ 1

−1

T0(x)η
(

1
2
(x+ 1), t = 0

) dx√
1− x2

, (6.38c)

yi =
2

π

∫ 1

−1

Ti(x)η
(

1
2
(x+ 1), t = 0

) dx√
1− x2

, i 6= 0. (6.38d)

It can be easily seen that the solution to Equation (6.37) can be written as

χ(tn) = X (tn)χ0, tn = n∆t, n = 0, 1, · · · ,

where ∆t→ 0, keeping tn = t finite. Also,

X (t) = lim
∆t→0

[
(M−∆tL)−1M

]n
. (6.39)

Note that Equation (6.39) amounts to solving the linear differential algebraic equation (DAE) (6.37a)

using the backward Euler method.

6.5.2 The method

The idea of the transient-growth calculation is to start with the energy norm

E(t) =

∫ 1

0

(
|∂zw|2 + k2|w|2 + |η|2

)
dz, k2 = α2 + β2, (6.40)

and at each point in time to optimize the energy norm subject to the constraint that E(0) = 1.

The resulting maximum energy is called the transient growth rate, G(t). These calculations can be

done within the framework of Section 6.5.1 as follows. First, the energy norm in Equation (6.40) is

identified with a scalar product on the space of admissible χ-vectors:

E(t) = 1
2

∫ 1

−1

dx

∣∣∣∣∣
N∑
i=0

AiexT
′
i (x)

∣∣∣∣∣
2

+ k2

∣∣∣∣∣
N∑
i=0

AiTi(x)

∣∣∣∣∣
2

+

∣∣∣∣∣
N∑
i=0

BiTi(x)

∣∣∣∣∣
2
 , ex =

dx

dz
= 2,

=
∑
i,j

A∗iAj

(
1
2
e2
x

∫ 1

−1

T ′i (x)T ′j(x)dx

)
+
∑
i,j

A∗iAj

(
1
2
k2

∫ 1

−1

Ti(x)Tj(x)dx

)
+
∑
i,j

B∗iBj

(
1
2

∫ 1

−1

Ti(x)Tj(x)dx

)
.
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Call

T(1)
ij = 1

2
e2
x

∫ 1

−1

T ′i (x)T ′j(x)dx,

T(0)
ij = 1

2

∫ 1

−1

Ti(x)Tj(x)dx.

We have

E(t) =
∑
i,j

A∗iAjT
(1)
ij + k2

∑
i,j

A∗iAjT
(0)
ij +

∑
i,j

B∗iBjT(0)
ij ,

=

〈
χ,

(
T(1) + k2T(0) 0

0 T(0)

)
χ

〉
,

:= 〈χ,Gχ〉.

Here, the brackets denote the usual scalar product on the space of χ-vectors, and the matrix G is

symmetric positive-definite. Thus, the equation

E(t) = 〈χ,Gχ〉

defines a scalar product on the space of χ-vectors. However, we have

χ = X (t)χ0,

hence

E(t) = 〈χ0,X (t)†GX (t)χ0〉.

Thus, the optimization to be performed can be recast as an optimization of the functional

E[χ0] = 〈χ0,X (t)†GX (t)χ0〉,

subject to the constraint that

〈χ0,Gχ0〉 = 1.

In other words, we have the following Lagrange-multiplier problem:

E[χ0] = 〈χ0,X (t)†GX (t)χ0〉 − λ (〈χ0,Gχ0〉 − 1) .

The optimum vector is obtained by setting

δE

δχ∗
= 0,
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(a) (b)

Figure 6.2: Validation of our code for the maximum transient growth rate compared to known
benchmark case in the literature (data from Reference [SH01]). The small discrepancies between
the two datasets are due to errors in scanning and digitizing the data from the reference text.

in other words,

X †GX (t)χ0 = λGχ0. (6.41)

Equation (6.41) is a generalized eigenvalue problem, and it is readily checked that the eigenvalues

are real (both matrices appearing in the problem are Hermitian) and moreover, that the eigenvalues

are non-negative. It can be further shown by a straightforward calculation (backsubstitution into

the constrained functional) that

sup
χ0

[E[χ0]− λ (〈χ0,Gχ0〉 − 1)] = maxλ,

where the maximum is taken over the spectrum of the generalized eigenvalue problem (6.41). Thus,

at each point in time, the transient growth rate is

G(t) = maxλ.

6.5.3 Results for Poiseiulle flow

We have validated this procedure against the known test case of Poiseuille flow. We work in the units

used by Orzag and other later researchers for their stability calculations of single-phase Poiseuille

flow [Orz71]. Thus, we take α = 1, β = 0, and two cases for the Reynolds number: Re = 5000

(asymptotically stable) and Re = 8000 (asymptotically unstable). A comparison between known

results for G(t) in this instance and the results from our own calculations are shown in Figure 6.2.

It is now of interest to examine the behavior demonstrated in Figure 6.2 a little further. We go back

over to our own units based on the full channel height and the friction velocity and examine the
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(a) t = 0.05 (b) t = 0.1 (c) t = 0.15

(d) t = 0.5 (e) t = 1 (f) t = 2

(g) t = 5 (h) t = 10

Figure 6.3: Time evolution of the optimal transient growth rate as a function of the wavenumbers
α (streamwise) and β (spanwise). Between t = 0.1 and t = 10 the optimal disturbance moves from
being spanwise-dominated to streamwise-dominated.

features of the transient growth in the supercritical case Re = 8000, Re∗ =
√

8× 8000 ≈ 252.9822,

for various times t ∈ [0, 2] (corresponding to times [0, 2]Re∗/2 in Figure 6.2). The resulting study

is presented in Figure 6.3 where it should be noticed that it is the square root of the energy of the

most-amplified disturbance that is plotted in a wavenumber space, for different t-values. For very

short times (t = 0.1) the transiently most-amplified mode has a wavevector with components in

both the streamwise and spanwise directions (at t = 0.1, maxα,β Gα,β(t) occurs at (α, β) ≈ (3, 8)).

As time goes by, the most-amplified mode moves to a more spanwise wavenumber such that by

t = 1 the maximum value maxα,β Gα,β(t) occurs at α ≈ 0 and β = 6. Thereafter, there is a slow

evolution of the trajectory of the most-amplified disturbance through the wavenumber space away

from spanwise wavenumbers towards streamwise ones (the eigenvalue theory predicts that as t→∞
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Figure 6.4: Eigenvalue of most-dangerous mode of the Orr–Sommerfeld–Squire equations, with
Re = 5000. The most-dangerous mode according to eigenvalue analysis (valid as t → ∞) is a
streamwise one.

the most-amplified disturbance is a streamwise-only mode – Figure 6.4). By t = 10 the asymptotic

state is reached and the most-amplified disturbance is indeed streamwise-only.
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Weakly nonlinear theory

7.1 Overview

Beyond linear theory, analytical progress can be made in certain scenarios wherein a separation of

scales occurs. The idea here is to break up the eigenmodes of the linear theory into two sets. In

the first set, the growth rates of the linear theory are O(1), while in the second set, the normal

modes possess large damping rates of magnitude 1/ε, so that a separation of timescales between

the two sets occurs. Thus, two sets emerge, corresponding to fast dynamics and slow dynamics.

The modes belonging to the fast set can be viewed as slaved to the slow modes, and do not evolve

dynamically. Analytical expressions for the fast modes in terms of the slow modes can be derived,

which in turn are substituted back into the equations for the slow modes, leading to a simplified

system of differential equations for the fast modes.

7.2 Example – Cahn–Hilliard equation

We will start with an example of a nonlinear equation amenable to a weakly nonlinear analysis.

The direct relevance to Fluid Dynamics here is not immediately obvious, but it serves here as an

excellent example of the methodology. We therefore study the following Cahn–Hilliard equation

in one spatial dimension:

∂C

∂t
= ∇2

(
C3 − C − γ∇2C

)
, t > 0, x ∈ (0, L), (7.1)

with initial date C(x, t = 0) = Cinit(x) and periodic boundary conditions on the interval (0, L).

Also, D and γ are positive constants.

98
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It can be seen that the Cahn–Hilliard equation is mass-conserving,

d

dt

∫ L

0

C(x, t) dx = 0 (7.2)

In this example, we take ∫ L

0

C(x, t) dx = 0,

corresponding to a symmetric mixture. It can also be seen that the state C(x, t) = C0, with

C0 is a solution of the Cahn–Hilliard equation for a symmetric mixture, and that the state is

linearly unstable with respect to small-amplitude perturbations. For, starting with the trial solution

C(x, t) = C0 + εeν+ikx, the growth rate ν satisfies the dispersion relation

ν = Dk2(1− γk2),

with cutoff wavenumber kc = γ1/2 and most-dangerous mode kmax = kc/
√

2.

We now explore the weakly nonlinear dynamcis of Equation (7.1). For simplicity, we will examine

a scenario where the set of fast modes comprises a single normal mode, and that all other modes

are damped according to linear theory. This corresponds to a situation just above criticality. The

application of weakly nonlinear theory to this scenario where the set of fast modes contains only one

element is called Stuart–Landau theory. Parameters appropriate for this regime are L = 1 and

γ = 1/8π2. The most-dangerous mode therefore occurs at k1 = 2π and the cutoff is at kc =
√

2k1,

with k1 < kc < 2k1, such that precisely one unstable mode fits inside the box.

The complete solution of Eq. (7.1) is expanded as a Fourier series,

C(x, t) =
∞∑

n=−∞

An(t)eiknx, kn = (2π/L)n, A−n = A∗n, (7.3)

with A0 = 0 for symmetric mixtures. The solution (7.3) is substituted into Equation (7.1). One

obtains the following amplitude equations:

dAn
dt

= ν(kn)An −Dk2
n

∞∑
p=−∞

∞∑
q=−∞

ApAqAn−p−q. (7.4)

Equation (9.5) is an example of a nonlinearity by way of a four-wave interaction. Four-wave

interactions are the hallmark of a cubic nonlinearity. Now, for a barely-supercritical system, the

fundamental mode (n = ±1) has a positive linear growth rate, while all other modes have a negative

linear growth rate. Initially therefore, the fundamental dominates the evolution. Overtones will only

be relevant if they couple to the fundamental. We therefore simplify Eq. (9.5) by considering the

dominant modes. These will be the fundamental and a handful of overtones. In fact, we reduce
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the equations down to a triple by considering the fundamental and the n = 2, 3 overtones, and by

neglecting all other modes. A further simplification occurs in the overtone equations, wherein one

considers the most-dominant interaction terms only; i.e. those that involve a power of A1. One

arrives at the following set of equations

dA1

dt
= ν(k1)A1 −Dk2

1A1

(
6|A2|2 + 6|A3|2 + 3|A1|2

)
− 3Dk2

1A3A
∗2
1 , (7.5a)

dA2

dt
= ν(k2)A2 − 6Dk2

2|A1|2A2, (7.5b)

dA3

dt
= ν(k3)A3 −Dk2

3A
3
1. (7.5c)

Because of the cubic interaction, a strange thing occurs, whereby the right-hand side of the A2

equation is proportional to A2 itself, meaning that the amplitude |A2| can be controlled in the

following manner:
1
2

d

dt
|A2|2 =

(
ν(k2)− 6Dk2

2|A1|2
)
|A2|2 ≤ ν(k2)|A2|2,

By Gronwall’s inequality, we have the following further inequality:

|A2(t)| ≤ |A2(0)|eν(k2)t,

which is exponentially decaying because only the fundamental is linearly unstable. Thus, in the set of

modes {A1, A2, A3}, the mode A2 is decaying. In contrast, the right-hand side of the A3-equation is

not proportional to A3, and the corresponding amplitude is not controlled. Indeed, Equation (7.5b)

is a first-order homogeneous ODE for A2, while the corresponding equation for A3 is first-order and

inhomogeneous, with solution

A3 = A3(0)eν(k3)t −Dk2
3eν(k3)t

∫ t

0

e−ν(k3)s[A1(s)]3 ds. (7.6)

We now invoke the separation-of-timescales argument, assuming that |ν(k1)/ν(k2)| � 1, and

|ν(k1)/ν(k3)| � 1, with ν(k1) > 0 and the other two growth rates negative. It is as if we are

taking the limit ν(k2) → −∞ and ν(k3) → −∞. In this limit, the A2 mode is damped rapidly to

zero, so that under separation of scales, we have

A2 = 0.

Consideration is given to Equation (7.6) in the same limit. In this limit, the most-rapidly varying

term in the integral is e−ν(k3)s, compared to which A1(s) varies slowly and can be taken outside the
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integral, leaving

A3(t) = A3(0)eν(k3)t −Dk2
3eν(k3)t

∫ t

0

e−ν(k3)s[A1(s)]3 ds,

≈ A3(0)eν(k3)t −Dk2
3eν(k3)t[A1(t)]3

∫ t

0

e−ν(k3)s ds,

= A3(0)eν(k3)t +
Dk2

3

ν(k2)
eν(k3)t[A1(t)]3

(
e−ν(k3)t − 1

)
,

=
Dk2

3

ν(k2)
[A1(t)]3 +

[
A3(0)eν(k3)t − 6Dk2

3

ν(k2)
[A1(t)]3eν(k3)t

]
,

which in the limit of infinite separation of scales reduces to

A3(t) =
Dk2

3

ν(k2)
[A1(t)]3.

Summarizing, in the limit of infinite separation of scales, we have

A2 = 0, A3(t) =
Dk2

3

ν(k2)
[A1(t)]3 := CA3

1. (7.7)

These identities are now substituted back into Equation (7.5a) for A1, which now is constituted in

closed form:

dA1

dt
= ν(k1)A1 −Dk2

1A1

(
3|A1|2 + 6C2|A1|6

)
− 3CA1|A1|2,

= ν(k1)A1 −Dk2
1A1

(
3|A1|2 + 3C|A1|4 + 6C2|A1|6

)
. (7.8)

A solution to the A1-equation is readily available in closed form, and backsubstitution into Equa-

tion (7.7) yields A3. Thus, under the separation-of-scales assumption, A3 does not evolve dynami-

cally – it is slaved to the mode A1. Also, from Equation (7.8), we can see that

1
2

d

dt
|A1|2 = ν(k1)|A1|2 −Dk2

1|A1|2P(|A1|2),

where

P(x2) = 3x2 + 3Cx4 + 6C2x6 ≥ 0

meaning that exponential linear growth term ν(k1)|A1|2 is eventually balanced by the nonlinear term

Dk2
1|A1|2P(|A1|2) and the nonlinearity in this instance is saturating.

The theory can be extended to involve the five modes {A1, A2, A3, A4, A5}, leading to the following
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amplitude equations:

dA1

dt
= ν(k1)A1 −Dk2

1A1

(
3|A1|2 + 6|A2|2 + 6|A3|2 + 6|A4|2 + 6|A5|2

)
−3Dk2

1A3(A∗21 + 2A2A
∗
4 + A3A

∗
5)− 6Dk2

1A4(A∗1A
∗
2 + A2A

∗
5)

−3Dk2
1A5(A∗22 + 2A∗1A

∗
3), (7.9)

dA2

dt
= ν(k2)A2 − 6Dk2

2|A1|2A2, (7.10)

dA3

dt
= ν(k3)A3 −Dk2

3A
3
1, (7.11)

dA4

dt
= ν(k4)A4 − 3Dk2

2A
2
1A2, (7.12)

dA5

dt
= ν(k5)A5 − 3Dk2

5A
2
1A3, (7.13)

where in the equations for the harmonics we have kept only those interaction terms that involve the

highest powers of A1 and A∗1.

Again, in the limit of infinite separation of scales, we have A2 → 0 and hence by recursion, A4 → 0,

and thus we reduce to a triple of equations for odd modes:

dA1

dt
= ν(k1)A1 −Dk2

1A1

(
3|A1|2 + 6|A3|2 + 6|A5|2

)
−3Dk2

1A3(A∗21 + A3A
∗
5)− 6Dk2

1A
∗
1A
∗
3A5, (7.14)

dA3

dt
= ν(k3)A3 −Dk2

3A
3
1, (7.15)

dA5

dt
= ν(k5)A5 − 3Dk2

5A
2
1A3. (7.16)

The limit of infinite separation-of-scales is invoked again and we obtain

A3 =
Dk2

3

ν(k3)
A3

1, A5 =
3D2k2

5k
2
3

ν(k3)ν(k5)
A5

1. (7.17)

Thus, we have An ∝ An1 , valid clearly (by recursion) for all n ∈ {3, 5, 7, · · · }. This is a hallmark of

the Stuart–Landau theory: the amplitude of the harmonics is a power of the amplitude of

the fundamental. The Stuart–Landau law (7.17) is substituted back into Equation (7.14). One

obtains
dA1

dt
= ν(k1)A1 −Dk2

1A1Q(|A1|2), (7.18)

where again, Q ≥ 0 and the nonlinearity is saturating.

The theory in Equations (7.17)–(7.18) is now checked against numerical simulation. The numerical

simulation is carried out with the FDCH parallel Cahn–Hilliard solver [NSN15]. The numerical
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simulation seeded with the initial condition

Cinit = ε cos(k1x), ε = 10−4. (7.19)

A spectral analysis of the numerical solution was obtained and the results plotted in Fig. 7.1. An

Figure 7.1: (Figure from Reference [NSN15]). Comparison between weakly linear theory and direct
numerical simulation. Model parameters: D = 1, L = 1, and γ = 1/8π2. Simulation parameters:
∆x = 1/304, ∆t = 10−8. The simulation results are shown in thick lines: solid line: |A1|, dotted
line: |A3|, dashed line: |A5|. The predictions from weakly nonlinear theory are shown in thin
lines with symbols. Squares and circles: predictions based on Equation (7.17) for |A3| and |A5|
respectively. Diamonds: prediction based on Equation (7.18) for |A1|. The main figure is presented
again in the inset using a log-log scale to show the initial layer of the dynamics before the onset of
slaving.

additional log-log plot shown in the inset of the same figure reveals the presence of odd-numbered

harmonics even at t = 0. This is due to roundoff error in the simulation (the simulations used the

IEEE double precision format). A combination of roundoff error and numerical error also leads to

the the presence of some transient noise in the amplitude |A5|. However, these effects are rapidly

dissipated, such that the eventual outcome of the simulation demonstrates excellent agreement

between the theory based on Equations (7.17)–(7.18) and the FDCH code.
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7.3 General theory

The general theory of slaving involves a set of ODEs,

dx

dt
= f(x, y), x ∈ Cn, (7.20a)

dy

dt
= −1

ε
Dy + g(x, y), y ∈ Cm, (7.20b)

valid for t > 0, with initial data

x(t = 0) = x0, y(t = 0) = y0. (7.20c)

where D is a diagonal matrix with Dii > 0.

An implicit solution of the y-equation is obtained as follows:

yi(t) = yi(0)e−tDii/ε + e−tDii/ε
∫ t

0

e−tDii/εgi(x(s), y(s)) ds

Clearly, yi(t) varies on two timescales: the rapid timescale 1/ε, and the slow timescale which is

O(1), and we write

yi(t) = yi(t, t/ε),

such that

yi(t) = yi(0)e−tDii/ε + e−tDii/ε
∫ t

0

etDii/εgi(x(t), y(t, t/ε)) dt

suppressing the difference between the dummy variable of integration and t for the time being. We

make the substitution t̃ = t/ε. Thus,

yi(t) = yi(0)e−tDii/ε + εe−tDii/ε
∫ t/ε

0

et̃Diigi(x(εt̃), y(εt̃, t̃)) dt̃.

We now solve the integral equation recursively. To lowest order in ε, we have

yi(t) = yi(0)e−tDii/ε + εe−tDii/ε
∫ t/ε

0

et̃Diigi(x(εt̃), yi(0)e−tDii t̃) dt̃.

We take εa < t, where a < 1. Then the first term is bounded by

yi(0)e−Dii/ε
1−a → 0, ε→ 0,

such that

yi(t)→ εe−tDii/ε
∫ t/ε

0

et̃Diig(x(εt̃), 0)dt̃ = e−tDii/ε
∫ t

0

etDii/εgi(x(t), 0)dt, ε→ 0,
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and provided t < 1/ε the term g(x(t), 0) can be treated as a constant, leaving

yi(t)→ e−tDii/εgi(x(t), 0)

∫ t

0

etDii/εdt ε→ 0,

leaving

yi(t) ∼
ε

Dii

gi(x(t), 0), t < 1/ε, ε→ 0,

which is the final result.

7.4 Example – Kuramoto–Sivashinsky equation

Consider the following longwave model for waves on a thin film in the presence of surface tension

and inertia, taken from Reference [BCF95]:

∂h

∂t
+

∂

∂x

[
c0h+ h2(V + hW ) +Re(R + hT )

∂h

∂x
+M

∂2h

∂x2
+
ReS

We

∂3h

∂x3

]
= 0,

x ∈ (0, L), t > 0, (7.21)

with applied periodic boundary conditions in the x direction. Here {c0, V,W,Re,R, T,M, S,We}
are positive real constants of the model.

Exercise 7.1 Compute the dispersion relation for the linearized equation of motion.

Answer clue:

ν = ik(−c0 +Mk2) +Re k2

(
R− S

We
k2

)
.

Exercise 7.2 Show that the amplitude equation corresponding to Equation (7.21) is

dAn
dt

= νAn + (iα + nβ)
∞∑

p=−∞

pApAn−p + iχ
∞∑

p=−∞

∞∑
q=−∞

pApAqAn−p−q, (7.22)

where

α = k1V, β = 1
2
k2

1ReT, χ = 3
4
ik1W

and where k1 is the fundamental wavenumber.

Exercise 7.3 Assume that the fundamental is a standing wave, with c0 = Mk2
1. By keeping only



106 Chapter 7. Weakly nonlinear theory

the first three modes, and by taking δ = Mk3
1, derive the following amplitude equations:

dA1

dt
= σ1A1 + (iα + β)A∗1A2 + iχA2

1A
∗
1, (7.23a)

dA2

dt
= (σ2 − 6iδ)A2 + (iα + 2β)A2

1, (7.23b)

dA3

dt
= (σ3 − 24iδ)A3 + 3(iα + 3β)A1A2 + iχA3

1, (7.23c)

where σn = <[ν(kn)].

Exercise 7.4 Working near criticality, with σ1 > 0, σn < 0, and |σn| � σ1 for n ≥ 2 argue as

before that

An ∝ An1 , n ≥ 2.



Chapter 8

Direct numerical simulation of the

incompressible Navier–Stokes equations

8.1 Overview

In this section we outline a numerical method to solve the incompressible Navier–Stokes equations.

The method will be broken down piece-by-piece and numerical algorithms to solve each piece will

be introduced. Analysing and implementing these algorithms will be the subject of this and future

chapters. The aim is to develop a complete understanding of a parallel DNS solver called TPLS.

8.2 The basic equations

We start with the incompressible Navier–Stokes in non-dimensional form:

∂u

∂t
+ u · ∇u = −∇q +

1

Re
∇ ·
[
µ
(
∇u+∇uT

)]
∇ · u = 0, t > 0, (8.1)

with initial conditions

u(x, t = 0) = u0, q(x, t = 0) = q0, ∇ · u0 = 0,

defined on the domain (x, y, z) ∈ [0, Lx] × [0, Ly] × [01]. For definiteness, we work in a channel

geometry, with the following boundary conditions:

u(z = 0) = u(z = 1) = 0,

and with periodic boundary conditions in the other two directions. Ordinarily, the viscosity µ is a

constant; however, it is treated here as a quantity that potentially varies in space and time, meaning

107
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that our discussion is quite general, and can be extended to large-eddy simulations and Reynolds-

averaged simulation modelling of turbulence. A schematic of the computational domain is illustrated

Figure 8.1: (Picture thanks to James Fannon) Computational domain Ω = [0, Lx] × [0, Ly] ×
[0, Lz = 1]. Periodic boundary conditions are used in the streamwise (faces AB) and spanwise
(faces CD) directions, while no-slip boundary conditions are used on faces E and F .

in figure 8.1, where the length scale is normalised with respect to the channel height i.e. Lz = 1.

A driving force is introduced in the streamwise (x-direction), such that

q(x, t) = p(x, t)− |dP/dL|x,

where |dP/dL| is the constant pressure drop. Thus, the equations to be solved now read

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇ ·
[
µ
(
∇u+∇uT

)]
+ x̂|dP/dL|, ∇ · u = 0, t > 0. (8.2)

It is difficult to evolve these equations forward in time because there is no explicit equation for p.

The solution to this problem is to use a projection method. This will be done in tandem with a

finite-volume discretization.

8.3 The method

We employ a uniform finite-volume discretization. This is similar in spirit to a uniform finite-difference

discretization, except that more attention is paid to the physics of each computational cell. Each

cell is of size ∆x3, but now scalar quantities are defined at cell centres and vector quantities on the

appropriate cell faces. In this way, the divergence of a vector flux is automatically defined at cell

centres and also, is automatically computed by a centred finite difference, which has higher-order

accuracy than a more naive approach, and also takes account of the physics of the fluxes flowing
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Figure 8.2: Schematic description of a two-dimensionial MAC grid

into and out of each computational cell. A schematic description of this setup is given in Figure 8.2.

This choice of grid is called a marker-and-cell (MAC) grid.

To evolve the equations forward in time, operator-splitting is carried out in two distinct half-steps.

In the first half-step, an intermediate velocity u∗ is computed by momentarily ignoring the pressure

contribution in the momentum equation:

u∗ − un = −u · ∇u+
1

Re
∇ ·
[
µ
(
∇u+∇uT

)]
.

The precise manner in which u∗ is extracted from this equation is discussed below. We first of all

however describe the second half-step which is got by considering the pressure contribution:

un+1 − u∗

∆t
= −∇pn+1 + |dP/dL|x̂. (8.3)

We take the divergence on both sides and impose the constraint that ∇ · un+1 = 0, leading to

∇pn+1 =
∇ · u∗

∆t
. (8.4)

By solving the Poisson equation (8.4) the pressure at timestep n + 1 is obtained. This is then

substituted back into Equation (8.3) to give

un+1 = u∗ −∆t∇pn+1 + ∆t|dP/dL|x̂.

We now describe in detail the implementation of the momentum half-step.
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8.4 Discretzation of the momentum half-step in space and

time

Recall, in the momentum half-step, the equation

u∗ − un

∆t
+ u · ∇u =

1

Re
∇ ·
[
µ
(
∇u+∇uT

)]
(8.5)

is solved for u∗. Here, µ is the (possibly varying) viscosity, defined at cell centres. Below we show

how Equation (8.5) is disctetized in space and time.

Temporal discretization

The viscous term is broken up first of all into contributions that are more convective in nature and

other contributions that can be treated are more of a diffusive character. The more convective parts

are identified as
1

Re

∂

∂xi

(
µ
∂ui
∂xj

)
, j = 1, 2, 3,

while the more diffusive parts are identified as

1

Re

∂

∂xi

(
µ
∂uj
∂xi

)
:= D (u) , j = 1, 2, 3.

For example, for j = 1 (with u = (u, v, w)), the more convective parts are

1

Re

[
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂v

∂x

)
+

∂

∂z

(
µ
∂w

∂x

)]
and the more diffusive parts are

1

Re

[
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
+

∂

∂z

(
µ
∂u

∂z

)]
:= D1(u).

Thus, Equation (8.5) is rewritten as

u∗ − un

∆t
=

[
−u · ∇u+

ej
Re

∂

∂xi

(
µ
∂ui
∂xj

)]
+ D (u) . (8.6)

where ej is a unit vector in the jth Cartesian direction. The terms in the square bracket are now

bundled together as a convective term C and Equation (8.6) is discretized in time using Adams–

Bashforth discretization on convective terms and Crank–Nicholson discretization on the diffusive
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contribution, giving

u∗ = un + ∆t
(
Cn − 4

3
Cn−1 + 5

12
Cn−2

)
+ 1

2
∆t [D(u∗) + D(un)] ,

where D(·) is identified as a linear operator. Thus,

[
I− 1

2
∆tD

]
u∗ = ∆t

(
Cn − 4

3
Cn−1 + 5

12
Cn−2

)
+ 1

2
∆tD(un) := RHS,

or [
I− 1

2
∆tD

]
u∗ = RHS. (8.7)

Spatial discretization

Equation (8.7) is now discretized, using a flux-conservative treatment for the diffusion terms. What

this means is explained in the context of the particular equation in the x-direction. Here, we are

working on the u-grid. We have

D1(u) =
µ+(1/2)x

∂u
∂x

∣∣
+1/2
− µ−(1/2)x

∂u
∂x

∣∣
+1/2

∆x
+
µ+(1/2)y

∂u
∂y

∣∣
+1/2
− µ−(1/2)y

∂u
∂y

∣∣
+1/2

∆y

+
µ+(1/2)z

∂u
∂z

∣∣
+1/2
− µ−(1/2)z

∂u
∂z

∣∣
+1/2

∆z
,

where

µ+(1/2)x = µi+1,j+1,k+1,

µ−(1/2)x = µi,j+1,k+1,

µ+(1/2)y = 1
4

[µi,j+1,k+1 + µi+1,j+1,k+1 + µi,j+2,k+1 + µi+1,j+2,k+1] ,

µ−(1/2)y = 1
4

[µi,j+1,k+1 + µi+1,j+1,k+1 + µi,j,k+1 + µi+1,j,k+1] ,

µ+(1/2)z = 1
4

[µi,j+1,k+1 + µi+1,j+1,k+1 + µi,j+1,k+2 + µi+1,j+1,k+2] ,

µ−(1/2)z = 1
4

[µi,j+1,k+1 + µi+1,j+1,k+1 + µi,j+1,k + µi+1,j+1,k]
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are the viscosity interpolated linearly on to the u-grid, and

∂u

∂x

∣∣∣∣
+1/2

=
ui+1,j,k − ui,j,k

∆x
,

∂u

∂x

∣∣∣∣
−1/2

=
ui,j,k − ui−1,j,k

∆x
,

∂u

∂y

∣∣∣∣
+1/2

=
ui,j+1,k − ui,j,k

∆y
,

∂u

∂y

∣∣∣∣
−1/2

=
ui,j,k − ui,j−1,k

∆y
,

∂u

∂z

∣∣∣∣
+1/2

=
ui,j,k+1 − ui,j,k

∆z
,

∂u

∂z

∣∣∣∣
−1/2

=
ui,j,k − ui,j,k−1

∆z
,

Putting these rules together with Equation (8.7), the linear equation to solve is

[
1 + µ+(1/2)x(α/2) + µ−(1/2)x(α/2) + µ+(1/2)y(α/2) + µ−(1/2)y(α/2) + µ+(1/2)z(α/2) + µ−(1/2)z(α/2)

]
u∗ijk

= RHSijk+(α/2)µ+(1/2)xu
∗
i+1,j,k+(α/2)µ−(1/2)xu

∗
i−1,j,k+(α/2)µ+(1/2)yu

∗
i,j+1,k+(α/2)µ−(1/2)yu

∗
i,j−1,k+

(α/2)µ+(1/2)zu
∗
i,j,k+1 + (α/2)µ−(1/2)zu

∗
i,j,k−1,

where α = ∆t/∆x2, and ∆x = ∆y = ∆z. Calling

Diagonal = 1+µ+(1/2)x(α/2)+µ−(1/2)x(α/2)+µ+(1/2)y(α/2)+µ−(1/2)y(α/2)+µ+(1/2)z(α/2)+µ−(1/2)z(α/2)

we have

u∗ijk =
(α/2)µ+(1/2)xu

∗
i+1,j,k + (α/2)µ−(1/2)xu

∗
i−1,j,k + (α/2)µ+(1/2)yu

∗
i,j+1,k + (α/2)µ−(1/2)yu

∗
i,j−1,k

Diagonal

+
(α/2)µ+(1/2)zu

∗
i,j,k+1 + (α/2)µ−(1/2)zu

∗
i,j,k−1 + RHSijk

Diagonal
(8.8)

Boundary condition

In a MAC grid, the x-index will range from i = 0, · · · , `, the y-index from j = 0, · · · ,m, and the

z-index from k = 0, · · · , n at cell centres. However, each velocity grid will have its own range

of indices; in particular, the index k ranges from k = 0 to k = n − 2 on the u-grid. A sketch of

the MAC grid (e.g. the schematic diagram in Section 8.5, below) indicates that u at k = 0 and

n− 2 corresponds to a location half a grid-spacing away from the wall. Thus, it is not physical to
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implement a no-slip condition at k = 0 and n− 2. Instead, we use linear interpolation to define u

at ‘ghost’ cells at fictitious sites at k = −1 and k = n − 1 as follows. If k = 0, then we are at

z = ∆x/2 away from the bottom wall, and we therefore take

u−z =

−2ui,j,0 + 1
3
ui,j,1, k = 0,

ui,j,k−1, otherwise.
(8.9)

If k = n− 2, then we are at at z = 1−∆x/2 away from the top wall, and we therefore take

u+z =

−2ui,j,n−2 + 1
3
ui,j,n−3, k = n− 2,

ui,j,k+1, otherwise.
(8.10)

These identifications are then used to compute (∂u/∂z)+1/2 and (∂u/∂z)−1/2, e.g.

∂u

∂z

∣∣∣∣
+1/2

=
u+z − uijk

∆z
,

and
∂u

∂z

∣∣∣∣
−1/2

=
uijk − u−z

∆z
,

The aim of subsequent chapters is an abstract study of the Helmoholtz equation (8.7) and Poisson

equation (8.4). When this is complete we will apply our knowledge to solving these particular

equations and thus, to constructing a functioning flow solver.
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8.5 Detailed description of a notional two-dimensional MAC

grid
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Chapter 9

Simplified model problems involving

Poisson and Helmholtz equations

Overview

We consider analytical solutions to a two-dimensional diffusion problem. The reason for examining

this particular problem are manifold: it is a minimal model that nonetheless has a small amount

of complexity sufficient to warrant the use of a number of interesting numerical methods. Also,

analytical solutions in this section will be used as benchmarks for future numerical simulation studies.

Throughout this chapter and beyond, the problem considered in herein be referred to as the model

diffusion equation.

9.1 Boundary conditions – review

For this discussion, let

∂C

∂t
= a(x, t)

∂2C

∂x2
+ b(x, t)

∂C

∂x
+ c(x, t)C + d(x, t), x ∈ (0, L), t > 0,

be a parabolic partial differential equation in one space dimension, on x ∈ (0, L), with smooth initial

conditions

C(x, t = 0) = Cinit(x), x ∈ [0, L].

Then the following boundary conditions are possible.

117
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1. Dirichlet conditions The function C(x, t > 0) is specified on the boundaries:

C(0, t > 0) = g1(t),

C(L, t > 0) = g2(t).

If the functions g1 = g2 = 0, then we have homogeneous Dirichlet conditions:

C(0, t > 0) = 0,

C(L, t > 0) = 0.

2. Neumann conditions: The derivative Cx(x, t > 0) is specified on the boundaries:

Cx(0, t > 0) = g1(t),

Cx(L, t > 0) = g2(t).

If the functions g1 = g2 = 0, then we have homogeneous Neumann conditions, corre-

sponding to no flux through the boundaries.

3. Mixed conditions: As the name suggests, this set is a mixture of Dirichlet and Neumann

conditions:

α1Cx(0, t > 0) + α2C(0, t > 0) = g1(t),

α3Cx(L, t > 0) + α4C(L, t > 0) = g2(t).

4. Periodic boundary conditions: The function C(x, t > 0) has the same value on either

boundary point:

C(0, t) = C(L, t), t > 0.

In practice, these are not very realistic boundary conditions but they are used in numerical

experiments because they are easy to implement. However, they can be used to mimic an

infinite domain, if the periodic length L is made long enough.

9.2 The model diffusion equation

We are interested in solving the following partial differential equation (PDE) for diffusion, given here

in non-dimensional form as follows:

∂C

∂t
= ∇2C + s(x, z), (x, z) ∈ Ω, (9.1a)
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where

Ω = (0, Lx)× (0, 1), (9.1b)

and ∇2 = ∂2
x + ∂2

z is the Laplacian. The partial differential equation is subject to the following

boundary conditions:
∂C

∂z
= 0, z = 0, z = 1, (9.1c)

together with periodic boundary conditions in the x direction:

C(x = 0, z, t) = C(x = Lx, z, t). (9.1d)

Finally, an initial condition is prescribed:

C(x, z, t = 0) = Cinit(x, z), (x, z) ∈ Ω, (9.1e)

where Cinit(x, z) is a continuous function. Here, the system of equations (10.1) is made non-

dimensional on the channel depth Lz (herein set to unity), and the diffusive timescale τ = L2
z/D,

where D is the diffusion coefficient.

9.3 Physical interpretation

Physically, Equation (10.1) is a model for diffusion of particles in the presence of a source. The

amount of matter in the system changes over time, due to contributions from the source s(x, y, z).

There are no contributions from the boundary conditions. For, consider the following evolution

equation for the total system mass

M =

∫
Ω

d2xC(x, z, t).

We have

dM

dt
=

∫
Ω

d2x
∂C

∂t
,

=

∫
Ω

d2x
[
∇2C + s(x, z)

]
,

=

∫
Ω

d2x s(s, z) +

∫
∂Ω

d`n · ∇C,



120 Chapter 9. Simplified model problems involving Poisson and Helmholtz equations

where ∂Ω is the boundary of the set Ω, d` is a line element on the boundary, and n is the outward-

pointing unit normal to ∂Ω. We compute∫
∂Ω

dAn · ∇C =

∫ Lx

0

dx
∂C

∂z

∣∣∣∣
z=1

−
∫ Lx

0

dx
∂C

∂z

∣∣∣∣
z=0

+

∫ Lz

0

dz
∂C

∂x

∣∣∣∣
x=Lx

−
∫ Lz

0

dz
∂C

∂x

∣∣∣∣
x=0

.

However, all of these terms cancel, either because of the no-flux boundary condition (∂C/∂z)(z =

0, 1) = 0, or because of periodicity, meaning that

dM

dt
= LxLz〈s〉, 〈s〉 :=

1

LxLz

∫
Ω

d2x s(s, z). (9.2)

9.4 Decomposition

In view of the formula (9.2), it is sensible to split the solution into two parts:

C = 〈C〉(t) + C ′(x, z, t), s = 〈s〉+ s′(x, z).

By linearity,

∂

∂t
〈C〉 = ∇2〈C〉+ 〈s〉,

∂C ′

∂t
= ∇2C ′ + s′.

Indeed, the solution to the mean contribution is known:

〈C〉(t) = 〈C〉(t = 0) + 〈s〉t = 〈Cinit〉+ 〈s〉t.

while the PDE for the fluctuations inherits all the properties of the basic PDE (10.1), such that

∂C ′

∂t
= ∇2C ′ + s′(x, z), (x, z) ∈ Ω, (9.3a)

subject to the following boundary conditions:

∂C ′

∂z
= 0, z = 0, z = 1, (9.3b)

together with periodic boundary conditions in the x-direction:

C ′(x = 0, z, t) = C ′(x = Lx, z, t). (9.3c)
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Finally, an initial condition is prescribed:

C ′(x, z, t = 0) = Cinit(x, z)− 〈Cinit〉, (x, z) ∈ Ω, (9.3d)

9.5 Analytical solution

We prove the following theorem:

Theorem 9.1 Equation (9.3) has at least one smooth solution, namely

C ′(x, z, t) =
∞∑
n=1

∞∑
i=−∞

{
e−k

2
int

[
ain(0)− sin

k2
in

]
+
sin
k2
in

}
ei[(2π/Lx)ix] cos

(
nπz

Lz

)
, (9.4a)

where

ain(0) =
2

LxLz

∫ Lx

0

∫ Lz

0

d2x e−i[(2π/Lx)ix] cos

(
nπz

Lz

)
[Cinit(x, z)− 〈Cinit〉] , (9.4b)

and where we have restored the definition of Lz for clarity’s sake.

Proof: Take Equation (9.1a), multiply by cos(nπz/Lz) (with n = 1, 2, · · · ) and integrate with

respect to z. The result is

∂t

∫ Lz

0

C ′ cos

(
nπz

Lz

)
dz = ∂2

x

∫ Lz

0

C ′ cos

(
nπz

Lz

)
dz +

∫ Lz

0

(
∂2C ′

∂z2

)
cos

(
nπz

Lz

)
dz

+

∫ Lz

0

s(x, z) cos

(
nπz

Lz

)
dz.

We call

Ĉn(x, t) :=
2

Lz

∫ Lz

0

C ′(x, t) cos

(
nπz

Lz

)
dz, ŝn(x) :=

2

Lz

∫ Lz

0

s(x, z) cos

(
nπz

Lz

)
dz;

hence, we have
∂Ĉn
∂t

= ∂2
xĈn +

2

Lz

∫ Lz

0

(
∂2C ′

∂z2

)
cos

(
nπz

Lz

)
dz + ŝn(x). (9.5)
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Consider now the following (with kn = nπ/Lz):∫ Lz

0

(
∂2C ′

∂z2

)
cos

(
nπz

Lz

)
dz =

∫ Lz

0

{
∂

∂z

[
cos

(
nπz

Lz

)
∂C ′

∂z

]
+ kn sin

(
nπz

Lz

)
∂C ′

∂z

}
dz,

=

[
cos

(
nπz

Lz

)
∂C ′

∂z

]z=Lz
z=0

+ kn

∫ Ly

0

sin

(
nπz

Lz

)
∂C ′

∂z
dz,

= 0 + kn

∫ Lz

0

sin

(
nπz

Lz

)
∂C ′

∂z
dz,

= kn

∫ Lz

0

{
∂

∂z

[
sin

(
nπz

Lz

)
C ′
]
− kn cos

(
nπz

Lz

)
C ′
}

dz,

=

[
sin

(
nπz

Lz

)
C ′
]z=Lz
z=0

− k2
n

∫ Lz

0

cos

(
nπz

Lz

)
C ′(x, z, t) dz.

Hence,

2

Lz

∫ Lz

0

(
∂2C ′

∂z2

)
cos

(
nπz

Lz

)
dz = −k2

n (2/Lz)

∫ Lz

0

cos

(
nπz

Lz

)
C ′(x, z, t) dz = −k2

nĈn.

Thus, Equation (9.1a) is transformed – via Equation (9.5) to

∂Ĉn
∂t

+ k2
nĈn = ∂2

xĈn + ŝn(x). (9.6)

However, this is now a standard diffusion problem in one (periodic) dimension, which can be solved

by standard Fourier-series methods: we propose

Ĉn(x, t) =
∞∑

i=−∞

ain(t)ei[(2π/Lx)ix];

we also decompose ŝn(x) as

ŝn(x) =
∞∑

i=−∞

sinei[(2π/Lx)ix].

Thus, the following amplitude equations are obtained:

dain
dt

= −k2
inain + sin, (9.7)

where

kin =

[(
2π

Lx

)2

i2 +

(
π

Lz

)2

n2

]1/2

.
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Equation (9.7) has solution

ain(t) =

e−k
2
int
[
ain(0)− sin

k2in

]
+ sin

k2ijn
, kin 6= 0,

a0(0) + s0t, kin = 0,

where the second case follows because kin = 0 if and only if i = n = 0. However, this case is ruled

out because n 6= 0. Thus, the solution for Ĉn(x, t) is therefore

Ĉn(x, t) =
∞∑

i=−∞

{
e−k

2
int

[
ain(0)− sin

k2
in

]
+
sin
k2
in

}
ei[(2π/Lx)ix].

We now note that a cosine transform has been taken in the z-direction:

Ĉn(x, t) =
2

Lz

∫ Lz

0

cos

(
nπz

Lz

)
C ′(x, z, t) dz, n 6= 0.

However, since {
cos

(
nπz

Lz

)}∞
n=1

is a basis for mean-zero continuous functions whose first derivative vanishes at z = 0, Lz, meaning

that the cosine transform can be reversed:

C ′(x, z, t) =
∞∑
n=1

Ĉn(x, t) cos

(
nπz

Lz

)
.

Hence,

C ′(x, z, t) =
∞∑
n=1

∞∑
i=−∞

{
e−k

2
int

[
ain(0)− sin

k2
in

]
+
sin
k2
in

}
ei[(2π/Lx)ix] cos

(
nπz

Lz

)
.

Finally, it is of interest to determine the coefficients aijn(0). We have

Cinit(x, z)− 〈Cinit〉 =
∞∑
n=1

∞∑
i=−∞

aij(0)ei[(2π/Lx)ix] cos

(
nπz

Lz

)
,

hence, by Fourier transformation,

ain(0) =
2

LxLz

∫ Lx

0

∫ Lz

0

d2x e−i[(2π/Lx)ix] cos

(
nπz

Lz

)
[Cinit(x, z)− 〈Cinit〉] .

(the factor of 2 comes from the cosine series). Having constructed a solution to Equation (9.3), it

is also the case that this is the only such smooth solution:

Theorem 9.2 Equation (9.4) is the unique smooth solution of Equation (9.3).
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Exercise 9.1 Prove Theorem (9.2).

9.6 The model Poisson problem

We shall also consider a simpler problem than the diffusion problem posed previously. It will be

referred to throughout the course as the model Poisson problem, given here as follows:

∇2C0 + s(x, z) = 0, (x, z) ∈ Ω, (9.8a)

where

Ω = (0, Lx)× (0, 1), (9.8b)

with boundary conditions
∂C0

∂z
= 0, z = 0, z = 1, (9.8c)

and

C0(x = 0, z, t) = C0(x = Lx, z, t). (9.8d)

9.7 Solvability condition and explicit solution

Consider Equation (9.8a). Integrate both sides over x and z and apply the boundary conditions on

C. The result is

0 =

∫ Lx

0

dx

∫ Lz

0

dz s(x, z).

Thus, in order to get a self-consistent solution, we require that the source should have zero mean:

〈s〉 :=
1

LxLz

∫ Lx

0

dx

∫ Lz

0

dz s(x, z) = 0.

This is referred to as the solvability condition.

Assuming that Equation (9.8) satisfies the solvability condition, a solution is available through a

Fourier-cosine series:

C0(x) =
∞∑
n=1

∞∑
i=−∞

sin
k2
in

ei[(2π/Lx)ix] cos

(
nπz

Lz

)
, (9.9)

where kin and sin are defined as in Section 9.2.
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9.8 Relation between model diffusion and Poisson problems

It is clear from Equation (9.9) that

lim
t→∞

C ′(x, z, t) = C0(x, z),

where C ′(x, z, t) (LHS) is the fluctuating part of the solution of the model diffusion problem, and

C0(x) (RHS) here denotes the solution of the model Poisson problem. Thus, the following theorem

is shown:

Theorem 9.3 Let 〈s〉 = 0 in the model diffusion equation. Then the solution C(x, z, t) of the

model diffusion equation – given smooth initial data – converges to the solution of the model

Poisson problem, as t→∞:

lim
t→∞

C(x, z, t) = C0(x, z), ∇2C0(x, z) + s(x, z) = 0.

Exercise 9.2 Prove Theorem 9.3 using a second approach: show first that

∂

∂t
(C − C0) = ∇2 (C − C0) ,

and hence show that

lim
t→∞

C(x, z, t) = C0(x, z). (9.10)
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Non-uniqueness of solutions

Consider again the model Poisson problem with solution (9.9). It is clear that C0 + Const. is also

a solution, since ∇2(Const.) = 0, and C0 + Const. also satisfies the boundary conditions (hybrid

periodic–Neumann). The solution (9.9) is therefore not unique. This is because the operator ∇2,

equipped with the hybrid periodic–Neumann boundary conditions has a non-trivial kernel – the set

of all constant functions is a one-dimensional vector subspace and is the non-trivial kernel of the

PDE.

Exercise 9.3 What happens to the kernel of ∇2 if the boundary conditions are modified to

be a mixture of periodic BCs in the x-direction and homogeneous Dirichlet conditions in the

z-direction?



Chapter 10

Simplified model problems – numerical

setup

Overview

In this chapter we consider numerical solutions of the model equations We introduce centred differ-

encing in space as a way of approximating the Laplace operator numerically. For the model diffusion

equation, we introduce Crank–Nicholson temporal discretization as a way of discretizing the tempo-

ral derivative ∂/∂t. Crank–Nicholson is a so-called implicit method, which means that a certain

equation must be inverted in order to evolve the numerical solution forward in time, stepping from

one time step to the next. For this reason, Jacobi iteration is introduced as a method for solving

such implicit (linear) equations.

10.1 Diffusion equation

We are interested in solving the PDE from Chapter 8, recalled here to be

∂C

∂t
= ∇2C + s(x, z), (x, z) ∈ Ω, (10.1a)

where

Ω = (0, Lx)× (0, 1), (10.1b)

and ∇2 = ∂2
x + ∂2

z is the Laplacian. The partial differential equation is subject to the following

boundary conditions:
∂C

∂z
= 0, z = 0, z = 1, (10.1c)

127
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together with periodic boundary conditions in the x- and y-directions:

C(x = 0, z, t) = C(x = Lx, z, t). (10.1d)

Finally, an initial condition is prescribed:

C(x, z, t = 0) = Cinit(x, z), (x, z) ∈ Ω, (10.1e)

where Cinit(x, z) is a continuous function. Here, the system of equations (10.1) is made non-

dimensional on the channel depth Lz (herein set to unity), and the diffusive timescale τ = L2
z/D,

where D is the diffusion coefficient.

10.2 The discretization

We discretize the PDE and compute its approximate numerical solution on a discrete grid:

xi = (i− 1)∆x, i = 1, · · ·nx,

zj = (j − 1)∆z, j = 1, · · ·nz,

such that

(nx − 1)∆x = Lx, ∆x = Lx/(nx − 1),

and similarly, ∆z = Lz/(nz − 1). The PDE is also discretized in time, such that the solution is

only available at discrete points in time tn = n∆t, with n = 0, 1, · · · . The solution at tn and

x = (i∆x, y∆j) is written as Cn
ij. The diffusion operator in the PDE (10.1) is approximated by

centred differences:

(
∇2C

)
ij
≈ Ci+1,j + Ci−1,j − 2Cij

∆x2
+
Ci,j+1 + Ci,j−1 − 2Cij

∆z2
:= D(Cij)

i = 2, 3, · · · , nx − 1, j = 2, 3, · · · , nz − 1.

The discretization in time is done using a Crank–Nicholson scheme:

Cn+1
ij − Cn

ij

∆t
= 1

2

[
D(Cn

ij) +D(Cn+1
ij )

]
+ sij, i = 2, 3, · · · , nx − 1, j = 2, 3, · · · , nz − 1.
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Re-arrange:

[
1− 1

2
∆tD

] (
Cn+1
ij

)
=
[
1 + 1

2
∆tD

] (
Cn
ij

)
+ ∆tsij,

i = 2, 3, · · · , nx − 1, j = 2, 3, · · · , nz − 1. (10.2)

On the left-hand side, the quantity
[
1− 1

2
∆tD

]
is in fact a matrix operator, and the solution is

available only in implicit form: an inversion needs to be performed to extract Cn+1
ij from this implicit

equation:

Cn+1
ij =

[
1− 1

2
∆tD

]−1 { [
1 + 1

2
∆tD

] (
Cn
ij

)
+ ∆tsij

}
. (10.3)

The implicit equation (10.2) is written out in more detail now:

(1 + ax + ay)C
n+1
ij −1

2
ax
(
Cn+1
i+1,j + Cn+1

i−1,j

)
−1

2
az
(
Cn+1
i,j+1 + Cn+1

i,j−1

)
=
[
1 + 1

2
∆tD

] (
Cn
ij

)
+sij := RHSnij,

where ax = ∆t/∆x2 and az = ∆t/∆z2. Tidy up:

(1 + ax + ay)C
n+1
ij − 1

2
ax
(
Cn+1
i+1,j + Cn+1

i−1,j

)
− 1

2
az
(
Cn+1
i,j+1 + Cn+1

i,j−1

)
= RHSnij. (10.4)

This is an implicit equation for Cn+1
ij that we must now endavour to solve.

10.3 Jacobi method

The focus of this course is on the use of iterative methods to solve problems such as Equa-

tion (10.3) or equivalently, Equation (10.4). The idea is to make an initial guess for the solution,

plug this into some algorithm for refining the guess, and continue until this iterative procedure

converges.

The simplest and most naive iterative method os the so-called Jacobi method. Let v ≡ Cn+1 be

the array to be found by solving Equation (10.3):

(1 + ax + ay) vij − 1
2
ax (vi+1,j + vi−1,j)− 1

2
az (vi,j+1 + vi,j−1) = RHSij.

This can be re-arranged simply as

vij =
1
2
ax (vi+1,j + vi−1,j) + 1

2
az (vi,j+1 + vi,j−1) + RHSij

1 + ax + az
. (10.5)

The idea of the Jacobi method is to take a guess for v, say vN , and to create a new guess vN+1 via

the formula

vN+1
ij =

1
2
ax
(
vNi+1,j + vNi−1,j

)
+ 1

2
ay
(
vNi,j+1 + vNi,j−1

)
+ RHSij

1 + ax + ay
. (10.6)



130 Chapter 10. Simplified model problems – numerical setup

If this iterative scheme converges, then limN→∞ v
N = limN→∞ v

N+1, and the approximate solutions

vN and vN+1 can be replaced in Equation (10.6) with some identical array v∗, thereby forcing

Equation (10.6) to be identical to Equation (10.5).

10.4 Boundary conditions

The idea to solve the PDE (10.1a) is to do implement a Crank–Nicholson-centred difference scheme

at interior points. Inversion of the resulting implicit problem is then achieved by the Jacobi method.

However, this approach can only be used at interior points

i = 2, 3, · · · , nx − 1, j = 2, 3, · · · , nz − 1.

At boundary points, the boundary conditions are enforced: ∂C/∂z = 0 at z = 0, 1, and periodic

boundary conditions in the x-direction. These are implemented numerically in a straightforward

fashion. The Neumann conditions at z = 0, Lz are implemented as

Ci,j=1 = Ci,j=2, Ci,j=ny = Ci,j=ny−1,

while the periodicity conditions at x = 0, Lx are implemented as follows

• i = 1: C(i− 1, j) = C(nx − 1, j),

• i = nx: C(i+ 1, j) = C(2, j).

Thus, the points i = 1 and i = nx are identified.

10.5 The algorithm

We can now assemble an algorithm to solve Equation (10.1a) numerically:

1. Set up a discretization scheme with ∆x, ∆z, and ∆t defined by the user. Also, prescribe an

initial condition Cinit(x, z) and a source function s(x, z).

2. Obtain Cn=1
ij from C0

ij at interior points using centred differences, the Crank–Nicholson tem-

poral discretization, and Jacobi iteration.

3. Implement many iterations of the Jacobi method, until the method has converged to some

user-defined tolerance.

4. Implement the boundary conditions on Cn=1.
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5. Repeat steps 2–4 for the desired number of timesteps.

Matlab codes to implement this problem are given in Appendix A.



Chapter 11

Analysis of numerical setup

Overview

The idea of this chapter is to take a generic linear problem Ax = b, and to formulate a sufficient

condition on A that guarantees the success of the Jacobi iterative method. It turns out that

this sufficient condition is something called diagonal dominance, which means that the diagonal

elements of A should be large (in some sense) compared to the off-diagonal ones.

11.1 Generic discussion

Consider the Jacobi scheme for solving

Av = b, (A)ij = aij ∈ R.

The idea is to write A = D + R, where

D = diag (a11, a22, · · · , ann) , n ∈ N,

and where

R = A−D.

Then, the iterations vN ,vN+1 that generate approximate solutions are obtained as follows:

DvN+1 = −RvN + b,
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for a given starting-guess v0. Assume that

lim
N→∞

= v∗.

Thus,

DvN+1 = −RvN + b,

Dv∗ = −Rv∗ + b.

Subtract:

D
(
vN+1 − v∗

)
= −R

(
vN − v∗

)
,

or

DrN+1 = −RrN , (11.1)

where rN = vN − v∗ is the residual vector at level N . Take L2 vector norms on both sides:

‖rN+1‖2 = ‖D−1RrN‖2.

Now, use the L2 operator norm:

‖rN+1‖2 ≤ ‖D−1R‖2‖rN‖2.

Telescope this result:

‖rN‖2 ≤
(
‖D−1R‖2

)N ‖r0‖2.

By requiring that ‖D−1R‖2 < 1, we obtain

lim
N→∞

‖rN‖2 = 0,

hence

lim
N→∞

rN = 0,

hence

lim
N→∞

vn = v∗.
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Thus, we have shown the following theorem:

Theorem 11.1 A sufficient condition for the convergence of the Jacobi iteration algorithm

DvN+1 = −RvN + b, vN=0 = v0,

is the following bound on the L2 operator norm:

‖D−1R‖2 < 1. (11.2)

For systems with entries on the diagonal that are relatively large (in absolte-value terms) compared

to entries off the diagonal, this constraint is usually satisfied, and the Jacobi iteration converges.

However, this is a relatively vague criterion, which is of limited use. In addition, the L2 operator norm

is difficult to compute numerically, so in practice it is not known a priori – using Theorem (11.1)

alone – whether the Jacobi method will converge. For that reason, we need a more rigorous notion

of diagonal dominance.

11.2 Diagonal dominance

Definition 11.1 (L∞ matrix norm) Let M ∈ Rn×n. Then

‖M‖∞ = sup
‖x‖∞=1

‖Mx‖∞,

where ‖x‖∞ denotes the ordinary L∞ norm for vectors: for x = (x1, · · · , xn) ∈ Rn,

‖x‖∞ = max
i
|xi|.
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Lemma 11.1 (Consistency of the L∞ norm) Let M1 and M2 be square matrices in Rn×n.

Then

‖M1M2‖∞ ≤ ‖M1‖∞‖M2‖∞.

Proof: It suffices to consider the case with ‖M1M2‖∞ 6= 0.

‖M1M2‖∞ = sup
‖x‖∞=1

‖M1M2x‖∞,

= ‖M1M2x0‖∞,

= ‖M1y‖∞, y = M2x0 6= 0,

=

(
‖M1y‖∞
‖y‖∞

)
‖y‖∞,

≤
[
sup
y 6=0

(
‖M1y‖∞
‖y‖∞

)]
‖y‖∞,

= ‖M1‖∞‖y‖∞,

= ‖M1‖∞‖M2x0‖∞,

≤ ‖M1‖∞‖M2‖∞.

Definition 11.2 Let M ∈ Rn×n. The spectral radius ρ(M) refers to that M-eigenvalue with

maximal absolute value:

ρ(M) = max
i

(|λi|) , Mxi = λixi.
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Theorem 11.2 (Bound on the spectral radius) Let M ∈ Rn×n. Then

ρ(M) ≤ ‖M‖∞.

Proof: Let Mx = λx, with x 6= 0. Let

X =


| |
x · · · x

| |

 .

Thus,

MX = λX.

Take L∞ norms on both sides:

|λ|‖X‖∞ = ‖Mx‖∞ ≤ ‖M‖∞‖X‖∞,

hence

|λ| ≤ ‖M‖∞,

for any eigenvalue λ, and the result is shown:

ρ(M) ≤ ‖M‖∞.

Now, by this stage, I am tired of proving theorems, so I shall simply state this last and crucial

theorem:

Theorem 11.3 Let M ∈ Rn×n. Then

‖M‖∞ = max
i

(
n∑
k=1

|mik|

)
. (11.3)

Note the sum over columns!
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Putting it all together

We now apply these results to M = D−1R. In view of Theorem 11.2 and Theorem 11.3, we have

ρ
(
D−1R

)
≤ ‖D−1R‖∞ = max

i

(
n∑
k=1

|(D−1R)ik|

)

But

D−1R =


0 a12

a11
· · · a1,n−1

a11

a1n
a11

...
an1
ann

· · · an,n−1

ann
0

 ,

hence

ρ
(
D−1R

)
≤ ‖D−1R‖∞ = max

i

 1

|aii|

n∑
k=1
k 6=i

|aik|

 .

This motivates a definition:

Definition 11.3 A matrix A ∈ Rn×n is diagonally dominant if

1

|aii|

n∑
k=1
k 6=i

|aik| < 1,

for each i = 1, 2, · · · , n.

Along the way, we have established the following facts for a diagonally-dominant matrix:

Theorem 11.4 Let A ∈ Rn×n be diagonally dominant. Then

ρ
(
D−1R

)
≤ ‖D−1R‖∞ = max

i

 1

|aii|

n∑
k=1
k 6=i

|aik|

 < 1,

where D and R have their usual meanings.
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We now consider a final theorem:

Theorem 11.5 Let Av = b be a linear problem, where A ∈ Rn×n is diagonally dominant. Then

the Jacobi iteration method converges.

Proof: Start with the definition of the Jacobi residuals, Equation (11.1) or, equivalently,

rN+1 = −D−1RrN , (11.4)

Telescope the result:

rN = (−1)N
(
D−1R

)N
r0.

Write

D−1R = P−1JP,

where J is the Jordan normal form associated with D−1R. We have

rN = (−1)N
(
−D−1R

)N
r0,

= (−1)N
(
P−1JP

)N
r0,

= (−1)N
(
P−1JNP

)
r0.

We now use the fact that ρ(D−1R) ≤ ‖D−1R‖∞ < 1 as in the hypothesis of the theorem. Thus,

all the eigenvalues have modulus less than one. Hence, each block in the Jordan matrix, raised to

the N th power, tends to zero as N →∞. It follows that

lim
N→∞

JN = 0. (11.5)

Therefore, finally,

lim
N→∞

rN = 0.

11.3 Operation count

An elementary (non-iterative) method of solving linear problems is Gaussian elimination. The op-

eration count of Gaussian elimination is O(n3), meaning that the number of operations (addition,

multiplication etc.) required to invert the matrix is proprtional to the cube of the size of the matrix.

This can be regarded as a relatively good performance result, since it compares very favourably with

the operation count of determinant-type calculations, the latter being another candidate method for

matrix inversion. However, for massive calculations (e.g. n ∼ 106), even the relatively good per-

formance of Gaussian elimination (O(n3)) is not satisfactory. For such large calculations, iterative

methods such as the Jacobi scheme are preferred; clearly in such iterative methods, the count is
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O(ncn
2), where nc is the number of iterations required for the method to converge, with nc � n

for n large.

Recall theorem (11.4) above: given a diagonally-dominant problem Ax = b, the Jacobi iteration

method will converge. In this module, we are always working with such systems. Thus, the Jacobi

method will always work for us. However, its convergence is quite poor. In other words, a relatively

large number of iterations is required in order to obtain a sufficiently converged solution. In this

section we outline a new method. Superficially, it is a straightforward extension of the Jacobi

method; however, on deeper reflection, the improved method represents a conceptual leap. This is

the method of successive over-relaxation (SOR).

11.4 SOR

Start with the generic problem

Ax = b.

Recall the Jacobi solution:

DvN+1 = −RvN + b.

In index notation,

vN+1
i =

1

aii

(
−

n∑
j=1

Rikv
N
k + bi

)
. (11.6)

The idea behind SOR is to retrospectively improve the ‘old guess’ vN that goes into formulating the

‘new guess’. If the ‘old guess’ can be retrospectively improved, then this makes the new guess even

better. To do this, the right-hand side of the Jacobi equation (11.6) is updated with just-recently-

created values of vN+1. Where this is not possible, the old values of vN are used. The result is the

following iterative scheme:

vN+1
i = − 1

aii

i−1∑
k=1

Rikv
N+1
k − 1

aii

n∑
k=i

Rikv
N
k +

bi
aii
. (11.7)

But Rii = 0, and Rij = aij otherwise. Hence, Equation (11.7) can be replaced by

vN+1
i =

1

aii

[
bi −

i−1∑
k=1

aikv
N+1
k −

n∑
k=i+1

aikv
N
k

]
. (11.8)

Equation (11.8) is not yet optimal (however, it is already the Gauss–Seidel method for solving a

linear system). Instead, we introduce an extra degree of freedom, which allows us to weight how

much or how little retrospective improvement of the old guess is implemented in the (N + 1)th
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iteration step. This is done by a simple modification of Equation (11.8):

vN+1
i = (1− ω) vNi +

ω

aii

[
bi −

i−1∑
k=1

aikv
N+1
k −

n∑
k=i+1

aikv
N
k

]
(11.9a)

The factor ω is restricted to the range

0 < ω < 2; (11.9b)

this preserves the diagonal-dominance of the system and hence ensures convergence. The exact

choice of ω can be made by trial-and-error in order to speed up convergence.



Chapter 12

Elements of turbulence theory

Overview

We give a qualitative definition of turbulence and introduce the phenomenological Kolmogorov

theory of the turbulent spectrum in three dimensions.

We discuss averaging techniques to reduce the complexity of the fully turbulent Navier–Stokes

equations. These are exemplified in the theory of wall-bounded turbulent flows and the famous

‘law of the wall’, Finally, we introduce large-eddy simulations as a half-way house between the full

direct numerical simulation (DNS) of the turbulent Navier–Stokes equations and the relatively crude

averaging techniques. At the end of the chapter, the students will be asked to carry out a large-eddy

simulation of a wall-bounded flow and to extract various turbulent statistics from the simulation

data.

Much of the description in this chapter is taken quite directly from the book by Pope [Pop00].

12.1 Turbulence phenomenology

Turbulence is defined here as a particular kind of fluid motion characterized by a velocity field that

varies in space and time in a complicated way, with the following two essential features:

• In the spatial domain, turbulent motion is characterized by the presence of many lengthscales,

from the domain scale (whereupon an external forcing is typically applied), down to small

lengthscales where viscous motion dominates.

• In the temporal domain, the velocity field is characterized by a non-periodic, non-constant

variation in time (i.e. chaotic motion).

141
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Note that by itself the existence of a chaotic temporal dynamics is not sufficient to characterize

turbulence: it is possible for example to observe chaotic advection in laminar flows [Are84].

Because turbulence is generated from an underlying deterministic set of equations (i.e. the Navier–

Stokes equations), it can be characterized in a deterministic fashion. However, the system contains

a large number of degrees of freedom. Focusing for definiteness (but without loss of generality) on

the case wherein the domain is a periodic box, the Fourier modes of the system form a complete

discrete set of degrees of freedom, all interacting nonlinearly to produce the complicated dynamics

alluded to in the definition. In this way, the discrete modes can be thought of as analogous to

particles in a gas: each particle can be thought of as obeying deterministic Newtonian dynamics,

but on the macroscopic level, a statistical description of the collection of gas particles (all possibly

interacting) is possible and indeed, desirable. Thus, in the case of a turbulent velocity field, we

introduce a statistical description of the flow, characterized by a probability distribution function

f(V ;x, t) for the velocity field U = (U1, U2, U3), such that

Prob


a1 < U1 < b1

a2 < U2 < b2

a3 < U3 < b3

;x, t

 =

∫ b1

a1

∫ b2

a2

∫ b3

a3

f(V ;x, t) dV1 dV2 dV3.

The average velocity is therefore

〈U(x, t)〉 =
y

d3V f(V ;x; t)V ,

and the fluctuation velocity is defined as

u(x, t) = U(x, t)− 〈U(x, t)〉.

The probability distribution function relates to quantities evaluated at a single point in space and

time. Of interest also are so-called N -point statistics: let

fN
(
V (1),x(1), t(1);V (2),x(2), t(2); · · · ;V (N),x(N), t(N)

)
be the joint probability distribution for the velocity random-variable V at space-time points

(x(1), t(1)), · · · , (x(N), t(N)).

It should be noted that turbulent velocity fields are found not to be Gaussian: a Gaussian field is

be fully characterized by the mean 〈U(x, t)〉 and by the covariances 〈ui(x(1), t(1))uj(x
(2), t(2))〉.

The random field U(x, t) is statistically stationary if the N -point correlation function is invariant
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under a shift in time:

fN
(
V (1),x(1), t(1) + T ;V (2),x(2), t(2) + T ; · · · ;V (N),x(N), t(N) + T

)
= fN

(
V (1),x(1), t(1);V (2),x(2), t(2); · · · ;V (N),x(N), t(N)

)
.

Similarly, U (x, t) is statistically homogeneous if the N -point correlation function is invariant

under a shift in the coordinate:

fN
(
V (1),x(1) + y, t(1);V (2),x(2) + y, t(2); · · · ;V (N),x(N) + y, t(N)

)
= fN

(
V (1),x(1), t(1);V (2),x(2), t(2); · · · ;V (N),x(N), t(N)

)
.

Then, in particular, the distribution function f(V ;x, t) is itself translation invariant, and we obtain

〈U(x, t)〉 =
y

d3V f(V ;x; t)V ,
y

d3V f(V ;x+ y; t)V = 〈U(x+ y, t)〉

for all y ∈ R3 and hence, the average velocity field is constant in space. Obviously this is quite

restrictive: too restrictive in fact. We therefore define a homogeneous turbulence to correspond

to a turbulent velocity field wherein the N -point distribution function for the fluctuations is ho-

mogeneous (translation invariant). Later on, in the context of Reynolds-averaging, we shall show

that for homogeneous turbulence, the mean strain rates (∂/∂xj)〈Ui〉 are uniform (but can depend

on time).

Because the distributional averages, e.g. 〈U(x, t)〉 =
t

dV f(V ;x, t)V are equivalent to ensem-

ble averages, e.g.

〈U(x, t)〉 = lim
N→∞

1

N

N∑
i=1

U (i)(x, t),

where the superscript denotes the ith realisation of the velocity field in a set of N identical experi-

ments, it follows that the averaging and the derivatives commute, i.e.

∂

∂t
〈Ui〉 =

〈
∂Ui
∂t

〉
, (12.1a)

and
∂

∂xj
〈Ui〉 =

〈
∂Ui
∂xj

〉
. (12.1b)

These facts will be crucial in the next section concerning Reynolds-averaging.
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12.2 Reynolds averaging

We take the instantaneous Navier–Stokes equations and we perform the averaging operation, using

the properties 12.1. We obtain

∂

∂t
〈Ui〉+ 〈U · ∇Ui〉 = −∇〈p〉+

1

Re
∇2〈Ui〉.

The problematic term here is the quantity

〈U · ∇Ui〉 = 〈Uj
∂Ui
∂xj
〉,

=

〈
[〈Uj〉+ uj]

[
∂

∂xj
〈Ui〉+

∂ui
∂xj

]〉
,

=

〈
〈Uj〉

∂

∂xj
〈Ui〉

〉
+

〈
〈Uj〉

∂ui
∂xj

〉
+

〈
uj

∂

∂xj
〈Ui〉

〉
+

〈
uj
∂ui
∂xj

〉
.

We use the obvious properties

〈〈a〉〉 = 〈a〉, 〈ui〉 = 0,

to obtain

〈U · ∇Ui〉 = 〈Uj〉
∂

∂xj
〈Ui〉+

〈
uj
∂ui
∂xj

〉
,

= 〈U〉 · ∇〈Ui〉+
∂

∂xj
〈uiuj〉.

We introduce

τij = −〈uiuj〉

as the Reynolds stress tensor. Then, the averaged equations of motion become

∂

∂t
〈Ui〉+ 〈U〉 · ∇〈Ui〉 = −∇〈p〉+

∂τij
∂xj

+
1

Re
∇2〈Ui〉, ∇ · 〈U〉 = 0. (12.2)

These are the Reynolds-averaged Navier–Stokes (RANS) equations.

12.3 Closure problem

The Reynolds stresses cannot be determined a priori – this is the closure problem of turbulence.

Certainly, one can write down a transport equation for the Reynolds stresses themselves, e.g.(
∂

∂t
+ 〈U〉 · ∇

)
τij = · · · ,
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but the right-hand side will involve tensors of at least rank three built out of the fluctuating veloc-

ities. To constitute these tensors, one needs a further transport equation and so on, ad infinitum.

Additional knowledge from outside the set of RANS equations is needed to break this infinite chain

of equations. At the very simplest level, this is done by constitutive modelling of the Reynolds

stress tensor; at higher levels of detail, tensors of higher rank are modelled and fed back into the

transport equations for the tensors of lower rank, thereby closing the problem. Consideration is given

herein to the simple approach.

Eddy viscosity model

In the simplest possible closure model, the Reynolds stresses themselves are modelled. The concep-

tual approach is to identify the total stress tensor in the RANS equations:

Tij = −pδij +Re−1 (∂i〈Uj〉+ ∂j〈Ui〉)− 〈uiuj〉,

and to assume an analogy between molecular diffusion and the effects of turbulence. Namely, on a

small scale, one pictures a fluid parcel undergoing thermal fluctuations due to molecular diffusion,

and further fluctuations due to the small-scale motions of the neighbouring turbulent eddies. One

assumes that these effects are similar, such that on average, the effects of the turbulence can be

modelled as though they were somehow viscous in nature, with

τij = νT (∂i〈Uj〉+ ∂j〈Ui〉) ,

where νT is the eddy viscosity. Dimensional analysis then suggests

νT = CS`2,

where S is the mean rate of strain,

S =
√

2SijSij, Sij = 1
2

(
∂

∂xi
〈Uj〉+

∂

∂xj
〈Ui〉

)
and ` is the so-called mixing length, which in turn must be constituted and depends on the

geometry of the problem.

12.4 Eddy-viscosity model for channel flows

In wall-bounded channel flows (e.g. Figure 12.1), the mixing length cannot exceed the size of the

largest eddy, which in turn cannot exceed the distance to the nearest wall, hence νT ∝ z. This
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Figure 12.1: Schematic diagram of turbulent channel flow

is the Prandtl theory of wall-bounded turbulence. Suppose that an applied pressure dP/dL < 0

drop drives the flow from left to right in Figure 12.1. Then on average, the flow will only be in the

x-direction. Once a balance between the forcing and the dissipation is established, the flow will also

be (statistically) steady. Thus,

U(x, t) = (U0(z), 0, 0)

(Compare with laminar Poiseuille flow). Then, the Reynolds-averaged Navier–Stokes equations

reduce to

−dP
dL

+
∂Ti1
∂xi

= 0,

But the only non-trivial derivative is now ∂/∂z, since the flow is (on average) translation-invariant

in the x- and y-directions, hence the RANS equation reads

−dP
dL

+
dT12

dz
= 0,

where we have used the symmetry of the stress tensor. Integrating once, we have

T12(z) = τ∗ − |dP/dL|z.

We have

T12 = Re−1dU0

dz
+ τR, τR = −〈uw〉.

hence

Re−1dU0

dz
+ τR = τ∗ − |dP/dL|z.
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where τ∗ is the wall shear stress, to be determined. Using the mixing-length theory, we obtain

τR = κ2

∣∣∣∣dU0

dz

∣∣∣∣ z,
and thus the RANS balance equation reads

Re−1dU0

dz
+ κ2z2dU0

dz

∣∣∣∣dU0

dz

∣∣∣∣ = τ∗ − |dP/dL|z.

This equation contains a lot more information than is apparent superficially. We identify a viscous

sublayer where the viscous stress dominates over the Reynolds stress, which will exist for z → 0,

wherein the dominant balance reads

ρν
dU0

dz
∼ τ∗ := ρu2

∗,

hence

ν
dU0

dz
∼ u2

∗

where we have momentarily restored the dimensional variables. The typical velocity scale in this

zone is u∗ and the typical lengthscale is the friction scale d∗, giving

νu∗
d∗
∼ u2

∗,

hence d∗ = ν/u∗, where the friction velocity u∗ is to be determined. The range 0 ≤ z > d∗ is

therefore called the viscous sublayer of the flow. We next identify a region d∗ � z � H/2 where

the dominant balance in the RANS equation reads

ρκ2z2dU0

dz

∣∣∣∣dU0

dz

∣∣∣∣ ∼ τ∗ = ρu2
∗

hence

κz
dU0

dz
∼ u∗,

where we have assumed that we are near the bottom wall, such that dU0/dz > 0 (the same

arguments will apply near the top wall, by symmetry around the channel centreline). Integration

now gives

U0 ∼
u∗
κ

log z + Const.

which is the famous law of the wall of turbulence theory.

It would be useful to find an expression for the friction velocity in terms of the problem parameters,

and at the same time, to solve for the velocity profile U0(z) throughout the entire domain 0 ≤ z ≤ H.

This is done now here a very simple eddy-viscosity model. However, before presenting this model, it
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is useful to understand the scaling of the Reynolds stress (and hence the base-state velocity profile)

near the wall at z = 0. We therefore Taylor-expand the velocity fluctuations near the bottom wall:

u(x, y, z, t) = a0(x, y, t) + a1(x, y, t)z + a2(x, y, t)z2 + · · ·

v(x, y, z, t) = b0(x, y, t) + b1(x, y, t)z + b2(x, y, t)z2 + · · ·

w(x, y, z, t) = c0(x, y, t) + c1(x, y, t)z + c2(x, y, t)z2 + · · ·

The no-slip condition obviously gives a0 = b0 = c0, hence

u(x, y, z, t) = a1(x, y, t)z + a2(x, y, t)z2 + · · ·

v(x, y, z, t) = b1(x, y, t)z + b2(x, y, t)z2 + · · ·

w(x, y, z, t) = c1(x, y, t)z + c2(x, y, t)z2 + · · ·

The same condition gives
∂w

∂x
=
∂w

∂y
=
∂v

∂x
=
∂v

∂y
=
∂u

∂x
=
∂u

∂y

at z = 0 and hence, by incompressibility,

∂w

∂z
= 0

at z = 0. Therefore, c1 = 0 identically, and hence,

uw =
(
a1(x, y, t)z + a2(x, y, t)z2 + · · ·

) (
c2(x, y, t)z2 + · · ·

)
,

= a1c2z
3 + · · · ,

hence

τR = −〈uw〉 = −〈a1c2〉z3 +O(z4),

as z → 0.

12.4.1 The model

Instead of starting from the mixing-length theory, we start from scratch, and derive the eddy viscosity

using an alternative approach. We first of all introduce from first principles the non-dimensionaliztion

scheme for the RANS balance equation. Thus, we introduce a velocity scale

Up =
√
|dP/dL|h/ρ
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and the Reynolds number

Rep = ρUph/µ

The problem contains a further, apparently unknown parameter, Re∗, based on the friction velocity:

Re∗ =
ρU∗h

µ
, ρU2

∗ = µ
dU0

dz

∣∣∣∣
z=0

.

which will be determined by the model. These considerations therefore suggest the following func-

tional form for the (dimensionless) eddy viscosity:

µT (z) = Re∗F (z/h)

where henceforth we use z for z/h. We are therefore dealing with an algebraic closure model.

We make the inspired guess

F = κψw(z)ψw(1− z)G(z),

where

G(z) = z(1− z)

[
1− 3z(1− z)

1− z(1− z)

]
, (12.3)

and where

ψw(z) = 1− e−αz
2Re2∗ ,

is a wall function (See References [Bib07, NSMZ11]). The parameter α is fixed such that

U(z = 5d∗) = 0.95(u2
∗z/ν)z=5d∗ = 0.95× 5u∗.

Thus, the velocity is obtained through the relation

U(z) =
Re2
∗

Re0

∫ z

0

(
1− Re20

Re2∗
s
)

ds

1 + κRe∗G(s)ψw(s)ψw(1− s)
(12.4)

The friction velocity is thus obtained through the following root-finding condition for Re∗:

U(z = 1;Re∗) = 0.

The clever thing about the choice (12.3) for the algebraic closure is that the correct scaling is

recovered for U(z) in the log layer and in the viscous sublayer. Also, the model is symmetric around

the centreline, with G(z) = G(1− z).
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Figure 12.2: A comparison with Reference [WWL87] for single-phase channel flow. In the experi-
ment, the Reynolds number based on the friction velocity was 1.143× 103, which corresponds to a
model Reynolds number Rep =

√
2× 1.143× 103. The mean Reynolds number in the experiment

was Rem = 2.158× 104 – a Reynolds number based on the mean velocity and channel depth. For
comparison, the corresponding mean Reynolds number in the model is Rem = 2130× 104.

Exercise 12.1 Work though the derivation of Equation (12.4) explicitly. Implement the velocity

profile numerically and compute Re∗ for a given Reynolds number. Show also a plot of the

dependence of Re∗ on the input parameter Re. The computations can be validated with the

data in Figure 12.2.

We have compared the model an experimental paper [WWL87], and the model gives excellent

agreement: both the curve U0(z) and the interfacial shear stress are predicted well (Figure 12.2).

12.5 Turbulence intensity

The turbulence intensity is defined as

k = 1
2
〈u2 + v2 + w2〉, ρ = 1.
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We derive a transport equation for the turbulent kinetic energy, writing the Navier–Stokes equations

in the following decomposition:

∂

∂t
(〈U〉+ u) + (〈U〉+ u) · ∇ (〈U〉+ u) = −∇〈p〉 − ∇p′ + 1

Re
∇2〈U〉+

1

Re
∇2u.

But we also have the RANS equation

∂

∂t
〈U〉+ 〈U〉 · ∇〈U〉 = −∇〈p〉+

1

Re
∇2〈U〉+∇ · τ .

Subtract these equations and take components to obtain[
∂

∂t
+ (〈U〉+ u) · ∇

]
ui = −uj

∂

∂xj
〈Ui〉+

∂

∂xj
〈uiuj〉 −

∂p′

∂xi
+

1

Re
∇2ui.

Multiply both sides by ui, sum over i and average. On the LHS we obtain〈
ui

[
∂

∂t
+ (〈U〉+ u) · ∇

]
ui

〉
=

∂k

∂t
+ 〈Uj〉

〈
ui
∂ui
∂xj

〉
+

〈
uiuj

∂ui
∂xj

〉
,

=
∂k

∂t
+ 〈U〉 · ∇k +

〈
uiuj

∂ui
∂xj

〉
,

=
∂k

∂t
+ 〈U〉 · ∇k + 1

2

∂

∂xj
〈|u|2uj〉.

where we have used 〈
uiuj

∂ui
∂xj

〉
=

〈
ui

∂

∂xj
(uiuj)

〉
= 1

2

∂

∂xj
〈uiuiuj〉,

On the right-hand side, we work on each term individually. We identify the production of turbulent

kinetic energy:

P = −〈uiuj〉
∂

∂xj
〈Ui〉 = τ : ∇〈U〉.

Also, 〈
ui
∂p′

∂xi

〉
=

∂

∂xi
〈uip′〉.

Finally, the term 〈ui∇2ui〉 is re-arranged as

〈ui∇2ui〉 =
∂

∂xj

〈
ui
∂ui
∂xj

〉
−
〈
∂ui
∂xj

∂ui
∂xj

〉
.

We identify the dissipation of turbulent intensity:

ε := − 1

Re

〈
∂ui
∂xj

∂ui
∂xj

〉
≤ 0.
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Thus, the equation for the turbulent kinetic energy reads(
∂

∂t
+ 〈U〉 · ∇

)
k +∇ ·R = P − ε, (12.5)

where the vector R represents redistribution of turbulent intensity:

Ri = 1
2
〈|u|2ui〉+ 〈uip′〉 −

1

Re

〈
uj
∂uj
∂xi

〉
.

These results give great insight into the energy budget that underlies turbulence generation: it is

the interaction between the Reynolds stresses and the mean flow that generates turbulence via the

production term τ : ∇〈U〉, while the turbulence is dissipated via molecular dissipation.

Exercise 12.2 Show that Equation (12.5) can be rewritten in the following (equivalent) way:(
∂

∂t
+ 〈U〉 · ∇

)
k +∇ ·R′ = P − ε′, (12.6)

where the meaning of P is unchanged, but where

R′i = 1
2
〈|u|2ui〉+ 〈uip′〉 − (2/Re)〈ujsij〉,

and

ε′ = (2/Re)〈sijsij〉.

Also, sij is the rate-of-strain tensor associated with the fluctuating velocities,

sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

We now use this theory to prove an important result:

Theorem 12.1 For homogeneous turbulence, the most general form for the mean velocity profile

is

〈Ui〉 = ai(t) + bij(t)xj

Recall, the definition of homogeneous turbulence means that the statistics of the turbulent velocity

fluctuations are translation invariant. Thus, for homogeneous turbulence, we have

k = 1
2
〈|u|2〉, Ri = 1

2
〈|u|2ui〉+ 〈uip′〉 −

〈
ui
∂ui
∂xj

〉
, ε = − 1

Re

〈
∂ui
∂xj

∂ui
∂xj

〉
,
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Figure 12.3: Schematic description of the different lengthscales involved in turbulence

all independent of space. We substitute these results into the turbulent kinetic energy equation to

obtain
∂k

∂t
+ ε = P

and it follows that the production is independent of spatial coordinates, i.e.

−〈uiuj〉
∂

∂xj
〈Ui〉

is independent of space. But −〈uiuj〉 is independent of space also, and so (∂/∂xi)〈Uj〉 is indepen-

dent of space. It therefore follows that

〈Ui〉 = ai(t) + bij(t)xj,

such that (∂/∂xi)〈Uj〉 = bij(t), independent of space, as required.

Having now understood something of the mechanisms underlying the production, transport, and

dissipation of turbulence intensity, we can now study a more detailed (but phenomenological) theory

for these processes, which underscores the multiscale nature of these turbulence mechanisms.

12.6 K-41 theory

The idea of the Kolmogorov-1941 (K-41) theory is to break up the motion into three ranges (Fig-

ure 12.3 ).
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Energy-containing range

On these scales, the motion is made up of large-scale coherent motions called ‘eddies’. A typical

eddy in this range is of size `0, with `0 ∼ L, where L is the lengthscale of the domain. The

characteristic velocity of the eddies will be u0 = u(`0), with u0 = [(2/3)k]1/2, where k is the

turbulence intensity, which in turn is comparable to U , the typical flow magnitude on the domain

scale. We have Re0 = u0`0/ν, which is the Reynolds number associated with the large eddy. Also,

Re0 ∼ Re, where Re = UL/ν, which is the Reynolds number associated with the domain scales.

The large eddies interact with the smaller eddies via the nonlinear term in the NS equation, leading

to a transfer of energy from the larger eddies to the smaller ones. This process continues (in three

dimensions) down to the smallest scales where dissipation dominates over inertia in the Navier–

Stokes equation, such that energy is eventually dissipated from the system.

The large eddies have an energy of order u2
0 and a timescale τ0 = `0/ν0, so the rate of transfer

of energy can be supposed to scale as u2
0/τ0 = u3

0/`0. Because the dissipation is controlled by

the transfer, it can also be supposed that the dissipation rate ε scales as u3
0/`0, independent

(shockingly) of ν!!

Inertial and dissipation ranges

In the inertial range and the dissipation range, Kolmogorov’s similarity hypotheses are assumed to

hold:

• At sufficiently high Reynolds number, the small-scale turbulent motions (`� `0) are statisti-

cally isotropic.

• In every turbulent flow a t sufficiently high Reynolds number, the statistics of the small-scale

motions (` < `EI) have a universal form that is uniquely determined by ν and ε.

In the dissipation range, dimensional analysis gives

η = (ν3/ε)1/4 · · · lengthscale

uη = (εν)1/4 · · · velocity scale

τη = (ν/ε)1/2 · · · time scale.

Note that

Reη = 1,
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meaning that dissipation is important (not surprisingly!) in the dissipation range. The ratio of the

smallest to largest scales is thus given by

η

`0

=
ν3/4

`0ε1/4
,

=
ν3/4

`0(u3
0/`0)1/4

,

=
ν3/4

u
3/4
0 `

1−(1/4)
0

,

= (ν/u0`0)−3/4,

∼ Re−3/4,

hence η/`0 ∼ Re−3/4. Similarly,

uη/u0 ∼ Re−1/4, τη/τ0 ∼ Re−1/2.

Thus, at very high Reynolds numbers, the scales of motion (length, velocity and time) are all much

smaller in the small eddies in the dissipative range than in the larger eddies in the energy-containing

range.

Crucially for direct numerical simulation of turbulence, the numerical simulation must resolve down

to the dissipative scales, such that

∆x ≤ η,

hence

∆x/`0 ≤ (η/`0) ∼ Re−3/4.

The number of gridpoints in the problem is N = (`0/∆x)3 for a full three-dimensional simulation

and hence,

N ∼ Re9/4

is the number of grid points required in a three-dimensional direct numerical simulation of turbulence.

A further consequence of the formula η/`0 ∼ Re−3/4 is the obvious fact that η � `0 at high

Reynolds numbers, meaning that there is a range of lengthscales `, with

η � ``0

which correspond neither to the dissipative range nor the energy-containing range. This is the

inertial range. Again, in this range, it is expected that the Kolmogorov hypotheses should hold,

giving

u(`) = (ε`)1/3 = ε1/3`1/3.
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But

uηη
1/3 =

(εν)1/4

[(ν3/ε)1/4]
1/3
,

=

[
(εν)3/4

(ν3/ε)1/4

]1/3

,

=

[
ε3/4ν3/4ε1/4

ν3/4

]1/3

,

= ε1/3,

hence

u(`) = uη(`/η)1/3.

We have

uη(`/η)1/3 = u0(uη/u0)(`0/`η)
1/3(`/`0)1/3,

= u0(`/`0)1/3(uη/u0)(`0/`η)
1/3,

= u0(`/`0)1/3Re−1/4Re1/4,

= u0(`/`0)1/3,

hence u(`) ∼ u0(`/`0)1/3. Similarly,

u(`) ∼ u0(`/`0)1/3, τ(`) ∼ τ0(`/`0)2/3, (12.7)

such that, in the inertial range, the velocity scales u(`) and timescales τ(`) decrease as ` decreases.

The energy cascade

The rate at which energy is transferred from a scale ` to (smaller) scales is denoted by T (`) and is

expected to scale as

T (`) ∼ u(`)2/τ(`).

By Equation (12.7), we have

T (`) ∼ u2
0`

2/3`
−2/3
0

τ0`2/3`
−2/3
0

=
u2

0

τ0

= ε,

and thus, the transfer rate is independent of the scale: the transfer rate is the same on all

lengthscales.
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The energy spectrum

The energy spectrum is introduced as follows, starting with the total turbulent kinetic energy:

E =

∫
d3x

(
1
2
|u|2

)
,

= 1
2

∫
d3k

(2π)3
|ûk|2,

=

∫ ∞
0

dk

(
1
2
k2

∫
Ω

dΩ |ûk|2
)
,

:=

∫ ∞
0

dk E(k),

and E(k) is called the energy spectrum.

In the inertial range, by Kolmogrovo’s similarity hypotheses, the energy spectrum is determiend

entirely by ε and ν: we have

E(k) = εaνbkc,

and dimensional analysis gives

2a+ 3b− c = 3,

3a+ b = 2.

The system of equations is underdetermined. However, in the inertial range, the viscosity does not

have a direct effect on the eddies. This can be seen as follows:

Re(`) =
u0(`/`0)1/3`

ν
,

=
u0`0

ν
(`/`0)1/3(`/`0),

= Re0(`/`0)4/3 � 1,

with Re(`) = 1 at the onset of th dissipation range. This direct viscous effects are negligible in the

inertial range, and we therefore take b = 0, hence a = 2/3 and c = −5/3, giving

E(k) = Cε2/3k−5/3,

which is the celebrated Kolmogorov spectrum of turbulence.

The Kolmogorov spectrum is a fairly well-established feature of three-dimnensional turbulence (e.g.

Figure 12.4). To understand this figure fully, consider for definiteness a channel flow with walls

bounding the flow in the z direction, with (x, y, z) ∈ [0, Lx]× [0, Ly]× [0, H]. One starts with the
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Figure 12.4: Experimental validation of the Kolmogorov spectrum in the inertial range for a variety of
different turbulent flows, taken from Reference [Pop00]. As the statistics of turbulence are universal
in the inertial and dissipative ranges, it is expected that the Kolmogorov spectrum will hold, not
matter what are the details of the large-scale geometry and forcing.
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following two-point correlation function in real space:

Rij(x, y, z) =
1

t2 − t1
1

LxLy

∫ t2

t1

dt

∫ Lx

0

dx′
∫ Ly

0

dy′Ui(x+x′, y+y′, z)Uj(x
′, y′, z)−〈Ui〉(z)〈Uj〉(z);

(12.8)

Then, based on Equation (12.8), one takes a Fourier transform in plane parallel to the walls at

location z, defined as follows:

R̂ij(kx, ky, z) =
x

[0,Lx]×[0,Ly ]

dxdy e−ikxx−ikyyRij(x, y, z).

The vertical axis in Figure 12.4 shows E11(kx, z) := |R̂ij(kx, 0, z)|. For a channel flow, this would be

typically taken at the channel midpoint z = H/2. Because turbulence is homogeneous and isotropic

at sufficiently small scales, it shouldn’t matter that we are looking at a Fourier transform involving

only the kx-wavenumbers. Also, it shouldn’t matter that we are looking at the correlation function

in the particular directions i = j = 1. Thus, it is expected that the famous Kolmogorov scaling law

E11(kx) ∼ k
−5/3
x should apply, as indeed it does in Figure 12.4 – in the window where the spectrum

exhibits the straight-line behaviour on the loglog scale – to a wide range of different experiments at

different (sufficiently high) Reynolds numbers. For sufficiently small scales, and across the range of

experiments on show, the spectrum exhibits exponential decay (or possibly faster-than-exponential

decay), corresponding to the dissipation range.

The Kolmogorov scaling theory is also self-consistent, in the following sense. For, taking E(k) =

Ak−p, the energy contained in a wavenumber range k ∈ (k0,∞) is

Energy[k ∈ (k0,∞)] =

∫ ∞
k0

E(k)dk =
A

p− 1
k
−(p−1)
0 ,

meaning that p > 1 for a finite energy. Also, the total dissipation can be expressed as

ε = 2ν

∫
d3x sijsij, sij = 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
where Sij is the instantaneous rate-of-strain tensor. Using Parseval’s identity, this is

ε = 2ν

∫ ∞
0

dk k2E(k),

and the amount of dissipation occuring in the scales k ∈ (0, k0) is thus

Dissipation[k ∈ (0, k0)] = 2ν

∫ k0

0

dkm2E(k) =
2νA

3− p
k3−p

0 .

Therefore, in order for the dissipation in the scales (0, k0) to remain finite as k0 → 0, we need
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p < 3. Thus, we need 1 < p < 3, and the K-41 theory is definitely consistent with this requirement.

Indeed, with the K-41 theory, we have

Energy[k ∈ (k0,∞)] ∼ k
−2/3
0 ,

which properly deceases as one goes to larger k0 (smaller lengthscales), and

Dissipation[k ∈ (0, k0)] ∼ k
4/3
0 ,

which also properly decreases as one goes to smaller k0 (larger lengthscales).

The second-order structure function

We introduce the following two-point correlation called the structure function:

Dij(r,x, t) = 〈[Ui(x+ r, t)− Ui(x, t)] [Uj(x+ r, t)− Uj(x, t)]〉.

For homogeneous turbulence, we have

Dij(r,x, t) = Dij(r, t)

only, and we therefore have the following fact:

Theorem 12.2 For the second-order structure function in homogeneous turbulence, we have

∂Dij(r, t)

∂ri
= 0.

Proof: We have

Dij(r, t) = 〈Ui(x+r, t)Uj(x+r, t)〉−〈Ui(x+r, t)Uj(x, t)〉−〈Ui(x, t)Uj(x+r, t)〉+〈Ui(x, t)Uj(x, t)〉.

Hence,

∂Dij(r, t)

∂ri
=

〈[
∂

∂ri
Ui(x+ r, t)

]
Uj(x+ r, t)

〉
+

〈
Ui(x+ r, t)

[
∂

∂ri
Uj(x+ r, t)

]〉
−
〈[

∂

∂ri
Ui(x+ r, t)

]
Uj(x, t)

〉
−
〈
Ui(x, t)

[
∂

∂ri
Uj(x+ r, t)

]〉
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A few of these terms are obviously zero because of incompressibility, and we are left with

∂Dij(r, t)

∂ri
=

〈
Ui(x+ r, t)

[
∂

∂ri
Uj(x+ r, t)

]〉
−
〈
Ui(x, t)

[
∂

∂ri
Uj(x+ r, t)

]〉
=

〈
[Ui(x+ r, t)− Ui(x, t)]

[
∂

∂ri
Uj(x+ r, t)

]〉
We break up these terms into the fluctuating component and the mean component, remembering

that

〈Ui〉 = ai(t) + bij(t)rj

for homogeneous turbulence. Thus,

Ui(x+ r, t)− Ui(x, t) = [ui(x+ r, t)− ui(x, t)] + bikrk,

∂

∂ri
Uj(x+ r, t) =

∂

∂ri
uj(x+ r, t) + bimxm

Hence,

∂Dij(r, t)

∂ri
=

〈
[(ui(x+ r, t)− ui(x, t)) + bikrk]

[
∂

∂ri
uj(x+ r, t) + bij

]〉
,

=

〈
[(ui(x+ r, t)− ui(x, t))]

[
∂

∂ri
uj(x+ r, t)

]〉
+ 〈[(ui(x+ r, t)− ui(x, t))] bij〉

+

〈
bikrk

[
∂

∂ri
uj(x+ r, t)

]〉
+ 〈bikbijrk〉.

Hence,

∂Dij(r, t)

∂ri
=

〈
rk

[
∂

∂xk
ui(x)

] [
∂

∂ri
uj(x+ r, t)

]〉
+1

2

〈
rkrm

[
∂2

∂xkxm
ui(x)

] [
∂

∂ri
uj(x+ r, t)

]〉
+· · ·

+

〈
rk

[
∂

∂xk
ui(x)

]
bij

〉
+ 1

2

〈
rkrm

[
∂2

∂xkxm
ui(x)

]
bij

〉
+

〈
bikrk

[
∂

∂ri
uj(x+ r, t)

]〉
+ 〈bikbijrk〉.

and these correlations now involve only the (homogeneous) fluctuations and are therefore indepen-

dent of r. We can therefore set r = 0 everywhere, giving

∂Dij(r, t)

∂ri
= 0.

We now return to the structure function Dij(r, t) for homogeneous isotropic turbulence. Now,

the only second-order homogeneous isotropic tensors that can be formed from the vector r are δij
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and rirj, hence

Dij(r, t) = DNN(r, t)δij + [DLL(r, t)−DNN(r, t)]
rirj
r2

.

Using ∂iDij(r, t) = 0, we obtain

DNN(r, t) = DLL(r, t) + 1
2
r
∂

∂r
DLL (12.9)

Exercise 12.3 Prove Equation (12.9).

Now, it follows from the Kolmogorov similarity hypotheses that any kind of turbulence is homo-

geneous and isotropic on the small scales, and thus the previous arguments will apply to any kind

of turbulence for r sufficiently small. Therefore, in the inertial range and below, for any kind of

turbulence, and using the second similarity hypothesis, we have

DLL(r, t) = (εr)2/3D̂LL(r/η).

where D̂LL is a dimensionless universal function. In the inertial range, where the effects of the

viscosity are only indirect, we will have

DLL(r, t) = C(εr)2/3,

where C is a universal constant. Using Equation (12.9) above, we will also have DNN = (4/3)DLL

and hence, in the inertial range,

Dij = C2(εr)2/3
(

4
3
δij − 1

3

rirj
r2

)
.

12.7 Direct numerical simulation (DNS)

As the name would suggest, the full three dimensional and time dependent Navier–Stokes equations

are solved on a computational mesh which is fine enough to resolve the smallest length scale eddies

present in the flow, and for a domain which is large enough to allow the largest eddies to develop.

The main drawback of this method is its associated computational cost, and it cannot be applied

to large Reynolds number flows which are of interest (e.g. for the flow about an airplane with a

characteristic velocity of 30 m/s, the Reynolds number is typically 2×107 requiring in excess of 1017

grid points). However, due to the resolution used, they provide the most accurate computational

results attainable, which can then be compared to direct experimental results in certain cases
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12.8 Large-eddy simulation

With thanks to James Fannon who provided text for this section.

LES can be thought of as a middle road in terms of complexity between RANS and DNS. Main idea

behind an LES is to obtain a so-called filtered velocity u by forming a convolution between the full

velocity field and a given homogeneous (i.e. space independent) filter function G (r) such that:

u (x, t) =

∫
Ω

G (r)u (x− r, t) dnx (12.10)

where the integral is taken over the domain Ω. Typical examples of such filter functions are the box

filter:

G(r) =

 1
L
, |r| ≤ L

2

0, |r| > L
2

and Gaussian filter:

G(r) =
1√
πL

exp

(
−r2

L2

)
which allow for local averages of u (x, t) in the neighbourhood of x to be computed, where the

average is taken over a length scale L [Dav09]. The effect of this process is to allow for the

larger, energy carrying eddies to be resolved exactly while filtering out the small-scale eddies (Fig-

ure 12.5). Although these eddies are not simulated directly, their effect on the rest of the flow

is modelled [Dav09]. As such, a LES is more accurate than a RANS simulation as the unsteady

large-scale eddies are computed exactly, while it is not as computationally expensive as a full DNS

as the smaller scales are not resolved. Thus, it provides a very useful middle ground between both

methods. According to Reference [Pop00], the four main steps involved in a LES are given by:

1. A filtering operation is applied to the full velocity field in order to form the filtered velocity

u (x, t), which describes the motion of large-scale eddies, and the fluctuating velocity field

u′ (x, t) which describes the motion of the smaller, unresolved eddies.

2. Obtain the governing equations for u (x, t) from the NSE. These contain an additional term

known as the residual stress tensor.

3. The residual stress tensor is modelled in such a way that it takes into account the effect of

the unresolved eddies on the rest of the flow. Hence closure is obtained.

4. The governing equations, which are now closed, are then solved numerically. This allows for

the large-scale eddies in the flow to be computed exactly.

We now place our focus on deriving the governing equations for u (x, t), for a general form of the

filtered velocity as defined by equation 12.10. Let us apply the filtering process to the dimensionless
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Figure 12.5: Application of a filtering process to the full velocity field ux yields a filtered velocity uLx
which accurately represents the large-scale features but removes the small-scale fluctuations [Dav09].

NSE. We apply the filtering operation (as defined by equation 12.10) to these equations and use the

fact that the operations of filtering (denoted by the barred variables) and differentiation commute

(Technically, this is only true for homogeneous filters [Pop00]), i.e.:

(
∂ui
∂t

)
=
∂ui
∂t
,

(
∂ui
∂xj

)
=
∂ui
∂xj

and similarly for the pressure. Hence one obtains:

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂p

∂xi
+

1

Re∗

∂2ui
∂xj∂xj

∂ui
∂xi

= 0

By rewriting the first equation and using the incompressibility condition, we arrive at the filtered

equations of motion [San09]:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re∗

∂2ui
∂xj∂xj

− ∂τij
∂xj

(12.11)

∂ui
∂xi

= 0 (12.12)

where we define the residual stress tensor as:

τij = uiuj − ui uj (12.13)

Note that these equations are analogous to the RANS equations derived previously, but the interpre-

tation of what the variables signify is very different. In the RANS equations, ui represents the mean

flow, while in the filtered equations of motion, the variable ui represents the motion of large-scale

eddies and hence can be thought of as the mean flow plus the large-scale turbulent motion [Dav09].
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As the residual stress term contains the unknown variable ui, it remains to formulate an appropriate

method of modelling this term so to achieve closure of the system.

Over the past 40 years, LES have proved to be an invaluable tool for researchers interested in

studying turbulent flow. The method was first implemented in Reference [Dea70] who, despite

using a resolution of only 6720 grid points, obtained some promising results, and paved the way for

a number of future researchers e.g. Reference [Sch75] and Reference [Pio93]. Despite the positive

aspects of LES, its main weakness, as stated in the critical review carried out in Reference [Mas94],

occurs at near surface regions where the turbulent length scales become small in relation to the filter

width (the filter width associated with a LES is the cut-off length scale beyond which no eddies

are resolved). Here, a much finer computational mesh would be needed to take into account the

effect of these small-scale eddies. Ideally, one would use an adaptive grid when solving the NSE

computationally, where the grid spacing itself is a function of position. In such a scheme, a higher

resolution would be used close to surfaces than would be used in the rest of the domain.

12.9 LES method – implementation

The filter function G (r) as discussed in section 12.8 is incorporated implicitly into a numerical

simulation by means of the resolution of the computational mesh itself i.e. the grid spacing provides

a natural filter for defining the smallest length scale eddies resolvable in the simulation. As such, it

remains to model the residual stress term (also known as the Subgrid-Scale (SGS) term):

τij = uiuj − ui uj

In a turbulent flow, the net transfer of energy from large to small eddies appears as an energy loss or

dissipation from the large-scale eddies. As such, the primary function of the SGS term is to remove

energy from the resolved eddies at an appropriate rate, and thus the proposed model for it should

be dissipative in nature [AB97]. The most common method of modelling this term is that proposed

by [Sma63], known as the eddy-viscosity model:

τij = −2νtsij

where νt is the so-called eddy viscosity, while the rate of strain tensor with respect to the filtered

velocity is given by:

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
The eddy viscosity should be determined by the most energetic of the unresolved eddies in the simu-

lation [Dav09]. As such, let ∆ denote the characteristic length scale of the largest, and hence most
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energetic, unresolved eddies. According to [Dea70], this length scale is proportional to (∆x∆y∆z),

and here we take the value as quoted by [AB97]:

∆ = 2 (∆x∆y∆z)1/3 (12.14)

On dimensional grounds, one knows that [νt] = [Length]2/Time, and thus a natural proposition for

νt is of the form:

νt ∼ ∆ (v∆)

where v∆ is a velocity scale for eddies of size ∆. [Sma63] took this velocity scale to be:

v∆ = ∆ |s| , where |s| =
√

2 (sij) (sij)

As such, the eddy viscosity term becomes:

Figure 12.6: Plot of φw (z) for p = q = 1, A = 25 and Re∗ = 360, the Reynolds number used in
the LES.

νt = C2
S∆2 |s| (12.15)

where CS is a dimensionless constant known as the Smagorinsky coefficient, usually taken to be

CS = 0.1 [Dav09]. Furthermore, in order to take into account the turbulence near the walls

z = 0, 1, where the largest unresolved eddies decrease in size, we use the method of near wall

modelling (NWM). This method amounts to introducing a wall damping function φw (z), which is
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given by [San09]:

φw (z) =


(
1− exp

[(−zRe∗
A

)]p)q
, z ≤ 1

2(
1− exp

[
−(1−z)Re∗

A

]p)q
, z ≥ 1

2

(12.16)

as an additional prefactor for the length scale ∆. In this LES, we take the values p = q = 1 and

A = 25, in keeping with the standard Van Driest components. A plot of the wall damping function

for the parameters of interest is given in figure 12.6. The use of this function is both simple to

implement numerically and saves computational cost, as compared to introducing a finer mesh grid

at the wall which would provide a much more accurate means of modelling the turbulence there.

As such, by incorporating the wall damping function, the eddy viscosity term to be implemented

numerically is given by:

νt = (CS∆φw)2 |s| (12.17)

Now substituting the model for the SGS term:

τij = −νt
(
∂ui
∂xj

+
∂uj
∂xi

)
(12.18)

into Equation (12.11), we find that:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re∗

∂2ui
∂xj∂xj

− ∂

∂xj

(
−νt

(
∂ui
∂xj

+
∂uj
∂xi

))
which can be rewritten as:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj

((
1

Re∗
+ νt

)(
∂ui
∂xj

+
∂uj
∂xi

))
again using the incompressibility condition.

12.9.1 Initialization

The turbulence initialization technique which will be implemented in this study is that presented

by [BGC04] and [BBP08]. A summary of the method and its numerical implementation will be

presented below. First, the initial velocity field to be constructed (u (x)) is written as a vector

potential:

u(x) = ∇× (A (x) f (z)) (12.19)
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where the function f (z) is an appropriate scaling function of the vector field A (x) which ensures

that the no-slip boundary conditions at z = 0, 1 are enforced. Expanding Equation (12.19) we have:

u = f (z) (∇×A (x)) + (∇f)×A (x)

=⇒ u = f (z)

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

Ax Ay Az

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

0 0 fz

Ax Ay Az

∣∣∣∣∣∣∣∣
and hence each component of u(x) is given by:

u = f (z) (∂yAz − ∂zAy)− Ay
df

dz
(12.20)

v = f (z) (∂zAx − ∂xAz) + Ax
df

dz
(12.21)

w = f (z) (∂xAy − ∂yAx) (12.22)

As such, in order to ensure that each component vanishes at z = 0, 1 we use the following form for

the scaling function:

f (z) =
1

2
+

1

2
sin

(
2πz

Lz
− π

2

)
=⇒ df

dz
=

π

Lz
cos

(
2πz

Lz
− π

2

)
(12.23)

where Lz = 1 is included explicitly for completeness. It now remains to define the velocity field

A (x). There are a number of features which we want this field to have:

1. As we wish to initialize the system with a turbulent velocity field, the fieldA should incorporate

some randomness.

2. It must satisfy the periodic boundary conditions in the streamwise and spanwise directions.

This suggests that we take a Fourier sum for each component of the field (where i = x, y, z):

Ai (x) =

Ckx∑
kx=1

Cky∑
ky=1

Ckz∑
kz=1

[Si (kx, ky, kz) sin (k · x) + Ci (kx, ky, kz) cos (k · x)] (12.24)

where we have a sum over the wavenumber k:

k =

(
2π

Lx
kx,

2π

Ly
ky,

2π

Lz
kz

)
and the constants Si (kx, ky, kz) and Ci (kx, ky, kz) are random numbers between 0 and 1.
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12.10 TPLS

TPLS stands for Two-phase Levelset, and is a code created by the present author (along with

Dr Prashant Valluri, University of Edinburgh), for simulating two-phase flows. This code solves

the Navier–Stokes equations for two fluids, simulating the interface between the two phases using

a levelset formulation. The code, written in Fortran 90, is fully parallelized using the MPI and

OpenMP parallelisation schemes, so that it can be run on thousands of CPU cores, and has been

rigorously validated. A single-phase version also exists and is capable of simulating turbulence using

LES with the Smagorinsky model above – see

https://sourceforge.net/p/tpls/code/HEAD/tree/trunk/s-tpls/

Exercise 12.4 Obtain the single-phase turbulent version of TPLS. Configure and compile a

version on whatever multicore machine you can find. Run the code for a sufficient length of

time to generate turbulent statistics. Plot the average streamwise turbulent velocity field.

https://sourceforge.net/p/tpls/code/HEAD/tree/trunk/s-tpls/
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M codes

A numerical method for solving the model diffusion problem is implemented below.

1 f u n c t i o n [ xx , yy , C , t i m e v e c , norm decay ]= t e s t d i f f u s i o n j a c o b i ( )

2

3 % Numer i ca l method to s o l v e

4 % ( d/ dt )C=[D { xx}+D { yy } ]C+s ( x , y ) ,

5 % s u b j e c t to p e r i o d i c boundary c o n d i t i o n s i n the x−d i r e c t i o n ,

6 % and Neuman boundary c o n d i t i o n s at y=0 and y=L y .

7

8 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9 % S i m u l a t i o n p a r a m e t e r s

10

11 [ Nx , Ny , ˜ , ˜ , A0 , dx , dy , kx0 , ky0 , dt , ˜ , n t i m e s t e p s ]= f i x a l l p a r a m e t e r s ( ) ;

12

13 % m a x i t e r a t i o n f o r d i f f u s i o n :

14 m a x i t e r a t i o n =30;

15

16 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
17 % P o i s s o n s o l u t i o n :

18

19 [ ˜ , ˜ , C p o i s s , ˜ , ˜ ] = t e s t p o i s s o n j a c o b i ( ) ;

20

21 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
22 % I n i t i a l i s e s o u r c e and c o n c e n t r a t i o n f i e l d s .

23 % I n i t i a l i z e s o u r c e and c o n c e n t r a t i o n f i e l d s .

24

25 s s o u r c e=z e r o s (Nx , Ny) ;

26 C=z e r o s (Nx , Ny) ;

27

28 xx =0∗(1:Nx) ;

29 yy =0∗(1:Ny) ;
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30

31 kx=kx0 ;

32 ky=3∗ky0 ;

33

34 f o r i =1:Nx

35 f o r j =1:Ny

36 x v a l =( i −1)∗dx ;

37 y v a l =( j −1)∗dy ;

38

39 xx ( i )=x v a l ;

40 yy ( j )=y v a l ;

41

42 s s o u r c e ( i , j )=A0∗ cos ( kx∗ x v a l ) ∗ cos ( ky∗ y v a l ) ;

43 C( i , j )=cos ( kx0∗ x v a l ) ∗ cos ( ky0∗ y v a l )+cos (2∗ kx0∗ x v a l ) ∗ cos ( ky0∗ y v a l )+cos (

kx0∗ x v a l ) ∗ cos (4∗ ky0∗ y v a l ) ;

44 end

45 end

46

47 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
E n t e r i n t o t ime l o o p now

48 % E n t e r i n t o t ime l o o p now

49

50 norm decay =0∗(1: n t i m e s t e p s ) ;

51 t i m e v e c =(1: n t i m e s t e p s ) ∗ dt ;

52

53 f o r i t e r a t i o n t i m e =1: n t i m e s t e p s

54

55 RHS= get RHS (C , dt , dx , dy , Nx , Ny) ;

56 RHS=RHS+dt ∗ s s o u r c e ;

57

58 f o r j a c o b i i t e r a t i o n =1: m a x i t e r a t i o n

59 C o l d=C ;

60

61 C=d o j a c o b i C ( C old , RHS, dt , dx , dy , Nx , Ny) ;

62

63 % Implement Neumann c o n d i t i o n s at y=0,y=L y .

64 C ( : , 1 )=C ( : , 2 ) ;

65 C ( : , Ny)=C ( : , Ny−1) ;

66 end

67

68 e r r 1= g e t d i f f (C , C old , Nx , Ny) ;

69 i f (mod( i t e r a t i o n t i m e , 1 0 0 ) ==0)

70 d i s p l a y ( s t r c a t ( num2str ( i t e r a t i o n t i m e ) , ’ : R e s i d u a l i s . . . ’ , num2str ( e r r 1

) ) )

71 [ ˜ , myhandle ]= c o n t o u r f ( xx , yy , C ’ ) ;
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72 s e t ( myhandle , ’ e d g e c o l o r ’ , ’ none ’ ) ;

73 c o l o r b a r

74 drawnow

75 end

76

77 norm decay ( i t e r a t i o n t i m e )=s q r t ( sum ( sum (C−C p o i s s ) . ˆ 2 ) /(Nx∗Ny) ) ;

78

79 end

80

81 end

82

83 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
E n t e r i n t o t ime l o o p now

84 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
E n t e r i n t o t ime l o o p now

85

86 f u n c t i o n RHS=get RHS (C , dt , dx , dy , Nx , Ny)

87

88 ax=dt /( dx∗dx ) ;

89 ay=dt /( dy∗dy ) ;

90

91 D i f f u s i o n=z e r o s (Nx , Ny) ;

92

93 f o r j =2:Ny−1

94 f o r i =1:Nx

95

96 i f ( i ==1)

97 im1=Nx−1;

98 e l s e

99 im1=i −1;

100 end

101

102 i f ( i==Nx)

103 i p 1 =2;

104 e l s e

105 i p 1=i +1;

106 end

107

108 D i f f u s i o n ( i , j )=ax ∗( C( ip1 , j )+C( im1 , j )−2.d0∗C( i , j ) )+ay ∗( C( i , j +1)+C( i , j

−1)−2.d0∗C( i , j ) ) ;

109 end

110 end

111

112 RHS=C+0.5 d0∗ D i f f u s i o n ;

113
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114 end

115

116 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
E n t e r i n t o t ime l o o p now

117

118 f u n c t i o n C=d o j a c o b i C ( C old , RHS, dt , dx , dy , Nx , Ny)

119

120 ax=dt /( dx∗dx ) ;

121 ay=dt /( dy∗dy ) ;

122 d i a g v a l=1+ax+ay ;

123

124 C=z e r o s (Nx , Ny) ;

125

126 f o r j =2:Ny−1

127 f o r i =1:Nx

128

129 i f ( i ==1)

130 im1=Nx−1;

131 e l s e

132 im1=i −1;

133 end

134

135 i f ( i==Nx)

136 i p 1 =2;

137 e l s e

138 i p 1=i +1;

139 end

140

141 t e m p v a l =(ax / 2 . d0 ) ∗( C o l d ( ip1 , j )+C o l d ( im1 , j ) )+(ay / 2 . d0 ) ∗( C o l d ( i , j +1)+C o l d

( i , j −1) )+RHS( i , j ) ;

142 C( i , j )=t e m p v a l / d i a g v a l ;

143 end

144 end

145

146 end

147

148 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
E n t e r i n t o t ime l o o p now

149

150 f u n c t i o n e r r 1=g e t d i f f (C , C old , ˜ , ˜ )

151

152 e r r 1=max ( max ( abs (C−C o l d ) ) ) ;

153

154 end
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m codes/diffusion matlab/test diffusion jacobi.m

Subordinate subroutines

It can be noted taht the code calls two subordinate subroutines, which can be downloaded from

the website. One is obvious: it is a global subroutine to fix all the parameter values. The second

subroutine computes the solution of the model poisson problem to which the solution of the diffusion

equation relaxes. Thus, the relaxation to the equilbrium can be monitored as a diagnostic to keep

track of the accuracy of the solution. The solution to the model Poisson problem is included herein

(below) for completeness.

For completeness, a numerical method for solving the mode Poisson problem is also provided

herein (below).

1 f u n c t i o n [ xx , yy , C , C t rue , r e s i t ]= t e s t p o i s s o n j a c o b i ( )

2

3 % Numer i ca l method to s o l v e

4 % [ D { xx}+D { yy } ]C+s ( x , y ) =0,

5 % s u b j e c t to p e r i o d i c boundary c o n d i t i o n s i n the x−d i r e c t i o n ,

6 % and Neuman boundary c o n d i t i o n s at y=0 and y=L y .

7

8 [ Nx , Ny , ˜ , ˜ , A0 , dx , dy , kx0 , ky0 ]= f i x a l l p a r a m e t e r s ( ) ;

9 i t e r a t i o n m a x =5000;

10

11 dx2=dx∗dx ;

12 dy2=dy∗dy ;

13

14 s s o u r c e=z e r o s (Nx , Ny) ;

15

16 % I n i t i a l i s e s o u r c e

17

18 kx=kx0 ;

19 ky=3∗ky0 ;

20

21 f o r i =1:Nx

22 f o r j =1:Ny

23 x v a l =( i −1)∗dx ;

24 y v a l =( j −1)∗dy ;

25 s s o u r c e ( i , j )=A0∗ cos ( kx∗ x v a l ) ∗ cos ( ky∗ y v a l ) ;

26 end

27 end
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28

29 % Compute a n a l y t i c s o l u t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
30

31

32 xx =0∗(1:Nx) ;

33 yy =0∗(1:Ny) ;

34 C t r u e=z e r o s (Nx , Ny) ;

35

36 f o r i =1:Nx

37 f o r j =1:Ny

38 xx ( i )=( i −1)∗dx ;

39 yy ( j )=( j −1)∗dy ;

40

41 C t r u e ( i , j )=(A0/( kx∗kx+ky∗ky ) ) ∗ cos ( kx∗ xx ( i ) ) ∗ cos ( ky∗ yy ( j ) ) ;

42

43 end

44 end

45

46 % I t e r a t i o n s t e p ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
47 % I n i t i a l g u e s s f o r C :

48 C=z e r o s (Nx , Ny) ;

49

50 r e s i t =0∗(1: i t e r a t i o n m a x ) ;

51

52 f o r i t e r a t i o n =1: i t e r a t i o n m a x

53

54 C o l d=C ;

55

56 f o r i =1:Nx

57

58 % P e r i o d i c BCs h e r e .

59 i f ( i ==1)

60 im1=Nx−1;

61 e l s e

62 im1=i −1;

63 end

64

65 i f ( i==Nx)

66 i p 1 =2;

67 e l s e

68 i p 1=i +1;

69 end

70

71 f o r j =2:Ny−1

72
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73 d i a g o n a l =(2. d0/ dx2 ) +(2. d0/ dy2 ) ;

74 tempva l =(1. d0/ dx2 ) ∗( C o l d ( ip1 , j )+C o l d ( im1 , j ) ) +(1. d0/ dy2 ) ∗( C o l d ( i , j

+1)+C o l d ( i , j −1) )+s s o u r c e ( i , j ) ;

75 C( i , j )=tempva l / d i a g o n a l ;

76

77 end

78 end

79

80 % Implement D i r i c h l e t c o n d i t i o n s a t y=0,y=L y .

81 C ( : , 1 )=C ( : , 2 ) ;

82 C ( : , Ny)=C ( : , Ny−1) ;

83

84 r e s i t ( i t e r a t i o n )=max ( max ( abs (C−C o l d ) ) ) ;

85

86 end

87

88 end

m codes/diffusion matlab/test poisson jacobi.m
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Introduction to Fortran

Overview

I am going to try an example-based introduction to Fortran, wherein I provide you with a sample

code, and then tell you about it. I will then ask you to some tasks based on the code, and to modify

it.

B.1 Preliminaries

A basic Fortran code is written in a single file with a .f90 file extension. It conists of a main part

together with subroutine definitions. A subroutine is like a subfunction in Matlab or C, with one

key difference that I will explain below.

The main part

The main code is enclosed by the following declaration pair:

program mainprogram

...

end program mainprogram

At the top level, all variables that are to be used must be declared (otherwise compiler errors

will ensue). Variables can be declared as integers or as double-precision numbers (other types are

possible and will be discussed later on). Before variable declarations are made, a good idea is to

type implicit none. This means that Fortran will not assume that symbols such as i have an
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(implicit) type. It is best to be honest with the compiler and tell it upfront what you are going to

do. Equally, it is not a good idea for the compiler to try to guess what you mean.

An array of double-precision numbers is defined as follows:

integer :: Nx,Ny

parameter (Nx = 201, Ny = 101)

double precision, dimension(1:Nx,1:Ny) :: my_array

This creates an array of double-precision numbers where the indices go from i = 1, 2, · · · , 201, and

j = 1, 2, · · · , 101. there is nothing special in Fortran about starting arrays with i = 1: they can

start from any integer whatsoever (positive or negative).

After defining all arrays and all other variables operations are performed on them using standard

manipulations. These typically include ‘do’ loops (the Fortran equivalent of ‘for’ loops), and ‘if’ and

‘if-else’ statements. The syntax for these operatiosn is given below in the sample code (Section B.2).

Column-major ordering

To understand column-major ordering, consider the following array:

A =

[
1 2 3

4 5 6

]

If stored in contiguous memory in a column-major format, this array will take the following form in

memory:

1 4 2 5 3 6.

Suppose that elements of the array A are denoted by Aij (i for rows, j for columns). When these

elements are accessed sequentially in contiguous memory, it is the row index that increases the

fastest. Thus, in Fortran, a do loop for manipulations on the array A should be written out as

follows:

do j=1,2

do i=1,3

! manipulations on A(i,j) here

...

end do

end do
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Subroutines

Subroutines contain discrete tasks that are repeated many times. Instead of having a main code that

contains multiple copies of the same piece of code, such code-tasks are relegated to subroutines.

The advantages are economy-of-code and computational efficiency. Unlike in C, arrays can be passed

to subroutines in a blindly straightforward manner. Examples of such subroutines can be found in

the sample code (Section B.2).

As mentioned previously, a subroutine in Fortran is like a subfunction in C or Matlab. However,

there is one key difference: formally, a subroutine produces no explicit outputs. Thus, suppose

we want to operate on a variable x with an operation f to give a result y (formally, y = f(x)). In

Fortran, we view x and y as inputs to a subroutine wherein y is assigned the value f(x) as part of

the subroutine’s implementation. This will become clearer in examples.

Output

Finally, the result of these manipulations should be sent to a file, for subsequent reading. The values

in an array my array of size (1, · · · , Nx)× (1, · · ·Ny) can be written to a file as follows:

open(unit=20,file=’myfile.dat’,status=’UNKNOWN’)

do j=1,Ny

do i=1,Nx

write(20,*) my_array(i,j)

end do

end do

close(unit=20, status=’KEEP’)
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B.2 The code

The following code solves the model Poisson problem using SOR iteration. If done correctly, it

should reproduce exactly the results obtained previously in Matlab. An output file called ‘oned.dat’

is produced. I cannot remember why I called the output file by this name. However, these things

are rather arbitrary.

1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2

3 program mainprogram

4 i m p l i c i t none

5

6 i n t e g e r : : Nx , Ny

7 pa ra me te r (Nx = 201 , Ny = 101)

8

9 d o u b l e p r e c i s i o n : : dx , dy , x v a l , y v a l , Lx , Ly , p i =3.1415926535

10 d o u b l e p r e c i s i o n : : ax , ay , d i a g v a l , r e l a x , tempval , e r r 1 , e r r 2 , A0

11 d o u b l e p r e c i s i o n , d i m e n s i o n ( 1 : Nx , 1 : Ny) : : f s o u r c e , C , C o l d

12

13 i n t e g e r : : i , j , im1 , ip1 , i t e r a t i o n , m a x i t e r a t i o n =1000

14

15 Lx =2. d0

16 Ly =1. d0

17

18 A0=10. d0

19

20 dx=Lx/ d b l e (Nx−1)

21 dy=Ly/ d b l e (Ny−1)

22

23 ax =1. d0 /( dx∗dx )

24 ay =1. d0 /( dy∗dy )

25 d i a g v a l =2. d0∗ax +2. d0∗ay

26 r e l a x =1.5 d0

27

28 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
29 ! compute s o u r c e , i n i t i a l i s e g u e s s

30

31 f s o u r c e =0. d0

32 C=0. d0

33 C o l d =0. d0

34

35 w r i t e (∗ ,∗ ) ’ g e t t i n g s o u r c e ’

36 c a l l g e t f p e r i o d i c ( f s o u r c e , Nx , Ny , dx , dy , Lx , Ly , A0)

37 w r i t e (∗ ,∗ ) ’ done ’

38
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39 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
40 ! s o r s t e p s

41

42 do i t e r a t i o n =1, m a x i t e r a t i o n

43 e r r 1 = 0 . 0

44

45 ! f o r k e e p i n g t r a c k o f t he e r r o r

46 C o l d=C

47

48 do j = 2 ,Ny−1

49 do i = 1 ,Nx

50

51 i f ( i . eq . 1 ) then

52 im1=Nx−1

53 e l s e

54 im1=i−1

55 end i f

56

57 i f ( i . eq . Nx) then

58 i p 1=2

59 e l s e

60 i p 1=i +1

61 end i f

62

63 tempva l=ax ∗(C( ip1 , j )+C( im1 , j ) )+ay ∗(C( i , j +1)+C( i , j −1) )− f s o u r c e ( i , j

)

64 C( i , j )=(1− r e l a x ) ∗C( i , j )+r e l a x ∗ tempva l / d i a g v a l

65

66 end do

67 end do

68

69 ! Implement D i r i c h l e t c o n d i t i o n s a t y=0,y=L y .

70 C ( : , 1 )=C ( : , 2 )

71 C ( : , Ny)=C ( : , Ny−1)

72

73 i f (mod( i t e r a t i o n , 1 0 0 ) ==0)then

74 c a l l g e t d i f f (C , C old , Nx , Ny , e r r 1 )

75 w r i t e (∗ ,∗ ) i t e r a t i o n , ’ D i f f e r e n c e i s ’ , e r r 1

76 end I f

77

78 end do

79

80 w r i t e (∗ ,∗ ) ’ D i f f e r e n c e i s ’ , e r r 1

81

82
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83 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
84 ! w r i t e r e s u l t to f i l e

85

86 w r i t e (∗ ,∗ ) ’ w r i t i n g to f i l e ’

87 open ( u n i t =20, f i l e = ’ oned . dat ’ , s t a t u s= ’UNKNOWN’ )

88

89 do j =1,Ny

90 do i =1,Nx

91 x v a l =( i −1)∗dx

92 y v a l =( j −1)∗dy

93 Write ( 2 0 ,∗ ) x v a l , y v a l , C( i , j )

94 end do

95 end do

96 c l o s e ( u n i t =20, s t a t u s= ’KEEP ’ )

97 w r i t e (∗ ,∗ ) ’ done ’

98

99 end program mainprogram

100

101

102 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
103 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
104

105 s u b r o u t i n e g e t f p e r i o d i c ( f s r c , Nx , Ny , dx , dy , Lx , Ly , A0)

106 i m p l i c i t none

107

108 i n t e g e r : : i , j , Nx , Ny

109 d o u b l e p r e c i s i o n : : dx , dy , Lx , Ly , x v a l , y v a l , p i =3.1415926535

110 d o u b l e p r e c i s i o n : : kx0 , ky0 , kx , ky , A0

111 d o u b l e p r e c i s i o n : : f s r c ( 1 : Nx , 1 : Ny)

112

113 kx0 =2. d0∗ p i /Lx

114 ky0=p i /Ly

115

116 kx=kx0

117 ky =3. d0∗ky0

118

119 f s r c =0. d0

120 do j =1,Ny

121 do i =1,Nx

122 x v a l =( i −1)∗dx

123 y v a l =( j −1)∗dy

124 f s r c ( i , j )=A0∗ cos ( kx∗ x v a l ) ∗ cos ( ky∗ y v a l )

125 end do

126 end do

127
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128 r e t u r n

129 end s u b r o u t i n e g e t f p e r i o d i c

130

131 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
132

133 s u b r o u t i n e g e t d i f f (C , C old , Nx , Ny , d i f f )

134 i m p l i c i t none

135

136 d o u b l e p r e c i s i o n : : d i f f , sum

137 i n t e g e r : : Nx , Ny , i , j

138 d o u b l e p r e c i s i o n , d i m e n s i o n ( 1 : Nx , 1 : Ny) : : C , C o l d

139

140 sum = 0 . 0 D0

141 Do j = 1 , Ny

142 Do i = 1 , Nx

143 sum = sum + (C( i , j )−C o l d ( i , j ) ) ∗∗2

144 End Do

145 End Do

146 d i f f = sum

147

148 Return

149 End s u b r o u t i n e g e t d i f f

150

151 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
152 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

m codes/poisson code/main periodic sor.f90
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B.3 Porting Output into Matlab

It can be useful to examine the data in a file such as ‘oned.dat’ in Matlab. There are many ways of

doing this. Below is my favourite way:

1 f u n c t i o n [ X, Y, C]= o p e n d a t f i l e ( )

2

3 % We need to s p e c i f y t he s i z e o f t he c o m p u t a t i o n a l domain , as t h i s can ’ t be

4 % i n f e r r e d from t he d a t a f i l e .

5

6 Nx=201;

7 Ny=101;

8

9 % Here I c r e a t e a c h a r a c t e r a r r a y c a l l e d ” f i l e n a m e ” . Th i s s h o u l d

10 % c o r r e s p o n d to t he name o f t he F o r t r a n−g e n e r a t e d f i l e .

11

12 f i l e n a m e= ’ oned . dat ’ ;

13

14 % Here i s th e number o f l i n e s i n th e d a t a f i l e .

15 n l i n e s=Nx∗Ny ;

16

17 % Open th e f i l e . Here , f i d i s a l a b e l t h a t l a b e l s which l i n e i n th e f i l e

18 % i s b e i n g r e a d . O b v i o u s l y , upon o p e n i n g th e f i l e , we a r e at l i n e 1 .

19

20 f i d=fo pe n ( f i l e n a m e ) ;

21

22 % P r e a l l o c a t e some a r r a y s f o r s t o r i n g t he data .

23

24 X=0∗(1: n l i n e s ) ;

25 Y=0∗(1: n l i n e s ) ;

26 C=0∗(1: n l i n e s ) ;

27

28 % Loop o v e r a l l l i n e s .

29

30 f o r i =1: n l i n e s

31 % Grab t he data from t he c u r r e n t l i n e . Once t he data i s grabbed , the

32 % l a b e l f i x a u t o m a t i c a l l y moves on to th e n e x t l i n e .

33 % The data from the c u r r e n t l i n e i s grabbed i n t o a s t r i n g − h e r e c a l l e d

34 % c1 .

35 c1=f g e t l ( f i d ) ;

36

37 % Next I have to c o n v e r t th e t h r e e s t r i n g s on any g i v e n l i n e i n t o t h r e e

38 % d o u b l e s . Th i s i s done by s c a n n i n g th e s t r i n g i n t o an a r r a y o f

39 % d o u b l e s , u s i n g th e ” s s c a n f ” command :

40 vec temp=s s c a n f ( c1 , ’%f ’ ) ;
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41

42 % Now i t i s s i m p l e : j u s t a s s i g n each d o u b l e to a v a l u e x , y , o r C .

43 x temp=vec temp ( 1 ) ;

44 y temp=vec temp ( 2 ) ;

45 C temp=vec temp ( 3 ) ;

46

47 % Read t he x−, y−, and C−v a l u e s i n t o t h e i r own a r r a y s .

48 X( i )=x temp ;

49 Y( i )=y temp ;

50 C( i )=C temp ;

51 end

52

53 % F i n a l l y , r e s h a p e t h e s e a r r a y s i n t o p h y s i c a l , two−d i m e n s i o n a l a r r a y s .

54

55 X=r e s h a p e (X, Nx , Ny) ;

56 Y=r e s h a p e (Y, Nx , Ny) ;

57 C=r e s h a p e (C , Nx , Ny) ;

58

59 % I m p o r t a n t ! C l o s e th e f i l e so t h a t i t i s not l e f t d a n g l i n g . Not c l o s i n g a

60 % f i l e p r o p e r l y means t h a t i n f u t u r e , i t w i l l be d i f f i c u l t to m a n i p u l a t e

61 % i t . For example , i t i s i m p o s s i b l e to d e l e t e o r rename a a c u r r e n t l y−open

62 % f i l e .

63

64 f c l o s e ( f i d ) ;

65

66 end

m codes/poisson code/open dat file.m

This file should be stored int he same directory as ‘oned.dat’. Then, at the command line, type

[X,Y,C]=open_dat_file();

The results can be visualized as usual:

[h,c]=contourf(X,Y,C);

set(c,’edgecolor’,’none’)

Provided the source function and domain size are the same in both cases, this figure should agree

exactly with the one generated previously using only Matlab (Figure B.1). Here,

s(x, y) = A0 cos(kxx) cos(kyy), (B.1)
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with kx = kx0 and ky = 3ky0, and A0 = 10. Further details: kx0 = (2π/Lx) is the fundamental

wavenumber in the x-direction, and ky0 = π/Ly is the fundamental wewavenumber in the y-

direction. The domain geometry is chosen to be Lx = 2 and Ly = 1.

Figure B.1: Solution of the Poisson problem for the source (B.1). Grid size: Nx = 201 and
Ny = 101.
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