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This module introduces Quantum Mechanics in its modern mathematical setting. Several canonical,

exactly-solvable models are studied, including one-dimensional piecewise constant potentials, Dirac

potentials, the harmonic oscillator, and the Hydrogen atom. Three calculational techniques are

introduced: time-independent perturbation theory, variational methods, and numerical (spectral)

methods.

The postulates of Quantum Mechanics, Mathematical background Complex vector spaces and

scalar products, linear forms and duality, the natural scalar product derived from linear forms, Hilbert

spaces, linear operators, commutation relations, expectation values, uncertainty, Time evolution

and the Schrödinger equation Derivation of the Schrodinger equation for time-independent

Hamiltonians, the position and momentum representations, the probability current, the free particle

Piecewise constant one-dimensional potentials Bound and unbound states, wells and barri-

ers, scattering, transmission coefficients, tunneling, The harmonic oscillator Solution by power

series, Hermite polynomials, creation and annihilation operators, coherent states, The Hydrogen

atom Solution by separation of variables, quantization of energy and angular momentum, general

treatment of central potentials in terms of spherical harmonics, Angular momentum Motivation:

angular momentum in the hydrogen atom, as derived from spherical harmonics, angular momentum

in the abstract setting, intrinsic angular momentum, addition of angular momenta, Clebsch-Gordan

coefficients, Approximation methods Time-independent perturbation theory: the non-degenerate

case, variational methods for estimating the ground-state energy Further topics may include: Spin

coherent states, how to build a microwave laser, the Dyson series for time-evolution for time-

dependent Hamiltonians, one-dimensional Dirac potentials, time-independent perturbation theory

for degenerate eigenstates, the fine structure of Hydrogen, numerical (spectral) methods for solving

the Schrödinger equation
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What will I learn?

On completion of this module students should be able to

1. Perform standard linear-algebra calculations as they relate to the mathematical foundations

of Quantum Mechanics;

2. Solve standard problems for systems with finite-dimensional Hilbert spaces, e.g. the two-level

system

3. Solve standard one-dimensional models including piecewise constant potential wells and bar-

riers, Dirac potentials, and the Harmonic oscillator;

4. Perform calculations based on Hermite polynomials, including the characterization of coherent

states;

5. Compute expectation values for appropriate observables for the Hydrogen atom;

6. Explain the quantum theory of angular momentum and compute expectation values for appro-

priate observables. These computations will involve both the matrix representation of intrinsic

angular momentum, and the spherical-harmonic representation of orbital angular momentum;

7. Add independent angular momenta in the quantum-mechanical fashion;

8. Perform time-independent non-degenerate perturbation theory up to and including the second

order
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Chapter 1

Introduction

1.1 Overview

Here is the executive summary of the course:

After this course, you will understand the vital need for quantum mechanics in reconciling

experiments with theories of particle behaviour. You will be able to apply the mathematical

machinery of quantum mechanics to characterize several physical systems of great practical

importance: the square well, the harmonic oscillator, and the hydrogen atom. In doing so, you

will develop intuition about quantum tunnelling, angular momentum, uncertainty, and the theory

of operators.

In more detail, we will follow the following programme of work:

1. We review the evidence that points to the failure of classical mechanics and introduce an

alternative treatment;

2. We study the theory of linear operators on Hilbert spaces;

3. We formulate the postulates of quantum mechanics;

4. We examine the Schrödinger equation;

5. We apply the Schrödinger equation to several standard systems;

6. We introduce perturbation theory to solve non-standard problems where a certain parameter

is small;

7. We introduce spectral methods to study problems that do not have an analytical solution;

8. We introduce variational methods for the same reason.

1



2 Chapter 1. Introduction

1.2 Learning and Assessment

Learning:

• Thirty six classes, three per week.

• In some classes, we will solve problems together or look at supplementary topics.

• To develop an ability to solve problems autonomously, you will be given homework exercises,

and it is recommended that you do independent study.

Assessment:

• Three homework assignments, for a total of 20%;

• Three in-class tests, for a total of 20%;

• One end-of-semester exam, 60%

Policy on late submission of homework:

The official UCD policy explained in the Science handbook will be strictly adhered to: coursework

that is late by up to one week after the due date will have the grade awarded reduced by two grade

points (e.g. from B- to C); coursework submitted up to two weeks after the due date will have the

grade reduced by four grade points (e.g. B- to D+). Coursework received more than two weeks

after the due date may not be accepted.

Textbooks

• Lecture notes will be put on the web. These are self-contained. They will be available before

class. It is anticipated that you will print them and bring them with you to class. You can

then annotate them and follow the proofs and calculations done on the board. Thus, you are

still expected to attend class, and I will occasionally deviate from the content of the notes,

give hints about solving the homework problems, or give a revision tips for the final exam.

• To a certain extent, I have based my notes on the book by Mandl:

– Quantum Mechanics, F. Mandl, Wiley (Four copies in UCD library, 530.12).

• I have also used material from the following sources:

– University Physics, H. D. Young and R. A. Freedman, Addison–Wesley (10th edition,

2000);
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– The Feynman Lectures on Physics, R. P. Feynman, Addison–Wesley–Longman (1st edi-

tion, 1970);

– Quantum Mechanics Non-Relativistic Theory , L. D. Landau and L. M. Lifshitz, Butterworth–

Heinemann (3rd edition, 1981).

• The lecture notes by Prof. David Simms (Course 211) will be helpful in understanding the

mathematical formulation of Quantum Mechanics.

1.3 On the failures of classical mechanics

Reading material for this chapter: Young and Freedman, Chapters 40–41

In other classes (e.g. ACM/MAPH 10030) you will have learned that the equation

m
d2x

dt2
= −∇U ,

is sufficient to describe the trajectory x(t) of a particle of mass m, for all time. In other classes

(e.g. ACM 40010) you will have learned that the equations (SI units)

∇ ·E =
1

ε0
ρ, (1.1)

∇ ·B = 0, (1.2)

∇×E = −∂B
∂t

, (1.3)

∇×B = µ0J + µ0ε0
∂E

∂t
, (1.4)

suffice to describe electromagnetic phenomena. We now examine what happens when these two

sets of equations are combined.

1.3.1 Blackbody radiation

Rayleigh, c. 1890

A blackbody is a perfect emitter (and absorber) of electromagnetic radiation, and is in thermal

equilibrium. Such a body can be modelled as a box (or cavity) containing normal modes of elec-

tromagnetic radiation. To see what such normal modes look like, we take the curl of Eq. (1.3) and

combine it with Eq. (1.4). There are no sources and sinks of radiation in the box, hence J = ρ = 0,

and

∇× (∇×E) = − ∂

∂t
(∇×B) = −µ0ε0

∂2E

∂t2
.
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We use the vector-calculus identity (ACM 20150)

∇× (∇×E) = ∇ (∇ ·E)−∇2E, ∇ ·E = 0,

hence
1

c2

∂2E

∂t2
= ∇2E, c =

1
√
µ0ε0

. (1.5)

The solution to this wave equation is

E = E0eiωt sin(kxx) sin(kyy) sin(kzz),

with dispersion relation
ω2

c2
= k2, k = (kx, ky, kz).

For reasons that will become clear in what follows, we label the solution by the wavenumber k:

Ek = E0keiωt sin(kxx) sin(kyy) sin(kzz). (1.6)

Now the domain of the problem is a box, x ∈ [0, L]3, and the boundary conditions on the box

wall specify that no vibrations can occur there (ACM 30220), hence E(x = 0) = E(x = L) = 0

etc., or

kx =
nxπ

L
, ky =

nyπ

L
, kz =

nzπ

L
, nx, ny, nz ∈ N

(that is why no cosines appear in the solution; they cannot satisfy the boundary conditions). Going

back to the dispersion relation, we have

ω2

c2
= k2,

=
π2

L2

(
n2
x + n2

y + n2
z

)
,

=

(
2π

λ

)2

,

hence

λ =
2L√

n2
x + n2

y + n2
z

, (nx, ny, nz) ∈ N3.

An allowed k-value is called a normal mode. To each normal mode, there corresponds a wavelength

λ. Note, however, that different integer triples can produce the same wavelength. We wish to

compute the total energy in the cavity. To do so, we will resort to density-of-modes calculations.
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First, note that

u =
Total energy

Unit volume
,

=

∫ ∞
0

Total energy in a wavelength interval from λ to dλ

Unit volume, unit wavelength
dλ,

=

∫ ∞
0

uλ(λ)dλ.

The function uλ(λ) is the spectral density, which we compute now.

The number of normal modes with wavelength λ is obtained by counting points in k-space. This is

a three-dimensional discrete space where (kx, ky, kz) form the axes, and where each allowed point

(kx, ky, kz) is given by (nx, ny, nz)π/L, where (nx, ny, nz) ∈ N3. There is one such point in a box

of volume (π/L)3 in this space1:

Number of points per unit volume in k-space =
1

Box volume
=
L3

π3
.

The number of normal modes of magnitude k =
√
k2
x + k2

y + k2
z , in the range [k, k+ dk], is given

by

Number of normal modes in the range [k, k + dk] =

[Number of points per unit volume in k-space]×

[Volume occupied by normal modes in the range [k, k + dk]]

The volume element in k-space is

dkx dky dkz = k2dk sin θ dθ dϕ,

where k =
√
k2
x + k2

y + k2
z is one of the three spherical-polar coordinates (k, θ, ϕ). We are concerned

only with the magnitude of the wavenumbers, and not with their directions, hence

[Volume occupied by normal modes in the range [k, k + dk]] =

∫
Positive octant

dkx dky dkz,

=

∫
Positive octant

k2dk sin θdθ dϕ,

=
4π

8
k2dk,

= 1
2
πk2dk.

1The dimensions of volume in k-space are 1/ [dimensions of volume on ordinary space]
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Putting these last two results together, we have

Number of normal modes in the range [k, k + dk] =
L3

π3
× 1

2
πk2dk

The solution (1.6) to the wave equation satisfies the equation of a harmonic oscillator:

∂2Ek

∂t2
+ c2k2Ek = 0.

We therefore recall some facts about statistical ensembles of classical harmonic oscillators. Given

such a collection of oscillators, in thermal equilibrium, the average energy of each oscillator is kBT ,

where kB is Boltzmann’s constant and T is temperature. The energy per unit wavenumber is

therefore

Energy in a wavenumber interval [k, k + dk] =

Energy of a normal mode× Number of normal modes in the range [k, k + dk],

= (kBT )×
(
L3

2π2
k2dk

)
× 2,

where the factor of 2 is introduced because each normal mode of vibration contains two polarisation

states of light. Finally, we pass over to the wavelength variable, λ = 2π/k:

Energy in a wavelength interval [λ, λ+ dλ] = kBT
L3

π2

(
2π

λ

)2 ∣∣∣∣dkdλ
∣∣∣∣ dλ, k =

2π

λ
,

=
8πkBTL

3

λ4
dλ,

Energy in a wavelength interval [λ, λ+ dλ]

L3
=

8πkBT

λ4
dλ,

hence

uλ(λ) =
8πkBT

λ4
.

We have computed the spectral density uλ(λ). This enables us to compute the total energy density

of the blackbody:

u =

∫ ∞
0

uλ(λ)dλ,

= 8πkBT

∫ ∞
0

λ−4dλ,

= 8
3
πkBT lim

δ→0
δ−3,

= ∞.
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(a) T = 1000 (b) T = 1000, log scale

(c) T = 5500 (d) T = 5500, log scale

Figure 1.1: Spectral density of blackbody radiation, as a function of temperature and wavelength

But what has gone wrong ??? The best place to start a failure analysis for a theory is with

experiments. It is a simple experiment to measure the intensity of light coming from (an approximate)

blackbody, and hence to find the spectral density. Our failed theory is compared with the true

(experimentally correct) curves in Fig. 1.1. The theory does appear to be correct in the long-

wavelength limit. Only in the short-wavelength limit does the theory fail. Thus, the classical theory

we have just derived is sometimes given the rather florid title of the ultraviolet catastrophe.

Later on, we shall find out that our assumption that each normal mode of radiation behaves like a

classical simple-harmonic oscillator is totally wrong. The classical oscillator can possess any amount

of energy; if instead, we assume that the normal modes behave like quantum-mechanical oscillators,

with discrete energy levels given by a quantum-mechanical calculation, then we shall recover the

experimentally-correct curve. This will be the subject of future chapters.
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1.3.2 Photoelectric effect

Hertz, 1887; Einstein, 1905

The photoelectric effect is the emission of electrons when light strikes a surface. The liberated

electrons absorb energy from the incident radiation and are thus able to overcome the attractive

forces that bind them to the surface. Hertz first observed the effect in 1887, and experiments (W.

Hallachs and P. Lenard (1886-1900)) on the phenomenon defied classical explanation:

1. For incident light below a certain frequency, NO electrons are emitted. This is called the

threshold frequncy.

2. Increasing the intensity of the light, while maintaining the frequency below threshold, does

NOT cause electrons to be emitted;

3. Indeed, the energy of emitted electrons is independent of the intensity of the incident light.

Since the intensity is a measure of the energy carried by the incident light, one would expect

a higher intensity to lead to more energetic emitted electrons.

Einstein proposed that the incident light must be quantised. In other words, the incident light has a

particle nature. The particles of light are massless and are called ‘photons’; a photon carrying light

of frequency ν has energy

E = hν,

where h is Planck’s constant, and is a fundamental unit of angular momentum. Now the bound

electrons have an energy −φ, where φ is the ‘work function’, or the potential energy binding the

electrons to the surface. Thus, the initial energy of the system (photon+electron) is

hν − φ,

while the final energy is simply the kinetic energy of the liberated electron, mev
2/2. Since energy is

conserved,
1
2
mev

2 = hν − φ.

Thus, points 1-2 are explained: The threshold frequency is hν = φ, since photons below this

frequency would cause the liberated electron to have a negative kinetic energy – impossible.

The intensity of the incident light is a measure of its energy content, per unit time, per unit area.

If we divide the intensity of a monochromatic source by hν, we obtain a measure of the number

of photons incident on the surface, per unit time, per unit area. Thus, the intensity controls the

number of photons, but not the photon energy. Increasing the intensity of the incident light
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will increase the number of photons, and hence, the number of emitted electrons, but it will not

increase the energy of individual emitted electrons.

Einstein’s explanation is satisfactory, but it does not fit into any overall theoretical framework.

In particular, there is no description of the dynamics of the light- and electron-particles, and no

description of their interaction.

1.3.3 The emission spectrum of the hydrogen atom

Bohr, 1913

Hydrogen is the simplest atom, and consists of one electron of negative charge (−e) that is bound

to a much more massive proton, of positive charge (+e). Classically, the electron can be thought

of as ‘in orbit’ around a fixed force centre, with potential energy

U(r) = − 1

4πε0

e2

r

The energy of the atom is therefore

E = 1
2
mev

2 − 1

4πε0

e2

r
.

The electron binds to the proton provided E ≤ 0. One can imagine an electromagnetic interaction

where an excited electron E > 0 de-excites to a more stable state (a more negative E-value) by

the emission of electromagnetic radiation (a photon of light). In this scenario, the excited electron

can have any negative energy E, and therefore, a continuous spectrum of emitted light must be

possible. However, this is not the case. It is an experimental fact that the spectrum of hydrogen

atom is a sequence of lines (Fig. 1.2)

Before the advent of the Schrödinger equation, Bohr (1913) proposed an ad-hoc model to describe

the spectrum of hydrogen. He first noticed that circular orbits solve the orbit problem

me
d2x

dt2
= − e2

4πε0

x

|x|3
,

or

me
d2r

dt2
= − e2

4πε0

1

r2
+

J2

mer3
,

d

dt

(
mer

2dθ

dt

)
= 0, mer

2dθ

dt
= J,



10 Chapter 1. Introduction

(a)

(b)

Figure 1.2: (a) The photograph comes the HyperPhysics website (Rod Nave, GSU). It shows part of
a hydrogen discharge tube on the left, and the three most easily seen lines in the visible part of the
spectrum on the right. Ignore the blurring – particularly to the left of the red line. This is caused
by flaws in the way the photograph was taken; (b) A schematic interpretation of (a), showing other
emission lines not in the visible range (chemguide.co.uk).
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in polar coordinates. Indeed, circular orbits are an equilibrium solution, d2r/dt2 = 0, provided

e2

4πε0

1

r2
=

J2

mer3
,

or
e2

4πε0

1

r
=

J2

mer2
= mev

2. (1.7)

Here J is the angular momentum. Bohr hypothesised that the angular momentum should be

quantised:

J = Jn = n~,

where ~ = h/2π is a fundamental unit of angular momentum and n is a positive integer. This in

turn implies that the velocity v and radius r of the circular orbits can take only discrete values:

Jn = mevnrn = n~. (1.8)

Substituting the quantisation rule (1.8) into the circular-orbit condition (1.7), we have

1

4πε0

e2

rn
= mev

2
n.

We solve the equations

mevnrn = n~,
1

4πε0

e2

rn
= mev

2
n,

for rn and obtain

rn =
n2~2

me

4πε0
e2

.

Thus, the radii of the electron orbits are not random, but are rather square-integer multiples of the

basic radius

a0 =
~2

me

4πε0
e2

.

Using the circular-orbit expression

E = 1
2
mev

2 − e2

4πε0

1

r
= − J2

2mer2
,
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n1 n2 ∆E/eV λ/µm Name

1 2 10.2 0.121 Lyman-alpha (Ultra-violet)
2 3 1.88 0.656 Balmer-alpha (red)
2 4 2.55 0.486 Balmer-beta (blue-green)
2 5 2.85 0.434 Balmer-gamma (Violet)
2 6 3.02 0.410 Balmer-delta (Violet)
2 7 3.12 0.397 Balmer-epsilon (Ultra-violet)

Table 1.1: Some spectroscopic lines of hydrogen (emission spectrum), computed from the Bohr
model. The visible lines form part of the Balmer series. These lines correspond exactly with
experimental observations of the light emitted from hydrogen.

we obtain the quantisation of energy,

En = − J2
n

2mer2
n

,

= −n
2~2

2me

(
me

n2~2

e2

4πε0

)2

,

= −1
2

mee
4

(4πε0~)2

1

n2
,

:= −E0

n2
, (1.9)

The fundamental unit of angular momentum is Planck’s constant, h = 6.626×10−34 kg m2 s−1,

and ~ = h/2π. Using this information, the energy E0 is computed to be

E0 = 1
2

mee
4

(4πε0~)2 = 2.1798× 10−18 kg m2 s−2 = 13.60 eV,

where 1 eV = 1.602× 10−19 kg m2 s−2. Sometimes E0 as written as E0 = 1Ryd, the Rydberg.

Remember this value for the whole module!!

From the discussion on the photoelectric effect, we know that light is made up of discrete photons.

Let us assume that a single photon is produced as an electron de-excites from a high energy level En2

down to a less energetic state En1 , where n2 > n1. We tabulate some of these energies (Tab. 1.1)

and the corresponding photon wavelengths, using

∆En1,n2 = E0

(
1

n2
1

− 1

n2
2

)
= hνn1,n2 =

hc

λn1,n2

, n2 > n1.

The visible lines of the Balmer series (n1 = 2) correspond exactly with the experimental pictures

(Fig. 1.2). Bohr’s theory works! The transitions are shown schematically in Fig. 1.3. Unfortunately,

there is no reason to assume that the angular momentum is quantised – we need a more complete
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Figure 1.3: Schematic description of the transition of the electron to lower energies, corresponding
to the Balmer (visible) series.

theory to justify this.

1.3.4 Diffraction patterns formed by electron beams

de Broglie, 1924; Davisson and Germer, 1927

The examples of blackbody radiation and the photoelectric effect suggest that light comprises parti-

cles that obey ‘strange dynamics’, and are not described by classical mechanics. In this section, we

show that particles – electrons – can exhibit wave-like behaviour. Only by invoking a complete theory

of quantum mechanics can the apparent contradiction of this wave-particle duality be overcome.

As an alternative to Bohr’s resolution of the hydrogen problem, de Broglie (1924) proposed that

particles have a wave-like behaviour; the particle wavenumber k is related to the particle momentum

p through a Planck-type equation,

p = ~k =
h

λ
. (1.10)

Since the electron that is bound to the hydrogen atom is confined in some sense, it must correspond

to a ‘standing wave’, in which the wavelength ‘fits’ into the confining domain. In other words, the

standing wave must be related to the radius of the circular orbit in a rational way:

nλn = 2πrn.

But λn = h/p = h/mvn, hence
nh

mvn
= 2πrn,
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Figure 1.4: Schematic description of the experiment of Davisson and Germer (1927).

or

Jn = mvnrn =
nh

2π
= n~.

This is equivalent to Bohr’s quantisation of angular momentum! This consistency is reassuring, and

provides support for de Broglie’s hypothesis.

However, the only true test of such speculative theories is experiment. In 1927, Davisson and Germer

fired a beam of electrons at a crystal sample (Fig. 1.4). The intensity of the scattered beam was

very strong at certain scattering angles, and weak at others. They drew a plot of the intensity

of the scattered beam as a function of the angle θ, and found a functional form that could only

be described by making the assumption that the scattered beam was in fact a wave. Referring to

Fig. 1.5, two neighbouring waves emerging from the crystal are in phase (constructive interference)

provided

mλ = d sin θ, m = 1, 2, 3, · · · , (1.11)

where d is the crystal spacing and λ is the de Broglie wavelength.

Example: In a particular electron-diffraction experiment using an accelerating voltage of 54 V, an

intensity maximum occurs when the scattering angle is θ = 50o. The initial kinetic energy of the

electrons is negligible. The rows of atoms are known to have a separation d = 2.15× 10−10m.

Find the electron wavelength (a) from the diffraction formula; (b) from the de Broglie hypothesis.
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Figure 1.5: Constructive interference: The reflected waves are in phase provided that the difference
between the path length of neighbouring waves is an integer number of wavelengths.

Compare the results.

From Eq. (1.11), with m = 1,

λ = d sin θ,

=
(
2.15× 10−10m

)
sin 50o,

= 1.65× 10−10m.

Using the work-energy theorem, the work done on the electron (= eV ) is equal to the kinetic

energy gained:

eV =
p2

2me

,

hence

p =
√

2meeV ,

and

λ =
h

p
=

h√
2meeV

.
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Putting in the numbers,

λ =
6.626× 10−34J · s√

2 (9.109× 10−31kg) (1.602× 10−19Coulomb) (54V)
,

= 1.67× 10−10m,

and the two numbers agree to within the accuracy of the experimental results.

Having described several experiments where classical mechanics demonstrably fails, and having ad-

vanced several ad-hoc theories to describe these phenomena, we turn to the rigorous formulation of

the axioms of quantum mechanics.



Chapter 2

The mathematical foundation of quantum

mechanics

Reading material for this chapter: Feynman (Vol. 3, Chapters 1 and 3); Simms 211

In this chapter, we develop a framework to describe the phenomena described in Ch. 1 using generic

rules. There are two approaches here: the first, very intuitive approach, comes from Feynman. The

second is more abstract and mathematical, and can be regarded as a neat distillation of the first

approach into a few laws whose form we will investigate in later chapters.

2.1 The two-slit experiment

Consider the double-slit experiment involving waves (water waves, light, sound), shown in Fig. 2.1.

Waves emanate from a source and hit a wall containing two slits. We know from Huygens’ Principle

that the slits act as ‘new’ wave sources. Therefore, to study the pattern formed by waves moving

between the slits and the detector, it suffices to imagine the interaction between two individual wave

patterns, sourced at slit 1, and slit 2.

Suppose that a vector Ei describes the wave pattern emanating from source i. This might be the

electro-magnetic field of light, or the velocity field of a water wave. The dynamics of such waves is

linear. Therefore, the total vector for the combined pattern coming from both secondary sources is

E = E1 +E2.

Typically, this is a complex-valued vector, with phases like ei(k·x−ωt). Finally, the intensity pattern

observed at the detector is related to energy; the energy of these waves is related to the square of

the total wave vector:

I12 = |E|2 = |E1|2 + |E2|2 + 2< (E1 ·E2) .

17
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Figure 2.1: Interference pattern from a wave source

That the intensity of the combined waves is not the sum of the individual intensities is called

interference.

Next, we conduct a thought experiment where we replace the wave source with an electron gun.

We also reduce the size of the slits to a width that compares with the spacing of a crystal lattice

(as in the experiment of Davisson and Germer). Technically, we should replace the absorber with

a backstop, and replace the detector with one capable of observing electrons. We compute the

probability that electrons, starting at the source, pass through slit 1 OR slit 2, and arrive at the

detector, located at position x. This is called P12. Practically, this can be computed as

P12(x) =
Average number of clicks made by electron detector at location x, per unit time (both slits open)

Number of electrons emitted by gun, per unit time

Next, we close off slit 2 and compute the probability that electrons, starting at the source, pass

through slit 1, and arrive at x:

P1(x) =
Average number of clicks made by electron detector at location x, per unit time (slit 2 closed)

Number of electrons emitted by gun, per unit time

Similarly, we compute P2. We find,

P12 6= P1 + P2,

which is the same result as the case of waves. Thus, it appears as though the two sources of

electrons interfere.

We are therefore motivated to ascribe a complex-valued probability amplitude to events:

φ1 = Probability amplitude for electron to leave the source, pass through slit 1, and end up at x,

φ2 = Probability amplitude for electron to leave the source, pass through slit 2, and end up at x
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such that

P1 = |φ1|2, P2 = |φ2|2.

We know that the probabilities do not add, so we propose instead that the probability amplitudes

add:

φ12 = φ1 + φ2,

In other words,

Probability amplitude for electron to leave source, pass through slit 1 OR slit 2, and arrive at x

= Probability amplitude for electron to leave source, pass through slit 1, and arrive at x

+ Probability amplitude for electron to leave source, pass through slit 2, and arrive at x.

But we have interpreted the modulus-squared of an amplitude as a probability, hence

P12 = |φ1 + φ2|2 = |φ1|2 + |φ2|2 + 2<(φ1φ2) = P1 + P2 + 2<(φ1φ2).

Thus, the two events interfere, just like ordinary waves.

For the second part of the thought experiment, we imagine observing the electrons as they pass

through one of the two slits. To do this, we place a light source near the slits, between the slits

and the backstop (Fig. 2.2). We know that light (photons) scatter off electrons. Thus, whenever

we see a flash of light near A, we know that the electron has gone through slit 2; if we see a flash

of light nearer to slit 1, then we conclude that the electron has gone through slit 1. In this way, we

build up new probabilities:

P ′1 = Probability that the electron leaves the source, passes through slit 1,,

scatters light, and ends up at x,

P ′2 = Probability that the electron leaves the source, passes through slit 2,,

scatters light, and ends up at x,

P ′12 = Probability that the electron leaves the source, passes through slit 1 OR slit 2,

scatters light, and ends up at x.

Remarkably, we find that

P ′12 = P ′1 + P ′2.

Thus, we no longer get the interference pattern (Probability as a function of x) associated with the

original experiment. Indeed, the pattern of probabilities observed is as though we were firing bullets

through the slits (Fig. 2.2). Continuing with the thought experiment, the original interference
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Figure 2.2: Electron source, slits illuminated (interference pattern collapses)

pattern is observed when the light source is switched back off.

This thought experiment (which is supported by real experiments) leads to the following rules for

combining probabilities:

1. The probability of an event is given by the square of the absolute value of a complex number

φ which is called the probability amplitude:

P = Probability;

φ = probability ampliutde;

P = |φ|2

2. When an event can occur in several alternative ways, the probability amplitude for the event is

the sum of the probability amplitudes for each way considered separately. There is interference:

φ = φ1 + φ2,

P = |φ1 + φ2|2.

If an experiment is performed which is capable of determining whether one or another alter-

native is actually taken, the probability of the event is the sum of the probabilities of each

alternative. The interference is lost:

P = P1 + P2.
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2.2 Manipulating probability amplitudes

Consider again the interference pattern generated by the two-slit experiment with electrons, when

there is no way of knowing which slit the electrons have passed through (Fig. 2.1). We are going

to use some new notation for the probability amplitudes. For the detector at position x, we have1

Amplitude that electron leaves source s and arrives at x

= 〈Particle arrives at x|Particle leaves s〉 = 〈x|s〉.

We know that probability amplitudes add, thus the amplitude for the particle to arrive at x is given

by a sum over all possible routes of getting there:

〈x|s〉both slits open = 〈x|s〉through 1 + 〈x|s〉through 2.

To these results we may add a further general principle (rule 3):

When a particle goes by some particular route, the amplitude for that route can be

written as the product of the amplitude to go part of the way, with the amplitude to go

the rest of the way.

Thus,

〈x|s〉through 1 = 〈x|1〉〈1|s〉.

But

〈x|s〉through 1

= Probability amplitude for electron to leave source, pass through slit 1, and arrive at x

= φ1;

similarly

φ2 = 〈x|s〉through 2 = 〈x|2〉〈2|s〉.

Combining these, we have the total amplitude for the electron to reach the detector:

〈x|s〉both slits open = 〈x|1〉〈1|s〉+ 〈x|2〉〈2|s〉.

Referring back to the law

P12 = |φ1 + φ2|2,
1The order is rather strange here: final state 〈f | on the left, initial state |i〉 on the right, leading to an amplitude

〈f |i〉. According to a friend from undergraduate days, the order of these terms is precisely the same as the order of
the first letters of the two-word expression ‘Feck it’ – a rather curious mnemonic.
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we have

P (x; both slits open) = |〈x|s〉both slits open|2 = |〈x|1〉〈1|s〉+ 〈x|2〉〈2|s〉|2 .

2.3 Distinguishable alternatives

We return to the problem of measuring which slit the electrons pass through. This is done by placing

two detectors between the slits and the backstop (Fig. 2.3). The amplitude for a particle to start

Figure 2.3:

at the source s, go through slit 1, scatter off a photon that goes into detector D1, and proceeds to

location x is

〈x|1〉a〈1|s〉 = aφ1,

where a is the probability amplitude that the electron at slit 1 scatters a photon that goes into

detector D1. Now we also have to allow for the possibility that an electron going through slit 2

scatters a photon into detector D1, although this would be a poorly-designed experiment, since we

wish for detector D1 to mark out electrons going into slit 1. Nevertheless, we have

〈x|2〉b〈2|s〉 = bφ2

where b is the probability amplitude that the electron at slit 2 scatters a photon that goes into

detector D1. Thus,

〈electron at x, photon at D1|electron from s, photon from light source〉 = aφ1 + bφ2, (2.1)
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where we sum over the two indistinguishable alternatives. Now we assume that the system is totally

symmetric between slits and detectors, so that

〈electron at x, photon at D2|electron from s, photon from light source〉 = aφ2 + bφ1.

Thus, the probability to get a detection of light in D1 and an electron at x is the absolute value

squared of Equation (2.1):

Prob(Detection in D1, electron at x) = |aφ1 + bφ2|2.

If we design our experiment well, then b = 0, and

Prob(Detection in D1, electron at x) = |aφ1|2,

so that up to a silly prefactor (|a|2), a detection of light in D1 corresponds to an electron passing

through slit 1. Now here comes the crux. We want to find the interference pattern at the detector,

in other words, we want to find the probability that an electron ends up at x, regardless of which

detector it scatters light into. Should we add some amplitudes? The answer is NO. We never

add amplitudes for distinguishable final states (rule 4). Detection of photons in one device is

completely independent of detection of photons in another. Thus, in this case, the probabilities add:

Prob(Detection in D1 OR D2, electron at x)

= Prob(Detection in D1, electron at x) + Prob(Detection in D1, electron at x)

= |aφ1|2 + |aφ2|2 = P ′1 + P ′2.

2.4 The mathematical postulates of quantum mechanics

In the first part of this chapter, we have used thought experiments, based on real experiments, to

derive some rules for quantum-mechanical behaviour. While very intuitive, it is also quite long.

That discussion can be distilled into the following few mathematical rules. You will probably not

understand all of them yet; that is the purpose of Chapters 3–9. However, after studying these

chapters, you should try to reconcile the following laws with Feynman’s more intuitive explanations.

Mathematical postulates of quantum mechanics:

1. Each physical system is associated with a (separable) Hilbert space H. Norm-one vectors in

H are associated with states of the system.
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The norm can be re-constituted by pairing with elements in the dual space (Riesz Represen-

tation Theorem). Norm-one vectors that differ only by a phase represent the same state.

2. The Hilbert space of a composite system is the Hilbert-space tensor-product of the state

spaces associated with the component systems.

3. Physical symmetries act on H through unitary or conjugate-unitary operators.

4. A physical observable is represented by a Hermitian operator on H; the only allowed results

of measurement of the physical observable are the eigenvalues of the operator.

Quantum mechanics is probabilistic: the probability that a system prepared in a state |x〉 ∈ H
is measured to be in an eigenstate |xa〉 of the observable A is given by

|〈xa|x〉|2,

where 〈xa| ∈ H∗ is dual to |xa〉 ∈ H and 〈xa|x〉 is the pairing induced by the scalar product.

Notes: The Schrödinger equation is not a fundamental postulate of quantum mechanics; it can be

derived from these laws. the same is true for Heisenberg’s uncertainty principle. To understand

these concepts, we shall need to recall the concept of a vector space over the complex numbers.
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Complex vector spaces

It is left as homework to study this chapter; Reading material for this chapter: Simms 211.

Definition 3.1 A set H is called a complex vector space if the following properties hold:

1. An operation

H×H → H,

(x,y)→ x+ y

is given, called addition of vectors, such that

(a) The addition is associative: (x+ y) + z = x+ (y + z);

(b) The addition is commutative: x+ y = y + x;

(c) There is an additive identity: x+ 0 = x;

(d) There are inverses: x+ (−x) = 0.

These properties make the vector space into an abelian group.

2. An operation

C×H → H,

(λ,x) → λx

is given, called scalar multiplication, which satisfies

(a) The multiplication is distributive: λ(x+ y) = λx+ λy;

25
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(b) Distributivity: (λ+ µ)x = λx+ µx;

(c) Distributivity: (λµ)x = λ(µx);

(d) 1 ∈ C is a multiplicative identity 1x = x,

for all λ, µ ∈ C and x,y, z ∈ H. The elements of H are called vectors and the elements of C are,

in this context, called scalars.

Examples:

1. The set

Cn = {(z1, · · · zn) |z1, · · · zn ∈ C }

is a complex vector space.

2. The set HΩ of all complex-valued functions of a real variable,

HΩ = {f |f : (Ω ⊂ R)→ C }

is a vector space, with vector addition

(f + g)(x) = f(x) + g(x),

and scalar multiplication

(λf)(x) = λf(x),

for all x ∈ Ω, all f, g ∈ HΩ, and λ ∈ C. Note that the addition operation is called pointwise

because it is defined with reference to each point x ∈ Ω.

3. The set of all solutions of the equation

d2u

dx2
+ u = 0

is a vector space.

Definition 3.2 Let G ⊂ H and let H be a complex vector space. Then G is called a vector

subspace of H if it is non-empty, and if,

1. Closure under addition: x, y ∈ G =⇒ x+ y ∈ G;

2. Closure under scalar multiplication: λ ∈ Cx ∈ G =⇒ λx ∈ G.
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Thus, G is itself a complex vector space.

Example: Let HΩ be the set of all complex-valued functions of a single real variable, with domain

Ω. Let f ∈ HΩ. Define the L2 norm of f :

‖f‖2 =

√∫
Ω

dx|f(x)|2.

The set

GΩ = {f ∈ HΩ|‖f‖2 <∞}

is closed under addition and scalar multiplication, and is therefore a vector subspace of HΩ.

Definition 3.3 Let x1, · · · ,xr be vectors in the complex vector space H, and let λ1, · · ·λr be

scalars. Then the vector

λ1x1 + · · ·+ λrxr

is called a linear superposition of x1, · · · ,xr. We write

S(x1, · · ·xr) = {λ1x1 + · · ·λrxr|λ1, · · · , λr ∈ C }

to denote the set of all linear combinations of x1, · · · ,xr. S(x1, · · ·xr) is a vector subspace of H,

and is called the subspace spanned by x1, · · · ,xr.

If S(x1, · · ·xr) = H, we say that x1, · · · ,xr span the whole space H. Then, for each x ∈ H,

there exist scalars λ1, · · · , λr such that

x = λ1x1 + · · ·λrxr.

Examples:

1. The vectors

e1 = (1, 0, 0),

e2 = (0, 1, 0),

e3 = (0, 0, 1)

span C3 because for any x in C3,

x = (z1, z2, z3),

= z1e1 + z2e2 + z3e3.
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2. The functions

eix, e−ix

span the space of solutions of the equation

d2u

dx2
+ u = 0,

because for any u(x) in the solution space,

u(x) = λ1eix + λ2e−ix.

Definition 3.4 Let x1, · · · ,xr be vectors in a complex vector space H. Then,

1. x1, · · · ,xr are linearly dependent if there exist scalars λ1, · · · , λr such that

λ1x1 + · · ·λrxr = 0.

2. They are linearly independent if

λ1x1 + · · ·λrxr = 0

implies that λ1 = · · · = λr = 0.

Example: eix and e−ix are linearly independent functions in HΩ. For, let us solve

λeix + µe−ix = 0, for all x ∈ C.

Since this expression must be true for all x ∈ R, set x = 0. Since e0 = 1 we have

µ = −λ.

Thus, we have

0 = λeix + µe−ix = λ
(
eix − e−ix

)
= 2iλ sin(x).

The only way for this to be identically zero is for λ = 0.

Note: If x1, · · · ,xr are linearly independent, with

λ1x1 + · · ·λrxr = 0,

and λ1 6= 0 (say), then

x1 = − 1

λ1

(λ2x2 + · · ·λrxr) .
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Thus, x1, · · · ,xr are linearly dependent iff one of them is a linear combination of the

others.

Note: Let x 6= 0 be a vector in H. Then the pair {0,x} are linearly dependent, because

1.0 + 0.x = 0.

Thus, a list of linearly independent vectors can never contain the zero vector.

Definition 3.5 A sequence of vectors x1, · · · ,xn in a real vector space H is called a basis for H
if,

1. x1, · · · ,xr are linearly independent;

2. x1, · · · ,xr span H.

Thus, given a basis x1, · · · ,xn , we can write a vector x ∈ H as

x = α1x1 + · · ·αnxn, α1, · · ·αn ∈ C.

The αi’s are called the coordinates of the vector.

Definition 3.6 Let H be a complex vector space spanned by a finite number of vectors. The

minimal number of vectors required to span the vector is called the dimsension of the space. The

number of elements in a basis is equal to the dimension of the space.

A vector spaces that is spanned by a finite number of vectors is called finite-dimensional vector

spaces. Examples:

1. The vectors

e1 = (1, 0, 0),

e2 = (0, 1, 0),

e3 = (0, 0, 1)

are a basis for C3. They certainly span C3:

x = (z1, z2, z3),

= z1e1 + z2e2 + z3e3.
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They are also linearly independent:

ae1 + be2 + ce3 = 0,

(a, b, c) = 0,

a = b = c = 0.

2. The functions eix and e−ix form a basis for the solution space of the differential equation

d2u

dx2
+ u = 0.

3. The m× n matrices
1 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 0

 ,


0 1 0 · · · 0

0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 0

 ,


0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 1

 ,

form a basis for Cm×n as a complex vector space.
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Scalar products

Reading material for this chapter: Simms 211

4.1 The definition

Definition 4.1 Let H be a complex vector space. A scalar product on H is a map

H×H → C,

(x,y)→ 〈x|y〉,

that is conjugate-linear and conjugate-symmetric:

1. 〈λx+ µy|z〉 = λ∗〈x|z〉+ µ∗〈y|z〉,

2. 〈x|λy + µz〉 = λ〈x|y〉+ µ〈x|z〉,

3. 〈x|y〉 = 〈y|x〉∗,

for all x,y, z ∈ H and λ, µ ∈ C.

4.2 The dot product on Cn

Consider the usual basis on Cn:

e1 = (1, 0, · · · , 0),

e2 = (0, 1, · · · , 0),
... =

...,

en = (0, 0, · · · , 1).
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Define the dot product of two basis vectors:

〈ei|ej〉 = δij

where δij is the Kronecker delta. Extend this definition by linearity two arbitrary vectors in Cn:

a = a1e1 + · · ·+ anen,

b = b1e1 + · · ·+ bnen,

〈a|b〉 = 〈a1e1 + · · ·+ anen|b1e1 + · · ·+ bnen〉,

=
n∑
i=1

n∑
j=1

a∗i δijbj,

= a∗1b1 + · · · a∗nbn.

Note: 〈a|b〉 =
∑

i a
∗
i bi, and

〈b|a〉 =
∑
i

aib
∗
i =

(∑
i

a∗i bi

)∗
= 〈a|b〉∗.

Moreover, for a vector a ∈ Cn, we define its norm, |a|:

a = a1e1 + · · ·+ anen,

|a| :=
√
〈a|a〉 =

√
|a1|2 + · · ·+ |an|2.

Theorem 4.1 The dot product on Cn satisfies the Cauchy–Schwartz inequality:

|〈a|b〉| ≤ |a||b|.

Proof: Consider

F (x) := 〈xeiθa+ b|xeiθa+ b〉,

where x is a real variable and θ is an arbitrary parameter which we shall fix. Since 〈a|a〉 ≥ 0 for

all a ∈ Cn, we have F (x) ≥ 0, for all x real. We have

F (x) = x2|a|2 + xe−iθ〈a|b〉+ xeiθ〈b|a〉+ |b|2,

= x2|a|2 + xe−iθ〈a|b〉+ xeiθ (〈a|b〉)∗ + |b|2,
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But θ is arbitrary. We choose it such that

〈a|b〉 = |〈a|b〉| eiθ.

Hence,

F (x) = x2|a|2 + xe−iθ
(
|〈a|b〉| eiθ

)
+ eiθ

((
|〈a|b〉| eiθ

))∗
+ |b|2,

= x2|a|2 + 2x |〈a|b〉|+ |b|2.

This is a quadratic function in x, with real coefficients, and with roots

x± =
|〈a|b〉| ±

√
|〈a|b〉|2 − |a|2|b|2
|a|2

.

But F (x) ≥ 0, the quadratic function has at most one real root, so

|〈a|b〉|2 − |a|2|b|2 ≤ 0,

or

|〈a|b〉| ≤ |a||b|,

as required.

Note: The Cauchy–Schwartz inequality is true for any scalar product with the positive-

definite property 〈x|x〉 > 0 for x 6= 0.

Definition 4.2 Since |〈a|b〉| ≤ |a||b|, we define the angle between vectors a and b (up to a

sign):

| cos θ| = |〈a|b〉|
|a||b|

.

Definition 4.3 Two vectors are orthogonal if the angle between them is zero:

〈a|b〉 = 0.

4.3 Spaces of functions

For a Lebesgue-measurable set Ω ⊂ R, consider the set HΩ of all complex-valued measurable

functions,

HΩ = {f |f : (Ω ⊂ R)→ C }.



34 Chapter 4. Scalar products

This is a vector space, with pointwise operations of addition and scalar multiplication.

Definition 4.4 The set

L2(Ω) =

{
f ∈ HΩ

∣∣∣∣ ∫
Ω

|f(x)|2dx <∞
}

is a vector subspace of HΩ called the space of square-integrable functions.

Theorem 4.2 The map

〈·|·〉 : L2(Ω)× L2(Ω)→ C,

(f, g)→
∫

Ω

f ∗(x)g(x)dx

is a scalar product on the vector space L2(Ω).

The proof is easy: all you do is show biconjugate-linearity, e.g.

(λf + µg, h) = λ∗ (g, h) + µ∗ (g, h) ,

(f, λg + µh) = λ (f, g) + µ (f, h) ,

for functions f, g, h ∈ L2(Ω) and scalars λ and µ.

Definition 4.5 Let f ∈ L2(Ω). Then the norm of the function f is denoted by ‖f‖2, and is

defined by

‖f‖2
2 := 〈f |f〉 =

∫
Ω

|f(x)|2dx.

Definition 4.6 Let f, g ∈ L2(Ω). These functions are orthogonal if

〈f |g〉 =

∫
Ω

f ∗(x)g(x)dx = 0.

Example: Let Ω = [−π, π]. The length of the function eix is given by

‖eix‖2
2 =

∫ π

−π
eixe−ixdx =

∫ π

−π
dx = 2π.

The functions eix and e−ix are orthogonal because

〈eix|e−ix〉 =

∫ π

−π
e−2ix =

−1

2i
e−2ix

∣∣π
−π = 0.

Now we can define what a Hilbert space is:
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Definition 4.7 A Hilbert space H is a complex vector space endowed with a positive-definite

scalar product.

Moreover, the space is a complete metric space with respect to the norm induced by the scalar

product.

The second part of the definition is not important for our purposes, and already follows from the

first part for finite-dimensional vector spaces. We also have the following definition and theorems

that are not important for our purposes:

Definition 4.8 (Denseness, Separability) Let H be a Hilbert space with norm ‖ · ‖. A subset

D ⊂ H is dense in H if for each x ∈ H and each ε > 0, there exists d ∈ D such that ‖d−x‖ < ε.

The Hilbert space H is called separable if it contains a countable dense set.

Also,

Theorem 4.3 A Hilbert space is separable if and only if it has an orthonormal basis with a countable

number of elements.
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Linear forms and duality

Reading material for this chapter: Simms211

5.1 The definition

Definition 5.1 Let H be a complex vector space. A linear form f is a map

f : H → C,

x → f · x,

that satisfies the following linearity properties:

1. f · (λx+ µy) = λ(f · x) + µ(f · y),

2. (λf + µg) · x = λ(f · x) + µ(g · y),

for all linear forms f and g, vectors x and y, and scalars λ and µ.

5.2 Coordinate functions

Let Hn be a finite-dimensional vector space of dimension n, with basis b1, · · · bn. Thus, for each

vector x ∈ Hn, we have

x =
n∑
i=1

λibi, λi ∈ C.

36
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Define the ith coordinate map fi by its action on x:

fi : Hn → C,

fi · x = λi.

This map is a linear form. We can write

x =
n∑
i=1

(fi · x) bi

(note that fi · bj = δij). We can also define a new vector space of functions:

H∗n = S (f1, · · · , fn) .

The coordinate maps fi are linearly independent. For, consider the map

αfi + βfj,

where α and β are scalars and i 6= j. The addition of maps is defined in a pointwise way. Thus, let

us examine

(αfi + βfj) · x = α (fi · x) + β (fj · x) = αλi + βλj.

The only way for this to be identically zero (for all possible values of λi and λj) is for α and β both to

be zero. Thus, the coordinate maps {f1, · · · , fn} are linearly independent, and H∗n is n-dimensional

as a complex vector space. This motivates the following definition:1

Definition 5.2 The space H∗n is called the dual space to Hn.

Example: Let

x =

(
z1

z2

)
∈ C2.

Consider the vector

f = (w∗1, w
∗
2) .

Taking the matrix product of these two elements, we have

fx = w∗1z1 + w∗2z2.

1The dual space is also where mathematicians go to sort out their differences in a violent way. A bad joke, I know.
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Thus, f is a linear form on C2.

The coordinate functions with respect to the usual basis

e1 =

(
1

0

)
, e2 =

(
0

1

)

are

f1 = (1, 0), f2 = (0, 1).

Hence, given the vector x,

z1 = f1 · x, z2 = f2 · y,

and

x = (f1 · x)e1 + (f2 · x)e2.

5.3 A special scalar product

There is a bijective map between Hn and H∗n. For, let x ∈ Hn, such that

x =
n∑
i=1

λibi.

Then, we can write down a corresponding linear form:

fx =
n∑
i=1

λ∗i fi,

where fi is the ith coordinate map, fi · x = λi. Thus, for each x there is an fx, and for each fx

there is a x. Moreover, let us take

fx · x =

(
n∑
i=1

λ∗i fi

)(
n∑
i=1

λibj

)
,

=
n∑
i=1

n∑
j=1

λ∗iλjfibj,

=
n∑
i=1

n∑
j=1

λ∗iλjδij,

=
n∑
i=1

|λi|2,
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which is suggestive of the norm on Cn !!! Indeed, it suggests a recipe for constructing a scalar

product on any finite-dimensional vector space Hn.

• Choose a basis for Hn, {b1, · · · , bn}, say.

• Write vectors x and y as x =
∑

i λibi and y =
∑

i µibj.

• Identify the dual-space elements fx =
∑

i λ
∗
i fi and fy =

∑
i µ
∗
i fi.

• Define the scalar product of x and y:

〈x|y〉 := fx · y =
n∑
i=1

λ∗iµi.

Because the dual-space scalar product is ‘special’, we introduce some special notation:

• The vector y ∈ Hn will be re-written as |y〉 and called a ‘ket’;

• Similarly, the vector x ∈ Hn is written as |x〉. Its corresponding dual element in H∗n will be

re-written as 〈x| and called a ‘bra’.

• The scalar product constructed by uniting 〈x| with |y〉 will be written in standard form as

〈x|y〉.

Thus, the ‘bra’ and ‘ket’ are united into one ‘bracket’. Where the missing ‘c’ has gone is a

mystery yet to be solved by quantum mechanics.

Example: Take C2 again. Form the vector

x =

(
z1

z2

)
∈ C2.

Its dual element is

fx = (z∗1 , z
∗
2) ,

or, treating x as a 2× 1 matrix, fx = x∗T . Hence,

fx · x = (z∗1 , z
∗
2)

(
z1

z2

)
= |z1|2 + |z2|2,

which is the usual dot product on C2.

Remarkably, the prescription for creating the natural pairing is independent of the basis {b1, · · · , bn}
used to formulate the scalar product, because of the following theorem:
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Theorem 5.1 Let {ai}ni=1 and {bi}ni=1 be two bases for Cn, connected by a unitary transformation,

bi =
n∑
j=1

Qjiaj, Q†Q = I,
(
Q†
)
ij

= Q∗ji.

Then, the natural scalar product is the same in the a- and b-bases.

Before proving this theorem, I want to admit that it seems weird. But consider the following

analogous statement for real vector spaces:

Let {ai}ni=1 and {bi}ni=1 be two orthonormal bases for Rn, connected by a rotation,

bi =
n∑
j=1

Rjiaj, RTT = I.

Then, the usual dot product is the same in both bases:

x · x = (λ1b1 + · · ·λnbn) · (λ1b1 + · · ·λnbn)

=
(
λ̃1a1 + · · ·+ λ̃nan

)
·
(
λ̃1a1 + · · ·+ λ̃nan

)
.

Now we prove the theorem:

x =
n∑
i=1

λibi,

=
n∑
i=1

λi

(
n∑
j=1

Qjiaj

)
,

=
n∑
j=1

(
n∑
i=1

Qjiλi

)
aj,

=
n∑
j=1

λ̃jaj, λ̃j =
n∑
k=1

Qjkλk.
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Similarly, y =
∑n

i=1 µ̃jaj. Therefore, in the a-basis,

〈x|y〉a =
n∑
j=1

λ̃j
∗
µ̃j,

=
n∑
j=1

(
n∑
k=1

Qjkλk

)∗( n∑
`=1

Qj`µ`

)
,

=
n∑
j=1

(
n∑
k=1

n∑
`=1

Q∗jkQj`

)
λ∗iµk,

〈x|y〉a =
n∑
k=1

n∑
`=1

(
n∑
j=1

(Q∗T )kjQj`

)
λ∗iµk,

=
n∑
k=1

n∑
`=1

δk`λ
∗
iµk,

=
n∑
k=1

λ∗kµk,

= 〈x|y〉b.

Notes:

• From this proof, it follows that here is nothing arbitrary about the scalar product just defined.

• Because it has the positive-definite property, it makes Hn into a Hilbert space.

• The proof relies on the transformation matrix Q being unitary; we discuss this in more detail

now.

5.4 Unitary matrices

Consider a ket |x〉 in Cn. Let’s act on the ket with a unitary matrix Q:

|x〉 → Q|x〉.

We know from the example in C2 that the transformed bra is

(Q|x〉)∗T = (|x〉)∗T Q∗T ,

= 〈x|Q†.
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Let’s take the norm of the transformed variable:

〈x|Q†Q|x〉 = 〈x|I|x〉 = 〈x|x〉.

Thus, unitary transformations preserve the norm of vectors.

This is very similar to rotations in Rn. Consider a vector x ∈ Rn. If we rotate the vector, we act

on it with a real symmetric matrix R, RTR = I. The norm of the vector is

x · x = xTx,

and the norm of the rotated vector is

(Rx)T (Rx) = xTRTRx = xT Ix.

The quantity x · x is therefore a scalar, and we formulate physical theories based on such scalars.

Thus, if we are working with Cn, instead of Rn, it is natural to formulate a physical theory based

on quantities that are norm-invariant. Natural transformations are therefore those that preserve the

norm – or unitary matrices.

Now we can make some more sense of Postulate 3 of Quantum mechanics. Consider two states of

|φ〉 and |ψ〉 of a physical system. To characterise the system, we need information about probabilities

that certain states are realised. Such information is contained in pairings like

〈φ|ψ〉.

A symmetry of the system must not change this information. Thus, consider a unitary operator Û .

The pairing

〈φ|Û †Û |ψ〉 = 〈φ|I|ψ〉 = 〈φ|ψ〉

contains exactly the same information as 〈φ|ψ〉. Thus, the system is effectively unchanged when

|φ〉 → Û |φ〉, |ψ〉 → Û |ψ〉.

This is a justification of the third postulate.

5.5 On the induced scalar product versus the prescribed one

So far we have worked with a finite-dimensional Hilbert space Hn. This means that there is a

definite scalar product that is prescribed or given to us. On the other hand, we have described a
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process of pairing elements in Hn with elements in H∗n which induces a scalar product on Hn. It

will be helpful (especially in the infinite-dimensional case) to know that these two scalar products

agree. The following results give a condition that guarantees that these two scalar products agree:

Lemma 5.1 Let {|ei〉}ni=1 be a basis for Hn that is orthonormal with respect to the given scalar

product:

〈ei|ej〉 = δij

Then, the scalar product induced by pairing is the same as the given scalar product:

〈ei|ej〉 = 〈ei|ej〉eP = δij,

where the subscript eP here denotes the scalar product got by pairing with respect to the |ei〉-basis.

Proof: By definition, fi|ej〉 = δij, where fi is the ith coordinate function with respect to the

|ei〉-basis. In other words, 〈ei|ej〉eP = δij, and the result is shown.

Theorem 5.2 (Agreement between the prescribed scalar product and the induced one) Let

{|ei〉}ni=1 be a basis for Hn that is orthonormal with respect to the given scalar product:

〈ei|ej〉 = δij

and let {|b〉i}ni=1 be another basis, connected to the |ei〉-basis via a unitary transformation:

|bi〉 =
n∑
j=1

Qji|ej〉, Q†Q = I.

Then, the scalar product induced by pairing with respect to the |bi〉-basis is the same as the given

scalar product:

〈bi|bj〉 = 〈bi|bj〉bP = 〈ei|ej〉 = δij,

where the subscript bP here denotes the scalar product got by pairing with respect to the |bi〉-basis.

Proof: We have

δij = 〈bi|bj〉bP ,

Since the |ei〉- and |bi〉-bases are connected via a unitary transformation, by Theorem 5.1 we have

that

δij = 〈bi|bj〉bP = 〈bi|bj〉eP

and by Lemma 5.1 we get

δij = 〈bi|bj〉bP = 〈bi|bj〉eP = 〈bi|bj〉,

and the theorem is shown.
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5.6 Riesz representation theorem

The correspondence between the Hilbert space and its dual extends to infinite-dimensional spaces,

where it is called the Riesz representation theorem:

Theorem 5.3 If H is a Hilbert space with prescribed scalar product 〈·|·〉, then for any continuous

linear form f : H → C, there exists a unique element |u〉 ∈ H such that

f |x〉 = 〈u|x〉, ∀|x〉 ∈ H.

In this way – just as in the finite-dimensional case, an arbitrary linear form can f can be identified

with a vector |u〉, and we would write f ≡ fu = 〈u|. However, this theorem relies for its proof

on the topological properties of the Hilbert space induced by the prescribed scalar product, and we

cannot in this case simply start with a pairing operation and construct a scalar product – we must

proceed in the reverse order. These are technical points whose elucidation is well beyond the scope

of this module.
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Operators

Reading material for this chapter: Simms211; LandauLifshitz, Chapter 1

6.1 Linear operators

Definition 6.1 Let H1 and H2 be complex vector spaces. A linear operator Â is a map

Â : H1 → H2,

|x〉 → Â|x〉

such that

Â (|x〉+ |y〉) = Â|x〉+ Â|y〉,

Â(λ|x〉) = λÂ|x〉,

for all |x〉, |y〉 ∈ H1 and λ ∈ C. Examples:

• An n× n matrix is a linear operator on Cn, and maps Cn to itself.

• Let Cr(Ω) be the space of all complex-valued functions of a single real variable that are r-times

continuously differentiable on the open interval Ω ⊂ R. Then the usual derivative operation

is a linear operator:

d/dx : Cr(Ω) → Cr−1(Ω),

f(x) → (df/dx),

45
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since

(d/dx) [f(x) + g(x)] = (df/dx) + (dg/dx),

(d/dx) [λf(x)] = λ(df/dx),

for all f(x), g(x) ∈ Cr(Ω) and λ ∈ C.

Definition 6.2 Let Â be a linear operator that maps the Hilbert space H to itself. The adjoint

of Â, Â† is an operator acting on H∗, defined as follows:

• Identify |x〉 and Â|x〉 in H.

• Pair Â|x〉 with an element 〈y| in the dual space.

• Call 〈y| := 〈x|Â†.

Example: Let H = Cn with the usual basis {ei}ni=1. Consider a matrix A ∈ Cn×n. This can be

made into an operator on H by defining the action of A on the usual basis elements:

Âei :=
n∑
j=1

Ajiej, Aij ∈ C,

(NOTE THE ORDER!) This can be extended by linearity to the whole space:

x =
n∑
i=1

λiei,

Âx = Â

(
n∑
i=1

λiei

)
,

=
n∑
i=1

λi

(
Âei

)
,

=
n∑
i=1

λi

(
n∑
j=1

Ajiej

)
,

=
n∑
j=1

(
n∑
i=1

Ajiλi

)
ej,

=
n∑
j=1

λ̃jej =
n∑
i=1

λ̃iei.
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In ‘bra’-’ket’ notation,

|x〉 =
n∑
i=1

λi|ei〉,

Â|x〉 = Â

(
n∑
i=1

λi|ei〉

)
,

=
n∑
i=1

λi

(
Â|ei〉

)
,

=
n∑
i=1

λi

(
n∑
j=1

Aji|ej〉

)
,

=
n∑
j=1

(
n∑
i=1

Ajiλi

)
|ej〉,

=
n∑
j=1

λ̃j|ej〉 =
n∑
i=1

λ̃i|ei〉.

Note also,

Â|ei〉 =
n∑
j=1

Aji|ej〉,

〈ek|Â|ei〉 = Aki

(NOTE THE ORDER!!). We call Aki the components of the operator Â w.r.t. the usual basis.

Now let us work out what the action of the adjoint is on basis elements:

Â|ei〉 =
n∑
j=1

Aji|ej〉 ∼
n∑
j=1

A∗ji〈ej| := 〈ei|Â†.

To work out the components of 〈ei|A†, we pair it with |ek〉:

〈ei|A† =
n∑
j=1

A∗ji〈ej|,

〈ei|A†|ek〉 =

(
n∑
j=1

A∗ji〈ej|

)
|ek〉,

= A∗ki,

=
(
AT∗

)
ik
.
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In conclusion, we have the following identifications

• Â→ A, where A is a matrix with components

Aij = 〈ei|Â|ej〉,

• Â† → A†, where A† is the matrix

A† = AT∗ = A∗T .

Definition 6.3 A matrix (or an operator) Â is called Hermitian if

Â† = Â.

Definition 6.4 A matrix (or an operator) Û is called unitary if

Û Û † = Û †Û = I.

Example: Consider the matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
.

These matrices are Hermitian. For example,

σ†y =

(
0 +i

−i 0

)T

=

(
0 −i

i 0

)
= σy.

They are also unitary. Again,

σ†yσy = σ2
y =

(
0 +i

−i 0

)(
0 +i

−i 0

)
=

(
1 0

0 1

)
.

6.2 The spectral theorem

Theorem 6.1 Let Â be a Hermitian operator on a Hilbert space H. Then the eigenvalues of Â are

necessarily real.
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Proof: Let |x〉 be an eigenvector of Â with eigenvalue λ. By definition,

Â|x〉 = λ|x〉.

The adjoint operator acting on the 〈x| is obtained from the duality identification:

〈x|Â† = λ∗〈x|.

Pair up both expressions:

〈x|Â|x〉 = λ〈x|x〉,

〈x|Â†|x〉 = λ∗〈x|x〉.

The operator is Hermitian, hence Â = Â†, and thus

λ〈x|x〉 = λ∗〈x|x〉.

By definition, an eigenvector is non-zero, hence

λ = λ∗,

and λ ∈ R.

Theorem 6.2 Let Â be a Hermitian operator on a Hilbert space H. Then the eigenvectors of Â

corresponding to distinct eigenvalues are necessarily orthogonal.

Proof: Consider two distinct eigenvector-eigenvalue pairs:

Â|x〉 = λ|x〉,

Â|y〉 = µ|y〉.

Take the scalar product of the first equation with |y〉 and the scalar product of the second equation

with |x〉:

〈y|Â|x〉 = λ〈y|x〉,

〈x|Â|y〉 = µ〈x|y〉.

But

〈y|Â|x〉 = 〈x|Â|y〉∗ = µ∗〈x|y〉∗ = µ〈y|x〉
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Hence,

〈y|Â|x〉 = λ〈y|x〉,

〈y|Â|x〉 = µ〈y|x〉.

Subtracting gives

(λ− µ)〈y|x〉 = 0,

and since λ 6= µ, 〈y|x〉 = 0.

Note: These theorems give information about the properties of eigenvalues and eigenvectors of

Hermitian operators. However, they do not guarantee that such eigenvectors form a basis for the

space. We therefore turn to a theorem that guarantees such an outcome:

Theorem 6.3 (The spectral theorm) Let Â be a Hermitian operator on a finite-dimensional

Hilbert space H. Then the eigenvectors of Â form an orthogonal basis for H.

The result extends to infinite-dimensional spaces if the Green’s function of Â is bounded and

continuous.

Conseqeunces of the spectral theorem; the problem of measurement

The spectral theorem is stated without proof but is of fundamental importance to quantum me-

chanics. Although it is stated only for finite-dimensional Hilbert spaces, it extends to other cases,

provided Â satisfies certain technical conditions (the examples considered in this module fall into

this ‘well-behaved’ category, namely operators whose Green’s function is bounded and continuous).

1. By postulate (4), if we can compute the eigenvalues of Â, then we can predict all possible

observed (measured) states of a system with respect to the property Â.

2. Given an operator Â on a Hilbert spaceH, we formulate the so-called completeness relation.

Let {|xi〉} be the complete orthonormal basis of Â from the spectral theorem, Â|x〉i = ai|x〉i.
It is called complete because any vector |x〉 ∈ H can be written as a superposition of basis

elements:

|x〉 =
∑
i

λi|xi〉,

Here the coordinate λi is given by pairing the coordinate function (‘bra’) 〈xi| with |x〉:

λi = 〈xi|x〉.
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Thus,

|x〉 =
∑
i

λi|xi〉,

=
∑
i

〈xi|x〉|xi〉,

=
∑
i

|xi〉〈xi|x〉.

We now define an operator I on H :

I : H → H,

|x〉 → I|x〉 :=
∑
i

|xi〉〈xi|x〉.

In other words,

I =
∑
i

|xi〉〈xi|.

But

|x〉 =
∑
i

|xi〉〈xi|x〉,

= I|x〉,

hence

I = I,

and we have the following completeness relation:

I =
∑
i

|xi〉〈xi|.

3. Consider again the observable Â with orthonormal basis {|xi〉}. Suppose that the system is

prepared in a state |y〉. By completeness,

|y〉 =
∑
i

〈xi|y〉|xi〉.

By postulate 4, the only outcome of a measurement of property A is an eigenvalue of Â.

Thus, measurement forces the system into an eigenstate,

|y〉 →measurement |xi〉.
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This is called the collapse of the wavefunction. By postulate 4 again, the probability

amplitude that the measurement forces the system into the eigenstate |xi〉 (with eigenvalue

ai) is equal to,

〈xi|y〉,

and the probability that the measurement forces the system into the eigenstate |xi〉 is equal

to

Prob(y → xi) = |〈xi|y〉|2.

If the spectrum is non-degenerate (each eigenspace is one-dimensional), then this is the

probability that measurement of the observable A yields the value ai:

Prob(a = ai) = |〈xi|y〉|2.

If the spectrum is degenerate, and the eigenvectors |xa1〉, · · · |xag〉 are linearly independent

and share the common eigenvalue ai, then

Prob(a = ai) = |〈xa1|y〉|2 + · · ·+ |〈xag|y〉|2

(Never add amplitudes for distinguishable final states!).

4. In this interpretation, we may also view |〈xi|y〉|2 as the probability that the system is in a

state |xi〉 given it is also in a state |y〉. This point of view, which has just been given for

eigenstates, holds generally: if |i〉 and |f〉 are two normed states, we interpret 〈f |i〉 as the

probability amplitude that the system when in the state |i〉 is also in the state |f〉.

5. Thus, the reason for the requirement of unit-norm states is clear: The quantity |〈x|x〉|2 is

the probability that the system is in a state |x〉 given that it is in a state |x〉, which must

necessarily be unity.

6. The statement 〈x|y〉 = 0 is also the statement of mutual exclusivity: that it is impossible for

the system to be in two mutually exclusive states at once. For example, suppose a particle

is measured to have energy Ei. Then it is in a state |Ei〉. It is impossible for the particle

simulatneously to occupy a state with another, diferent energy, Ej. Thus, 〈Ei|Ej〉 = 0.

7. It is still not clear what measurement is. Landau and Lifshitz define it as an interaction be-

tween a quantum-mechanical system and a detector that obeys classical physics (Copenhagen

interpretation). For example, a current of electrons in a circuit can be measured by an amme-

ter – a very classical device. Thus, the theory of quantum-mechanical measurement relies for

its formulation on the classical limit. This is rather unsatisfactory, but is a bearable oddity.
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8. Rather more serious is the silence of quantum mechanics on the actual dynamics of measure-

ment: does the wavefunction collapse instantaneously? If so, how can causality be respected?

How can the continuous nature of time changes be respected? Is time continuous at all? Ob-

viously, this leads to much discussion. The standard description of measurement is given by

the Copenhagen interpretation. Other, self-consistent but bizarre descriptions are possible,

such as the many-worlds interpretation. Such abstruse discussions are beyond the scope

of this course.

Example: Consider three elements enclosed in a sealed box: a sealed container of noxious gas, a

radioactive source, and a cat that is alive just before the box is sealed. The radioactive source

decays and emits decay products, with probability 1/2. The sealed container is connected to a

device such that the seal is broken when struck with the decay products, thus killing the cat. The

cat’s wavefunction is given by

|cat〉 = 1√
2
|alive〉+ 1√

2
|dead〉,

where the prefactors are chosen such that

〈cat|cat〉 =
(

1√
2
〈alive|+ 1√

2
〈dead|

)(
1√
2
|alive〉+ 1√

2
|dead〉

)
,

= 1
2

(〈alive|alive〉+ 〈alive|dead〉+ 〈dead|alive〉+ 〈dead|dead〉) ,

= = 1
2

(1 + 0 + 0 + 1) = 1,

since the amplitudes 〈dead|dead〉 and 〈alive|alive〉 must be equal to one (the probability that the

cat is alive given that it is alive must be 1!). We wait some time and measure the system (shake

the box!). This forces the system into an eigenstate. The amplitude for the cat to be alive given it

is initially in the mixed state is

〈alive|cat〉 = 1√
2
,

with probability 1/2. Similarly, the probability that measurement yields a dead cat is 1/2. How-

ever, until the measurement is made, there cat is regarded as neither alive nor dead – its state is

indeterminate.



Chapter 7

Commutation relations; Time evolution

and the Schrödinger equation

Reading material for this chapter: Mandl, Chapter 3; Landau-Lifshitz, Chapter 2

7.1 Commutation relations

Let Â and B̂ be linear operators on a Hilbert space H, and let |x〉 ∈ H. Consider the compositions

Â ◦ B̂|x〉 = Â
(

B̂|x〉
)

:= ÂB̂|x〉,

and

B̂ ◦ Â|x〉 = B̂
(

Â|x〉
)

:= B̂Â|x〉,

There is no reason that these should yield the same answer. We define the commutator of Â and

B̂ on the vector |x〉 as follows: [
Â, B̂

]
|x〉 :=

(
ÂB̂− B̂Â

)
|x〉.

This relation exists entirely independently of the vector |x〉, thus, we consider[
Â, B̂

]
:= ÂB̂− B̂Â,

where the multiplication is regarded as the multiplication of operators. For example, let H = C2,

and let

Â = σx =

(
0 1

1 0

)
, B̂ = σy =

(
0 −i

i 0

)
.

54
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Then

σxσy =

(
0 1

1 0

)(
0 −i

i 0

)
=

(
i 0

0 −i

)
= iσz,

and

σyσz =

(
0 −i

i 0

)(
0 1

1 0

)
=

(
−i 0

0 i

)
= −iσz,

hence

σxσy − σyσx = 2iσz,

or

[σx, σy] = 2iσz.

We have another important theorem, almost as important as the spectral theorem:

Theorem 7.1 Let Â and B̂ be two commuting Hermitian operators on a separable Hilbert

space H, i.e. [Â, B̂] = 0. Then there exists an orthonormal basis for H whose elements are

simultaneous eigenvectors of Â and B̂.

No proof is given here. Put another way, the theorem says that the commutation relation[
Â, B̂

]
= 0,

implies a basis {|xi〉} for H:

|x〉 =
∑
i

λi|xi〉,

such that

Â|xi〉 = ai|xi〉,

and such that

B̂|xi〉 = bi|xi〉.

Example: Consider again the matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
.

Define the matrix

σ2 := σ2
x + σ2

y + σ2
z = 3I.
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We have [
σx, σ

2
]

= 3 [σx, I] = 3 (σxI− Iσx) = 3 (σx − σx) = 0.

Thus, σx and σ2 are simultaneously diagonalisable. The eigenvalues of σx are±1, with corresponding

(orthonormal) eigenvectors

|x−〉 =
1√
2

(
1

−1

)
, |x+〉 =

1√
2

(
1

1

)
,

such that

σx|x−〉 = (−1) |x−〉, σ2|x−〉 = (+3) |x−〉,

and such that

σx|x+〉 = (+1) |x+〉, σ2|x+〉 = (+3) |x+〉.

It is not possible to find a simultaneous eigenbasis for {σ2, σx, σy} because σx and σy do not

commute: [σx, σy] = 2iσz. Note also:

〈x−| =
1√
2

(
1

−1

)∗T
=

1√
2

(1,−1) ,

〈x+| =
1√
2

(
1

1

)∗T
=

1√
2

(1, 1) ,

hence

〈x−|x−〉 =

[
1√
2

(1,−1)

][
1√
2

(
1

−1

)]
=

1 + 1

2
= 1,

〈x−|x+〉 =

[
1√
2

(1,−1)

][
1√
2

(
1

+1

)]
=

1− 1

2
= 0,

〈x+|x+〉 =

[
1√
2

(1, 1)

][
1√
2

(
1

+1

)]
=

1 + 1

2
= 1,

which should give the reader some more familiarity with the ‘bras’ and ‘kets’.

7.2 Time evolution and the Schrödinger equation

Consider a physical system that is invariant under time translation. Postulate 1 says that there is

a Hilbert space H that describes the system, and that vectors in the space describe states of the

system. Consider one such state, |φ(0)〉, where the 0 denotes the state at time t = 0. The system
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is invariant under time translation. Therefore, by Postulate 2, the state of the system a short time

later is given by

|φ(∆t)〉 = Û(∆t)|φ(0)〉,

where Û(∆t) is a unitary operator. We assume that the increment ∆t is small. Thus, the unitary

operator Û(∆t) can be written as

Û(∆t) = I− iĤ∆t

~
,

where Ĥ is a hermitian operator, Ĥ† = Ĥ, since then

Û(∆t)†Û(∆t) =

(
I− iĤ∆t

~

)†(
I− iĤ∆t

~

)
,

=

(
I +

iĤ∆t

~

)(
I− iĤ∆t

~

)
,

= I +
iĤ∆t

~
− iĤ∆t

~
+O

(
∆t2
)
,

= I +O
(
∆t2
)
,

which is unitary as ∆t→ 0. The operator Ĥ is independent of time because the system is assumed

to be invariant under time translation. However, this assumption is not necessary.

Now consider the system at a much later time tn = n∆t:

|φ(tn)〉 = Π

(
I− iĤ∆t

~

)n

|φ(0)〉,

= e−iĤn∆t/~|φ(0)〉,

= e−iĤtn/~|φ(0)〉.

Letting ∆t→ 0 and n→∞ keeping t := n∆t fixed, we obtain

|φ(t)〉 = e−iĤt/~|φ(0)〉
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Next, we differentiate the state |φ(t)〉 to see how it evolves in time:

∂

∂t
|φ(t)〉 = lim

δt→0

(
e−iĤ(t+δt)/~ − e−iĤ/~

δt

)
|φ(0)〉,

= lim
δt→0

∑∞n=0

(
−iĤ(t+δt)

~

)n
1
n!
−
∑∞

n=0

(
−iĤtn

~

)n
1
n!

δt

 |φ(0)〉,

= lim
δt→0

∑∞n=0

(
−iĤ
~

)n
(t+δt)n

n!
−
∑∞

n=0

(
−iĤ
~

)n
tn

n!

δt

 |φ(0)〉,

= lim
δt→0

[
∞∑
n=0

1

n!

(
−iĤ

~

)n
(t+ δt)n − tn

δt

]
|φ(0)〉,

=

[
∞∑
n=0

1

n!
ntn−1

(
−iĤ

~

)n]
|φ(0)〉,

=
∞∑
n=1

1

(n− 1)!
tn−1

(
−iĤ

~

)n−1(
−iĤ

~

)
|φ(0)〉,

=

(
−iĤ

~

)
∞∑
n=1

1

(n− 1)!
tn−1

(
−iĤ

~

)n−1

|φ(0)〉,

=

(
−iĤ

~

)
e−iĤt/~|φ(0)〉,

=

(
−iĤ

~

)
|φ(t)〉.

Multiplying both sides by i~ gives the celebrated Schrödinger equation:

i~
∂

∂t
|φ(t)〉 = Ĥ|φ(t)〉.

The operator Ĥ is called the Hamiltonian operator and has dimensions of energy. It is identified

with the (non-relativistic) energy of the system. If the system in question is a single particle

experiencing a potential U(x), then

Ĥ =
1

2m
p̂2 + Û(x),

where p̂ is the momentum. However, the left-hand side is an operator, therefore, the momentum

squared p̂2, and the potential energy Û(x), must be promoted to operator status.



7.3. The Heisenberg picture 59

7.3 The Heisenberg picture

In the so-called Schrödinger picture of quantum mechanics, states of the system evolve in time:

|φ(0)〉 → e−iĤt/~|φ(0)〉,

while observables stay constant, Â→t Â. On the other hand, in the so-called Heisenberg picture

of quantum mechanics, the states of the system are regarded as constant:

|φ(0)〉 →t |φ(0)〉,

while observables change over time:

Â→t Ât := Û †ÂÛ , Û = e−iĤt/~.

However, both pictures are equivalent, because the Heisenberg expectation value

〈φ(0)|Ât|φ(0)〉

is equal to the Schrödinger expectation value:

〈φ(0)|Ât|φ(0)〉 = 〈φ(0)|Û †ÂÛ |φ(0)〉,

= 〈φ(t)|Â|φ(t)〉.

Just as Schrödinger states satisfy a time-evolution equation, so too do Heisenberg observables:

i~
∂

∂t
Ât =

[
Ât, Ĥ

]
.

Proof: We work with expectation values:

i~〈φ(0)|Ât|φ(0)〉H = i~〈φ(t)|Â|φ(t)〉S,

i~
∂

∂t
〈φ(0)|Ât|φ(0)〉H = i~

∂

∂t
〈φ(t)|Â|φ(t)〉S,
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〈φ(0)|i~∂Ât

∂t
|φ(0)〉H =

[
i~
(
∂

∂t
〈φ(t)|

)
Â|φ(t)〉+ 〈φ(t)|Â

(
i~
∂

∂t
|φ(t)〉

)]
S

,

=
[
−〈φ(t)|ĤÂ|φ(t)〉+ 〈φ(t)|ÂĤ|φ(t)〉

]
S
,

= 〈φ(t)|
(

ÂĤ − ĤÂ
)
|φ(t)〉S,

= 〈φ(0)|
(

ÂĤ − ĤÂ
)
Û(t)|φ(0)〉H ,

= 〈φ(0)|Û(t)†ÂĤÛ(t)|φ(0)〉H − 〈φ(0)|Û(t)†ĤÂÛ(t)|φ(0)〉H ,

= 〈φ(0)|Û(t)†ÂÛ(t)Ĥ|φ(0)〉H − 〈φ(0)|ĤÛ(t)†ÂÛ(t)|φ(0)〉H ,

= 〈φ(0)|ÂtĤ|φ(0)〉H − 〈φ(0)|ĤÂt|φ(0)〉H ,

for all initial states |φ(0)〉. Hence,

i~
∂

∂t
Ât =

[
Ât, Ĥ

]
.

Unless otherwise stated, we shall use the Schrödinger picture in this module.
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Expectation values and uncertainty

Reading material for this chapter: Mandl, Chapters 1 and 3

8.1 Introduction

According to postulate 4,

A physical observable is represented by a Hermitian operator on H; the only allowed

results of measurement of the physical observable are the eigenvalues of the operator.

Quantum mechanics is probabilistic: the probability that a system prepared in a state

|x〉 ∈ H is measured to be in an eigenstate |xa〉 of the observable A is given by

|〈xa|x〉|2 ,

where 〈xa| ∈ H∗ is dual to |xa〉 ∈ H and 〈xa|x〉 is the natural pairing.

In this section carry out some calculations based on this postulate. As always, let H be the Hilbert

space of some physical system, and let Â and B̂ be observables.

8.2 Expectation values

Let the operator Â be equipped with the complete (possibly degenerate) orthonormal basis {|xi〉},
with (possibly) degenerate eigenvalues ai. Then, for any state |φ〉,

|φ〉 =
∑
j

|xj〉〈xj|φ〉.

61
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The amplitude that a measurement forces the system into the eigenstate |xi〉 is

〈xi|φ〉,

with probability

|〈xi|φ〉|2 .

Thus, we may view the observable A as a random variable that takes certain values ai with probability

Pi := |〈xi|φ〉|2. We know how to find the average value of such random variables – it is called the

expectation value:

average value of a =
∑
i

Piai := 〈Â〉φ,

where the probabilities sum to unity:
∑

i Pi = 1. This latter condition is guaranteed provided

〈φ|φ〉 = 1, since

I =
∑
i

|xi〉〈xi|,

〈φ|φ〉 =
∑
i

〈φ|xi〉〈xi|φ〉,

=
∑
i

|〈xi|φ〉|2 ,

=
∑
i

Pi.

Let’s look at the expression for 〈Â〉φ again:

〈Â〉φ =
∑
i

Piai,

=
∑
i

|〈xi|φ〉|2 ai,

=
∑
i

〈φ|xi〉〈xi|φ〉ai,

=
∑
i

〈φ|xi〉〈aixi|φ〉, . . . ai ∈ R,

=
∑
i

〈φ|xi〉
(
〈xi|Â

)
|φ〉,

=
∑
i

〈φ|xi〉〈xi|
(

Â|φ〉
)
,

= 〈φ|

(∑
i

|xi〉〈xi|

)(
Â|φ〉

)
,

= 〈φ|Â|φ〉.
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Thus, the expectation value of the observable Â in a state |φ〉 is given by

〈Â〉 = 〈φ|Â|φ〉.

In a similar manner, we define the uncertainty in observations of the observable A as the standard

deviation of the observations away from the expected values:

uncertainty in A =

√〈(
Â− 〈Â〉

)2
〉

:= ∆A

Note: The expectation value and the uncertainty always depend on the state |φ〉 in which they are

calculated. Thus, we speak of ‘the expectation value w.r.t. a particular state’.

8.3 Uncertainty principle

We prove the following theorem:

Theorem 8.1 Let Â and B̂ be Hermitian operators on a Hilbert space H, that satisfy the following

commutation relation: [
Â, B̂

]
= αI, α ∈ C.

It follows that

∆A∆B ≥ |α|/2.

Proof: Form the operators

α̂ = Â− 〈Â〉φI, β̂ = B̂− 〈B̂〉φI.

Thus,

∆A2 = 〈φ|α̂2|φ〉 = ‖α̂φ‖2
2, ∆B2 = 〈φ|β̂2|φ〉 = ‖β̂φ‖2

2,

and

∆A2∆B2 = ‖α̂φ‖2‖β̂φ‖2,

≥
∣∣∣〈φ|α̂β̂|φ〉∣∣∣2 ,
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where the inequality is due to Cauchy–Schwartz. As in that proof, consider the following trick:

〈φ|α̂β̂|φ〉 =
∣∣∣〈φ|α̂β̂|φ〉∣∣∣ eiθ,

〈φ|α̂β̂|φ〉∗ =
∣∣∣〈φ|α̂β̂|φ〉∣∣∣ e−iθ,

= 〈φ|β̂α̂|φ〉.

Subtract these results:

〈φ|α̂β̂|φ〉 − 〈φ|β̂α̂|φ〉 = 2i sin θ
∣∣∣〈φ|α̂β̂|φ〉∣∣∣ ,

in other words, ∣∣∣〈φ| [α̂, β̂] |φ〉∣∣∣ = 2| sin θ|
∣∣∣〈φ|α̂β̂|φ〉∣∣∣ .

But | sin θ| ≤ 1, hence ∣∣∣〈φ| [α̂, β̂] |φ〉∣∣∣2 ≤ 4|
∣∣∣〈φ|α̂β̂|φ〉∣∣∣2 .

Going back to the Cauchy–Schwartz result, we have

∆A2∆B2 ≥
∣∣∣〈φ|α̂β̂|φ〉∣∣∣2 ,

≥ 1

4

∣∣∣〈φ| [α̂, β̂] |φ〉∣∣∣2 .
Specialising to the commutation relation assumed in the theorem, we have

∆A∆B ≥ |α|/2.
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Representation of Hilbert spaces

Reading material for this chapter: Mandl, Chapter 12; LandauLifshitz, Chapters 2–3.

9.1 Introduction

A Hilbert space is an abstract object. For example, the n-dimensional Hilbert spaceHn is an abstract

object defined by the axioms in Ch. 2, and endowed with the natural scalar product obtained by

studying the dual space. The set

Cn = {(z1, · · · , zn) |z1, · · · , zn ∈ C }

can be thought of as a realisation or a representation of the abstract vector space, and we might

write Hn ∼ Cn. However, there are many possible representations of the n-dimensional Hilbert

space. For example, we could take

Hn ∼ S (M1, · · · ,Mn) ,

where M1, · · · ,Mn are some n linearly independent matrices all of the same size. However, a

bijective map between Cn and S (M1, · · · ,Mn) exists, which guarantees that these representations

are equivalent. A very earthy way of thinking about this is to regard the Hilbert space as being like

a cookery book, with many receipes (abstract lists) for delicious pies. Then, the representations of

the Hilbert space are like your mother’s cooking, where those receipes are embodied in real, solid

food.
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9.2 The position representation

The position of a particle is a physical quantity, therefore, by Postulate 3, there must be a Hermitian

operator associated with it. Call it r̂, the position operator. If the particle is at location r0, it can

be regarded as having the state |r0〉. Then,

r̂|r0〉 = r0|r0〉,

and the collection of kets {|r〉}r∈R3 is therefore a basis of eigenvectors1. We normalise the basis

such that

〈r′|r〉 = δ(r − r′).

We assume completeness:

I =

∫
d3r|r〉〈r|.

Thus, an arbitrary state |φ〉 has the form

|φ〉 =

∫
d3r|r〉〈r|φ〉.

But, by postulate 4, the quantity

〈r|φ〉

is the amplitude that the state |φ〉 is measured to have a position r. In a probabilistic setting, the

probability to measure a point is zero, thus we assign the quantity

|〈r|φ〉|2d3r

the probability that the state |φ〉 is measured within an small volume d3r of space. We call

φ(r) := 〈r|φ〉

the wave function.

Let us justify the choice of normalisation 〈r′|r〉 = δ(r−r′). By the completeness relation, we have

|φ〉 =

∫
d3r|r〉〈r|φ〉,

〈r′|φ〉 =

∫
d3r〈r′|r〉〈r|φ〉,

φ(r′) =

∫
d3r〈r′|r〉φ(r).

1This is a uncountable set; however, we do not worry ourselves with the details here, and assume that all relevant
results of spectral theory apply.
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But φ(r) is an arbitrary function; the only way for this integral equation to hold for all functions is

if 〈r′|r〉 = δ(r − r′), since then

φ(r′) =

∫
d3rδ(r − r′)φ(r) = φ(r′).

In addition,

〈r′|r̂|r〉 = r〈r′|r〉 = rδ(r − r′),

and, by a Taylor expansion,

〈r′|f(r̂)|r〉 = f(r)〈r′|r〉 = f(r)δ(r − r′),

By completeness,

〈r|f(r̂)|φ〉 =

∫
d3r 〈r|f(r̂)|r′〉〈r′|φ〉,

= f(r)〈r|φ〉 = f(r)φ(r).

Thus, in position representation, the operator f(r̂) acting on a state |φ〉 corresponds to multiplying

the wavefunction φ(r) by f(r).

9.3 The scalar product

Take the completeness relation:

I =

∫
d3r|r〉〈r|,

and operate on the identity from both sides with 〈φ| and |ψ〉:

〈φ|ψ〉 =

∫
d3r〈φ|r〉〈r|ψ〉.

Thus, the position represenation of the natural pairing is the ordinary scalar product on function

spaces:

〈φ|ψ〉 =

∫
d3rφ∗(r)ψ(r),

and the norm has the representation

〈φ|φ〉 =

∫
d3rφ∗(r)φ(r) =

∫
d3r|φ(r)|2.
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But d3r|φ(r)|2 is a probability, hence ∫
d3r|φ(r)|2 = 1,

consistent with the requirement that physical states have unit norm:

〈φ|φ〉 = 1.

Thus, allowed wavefunctions live in the space

L2(R3) = {φ|‖φ‖2
2 <∞}.

9.4 Momentum representation

As in the position case, the momentum of a particle is a physical quantity, therefore, by Postulate

3, there must be a Hermitian operator associated with it. Call it p̂, the momentum operator. If

the particle has momentum p0, it can be regarded as having the state |p0〉. Then,

p̂|p0〉 = p0|p0〉,

and the collection of kets {|p〉}p∈R3 is therefore a basis of eigenvalues. We normalise the basis such

that

〈p′|p〉 = δ(p− p′).

We assume completeness:

I =

∫
d3p|p〉〈p|.

Thus, an arbitrary state |φ〉 has the form

|φ〉 =

∫
d3p|p〉〈p|φ〉.

But, by postulate 4, the quantity

〈p|φ〉

is the amplitude that the state |φ〉 is measured to have a momentum p. As before, we are forced

to assign the quantity

|〈p|φ〉|2d3p
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the probability that the state |φ〉 is measured within an small volume d3p of momentum space. We

call

φ̂p := 〈p|φ〉

the momentum-space wavefunction. However, by Fourier-transform theory, we know that a spatial

signal φ(r) is made up of a sum of plane waves in momentum space:

φ(r) =

∫
d3p

(2π~)3 eip·r/~φ̂p, k = p/~.

In other words,

φ(r) = 〈r|φ〉,

=

∫
d3p

(2π~)3 eip·r/~φ̂p,

=

∫
d3p

(2π~)3 eip·r/~〈p|φ〉,

Since |φ〉 is arbitrary, we take it to be |φ〉 = |p′〉. Thus,

〈r|φ〉 = 〈r|p′〉 =

∫
d3p

(2π~)3 eip·r/~〈p|p′〉,

=

∫
d3p

(2π~)3 eip·r/~δ(p− p′),

=
eip′·r/~

(2π~)3 .

Thus, we have the following condition:

〈r|p〉 =
eip·r/~

(2π~)3 .

As before, we have

〈p|f(p̂)|φ〉 = f(p)φ̂p.
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However, we are more interested in understanding the action of the momentum operator in position

space. Therefore, we compute

〈r|p̂|φ〉 =

∫
d3p 〈r|p̂|p〉〈p|φ〉,

=

∫
d3pp〈r|p〉〈p|φ〉,

=

∫
d3pp

eip·r/~

(2π~)3 〈p|φ〉,

=

∫
d3pp

eip·r/~

(2π~)3 φ̂p,

= −i~∇
∫

d3p
eip·r/~

(2π~)3 φ̂p,

= −i~∇φ(r).

Thus, in position representation, the operator p̂ acting on a state |φ〉 corresponds to acting on the

wavefunction φ(r) by −i~∇. The same is true for powers of p̂.

Finally, therefore, the operator

Ĥ =
1

2m
p̂2 + Û(r),

in position space, corresponds to

Ĥ = − ~2

2m
∇2 + U(r),

and Schrödinger’s equation

i~
∂

∂t
|φ(t)〉 = Ĥ|φ(t)〉,

is represented by the following operator equation in the wavefunction φ(r, t):

i~
∂φ

∂t
=

(
− ~2

2m
∇2 + U(r)

)
φ.

9.5 Heisenberg uncertainty

We can readily compute the commutation relation betweem p̂ and r̂ in the position representation.

For, let φ(r) be an arbitrary function. Then,

p̂i (r̂jφ) = −i~
∂

∂ri
(rjφ) ,

= −i~δijφ(r)− i~rj
∂φ

∂ri
.
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Similarly,

r̂j (p̂iφ) = −i~rj
∂φ

∂ri
.

Subtracting gives

p̂i (r̂jφ)− r̂j (p̂iφ) = [p̂i, r̂j]φ(r),

= −i~δijφ(r).

Since this is true for all functions φ(r), we have

[p̂i, r̂j] = −i~δij.

Applying the uncertainty theorem from Ch. 8, we have

∆px∆x ≥ ~/2,

and similarly for the other directions.

9.6 Conservation law of probability

Let us take the probability density

P (r, t) = |φ(r, t)|2,

differentiate it, and apply the Schrödinger equation:

∂P

∂t
= φ∗

∂φ

∂t
+
∂φ∗

∂t
φ.

We have,
∂φ

∂t
=

1

i~
Ĥφ,

and
∂φ∗

∂t
=
−1

i~
Ĥφ∗,

since Ĥ is assumed to be both real-valued and Hermitian. Thus

∂P

∂t
=

1

i~

(
φ∗Ĥφ− φĤφ∗

)
,

=
1

i~

(
− ~2

2m
φ∗∇2φ+ φ∗U(r)φ+

~2

2m
φ∇2φ∗ − φU(r)φ∗

)
,

= − ~2

2m

1

i~
(
φ∗∇2φ− φ∇2φ∗

)
.
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Now we apply a neat trick: Green’s theorem:

φ∗∇2φ− φ∇2φ∗ = ∇ · (φ∗∇φ− φ∇φ∗) .

Calling

J :=
~

2mi
(φ∗∇φ− φ∇φ∗) ,

we have the following conservation law:

∂P

∂t
+∇ · J = 0.

The vector field J is called the probability current. Integrating the conservation law over a domain

Ω gives ∫
Ω

d3r
∂P

∂t
= −

∫
Ω

d3r∇ · J ,

∂

∂t

∫
Ω

d3r |φ(r, t)|2 = −
∫
∂Ω

dS · J ,

or
∂

∂t
Prob (System in region Ω at time t) = −

∫
∂Ω

dS · J .

Taking Ω = R3 and assuming that the wavefunction vanishes as |r| → ∞, we have the following

law of conservation of probability:

∂

∂t
Prob

(
System somewhere in R3 at time t

)
= 0. (∗)

We normalise the wavefunction: ∫
R3

d3r |φ(r)|2 = 1;

Eq. (*) guarantees that it stays normalised for all time. Note:

The conservation law of probability is derived from Schrödinger’s equation, which in turn is

derived from the unitarity assumption (Postulate 3). Thus, unitarity is needed to ensure conser-

vation of probabilities.



Chapter 10

Plane waves, or the free particle

Reading material for this chapter: None recommended

In this section we study the dynamics of a free particle, experiencing no forces, moving in three-

dimensional space. We first of all recall how this problem is studied in classical mechanics. The

energy of such a system is conserved and given by

p2

2m
= E.

But p = mṙ, hence
1
2
mṙ2 = E.

Differentiating with respect to time gives

ṙ · r̈ = 0.

Now the only way for r̈ ⊥ ṙ = 0 for all possible vectors ṙ is if r̈ = 0, hence

r(t) = r0 + v0t,

and the particle moves in a straight line. This is the simplest possible mechanical system.

Using quantum mechanics and the position representation, we know how to solve this problem: The

momentum p is promoted to operator status:

p→ p̂ = −i~∇,

and E is identified with the Hamiltonian:

E → Ĥ,

73
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and the Schrödinger equation to solve is

i~
∂Ψ

∂t
=

p̂2

2m
Ψ,

= − ~2

2m
∇2Ψ.

To solve this equation, we assume that it is prepared in the initial state

Ψ(r, t = 0) = ψ0(r),

and introduce the Fourier transform:

Ψ̂k(t) :=

∫
d3re−ik·rΨ(r, t),

Ψ(r, t) =

∫
d3k

(2π)3
eik·rΨ̂k(t)

Next, we operate on both sides of the Schrödinger equation with
∫

d3re−ik·r:∫
d3re−ik·r

[
i~
∂Ψ

∂t

]
=

∫
d3re−ik·r

[
− ~2

2m
∇2Ψ

]
,

i~
∂

∂t

∫
d3re−ik·rΨ(r, t) =

∫
d3re−ik·r

[
− ~2

2m
∇2Ψ

]
.

Hence,

i~
∂Ψ̂k

∂t
= − ~2

2m

∫
d3re−ik·r∇2Ψ,

= − ~2

2m

[∫
d3r
[
∇ ·
(
e−ik·r∇Ψ

)
+ ie−ik·rk · ∇Ψ

]]
,

= − ~2

2m

∫
dS (∂nΨ) e−ik·r − i~2

2m

∫
d3re−ik·rk · ∇Ψ,

where ∂nΨ is the outward-pointing normal derivative of Ψ at |r| = ∞; this assumed to be zero.

Thus

i~
∂Ψ̂k

∂t
= − i~2

2m

∫
d3re−ik·rk · ∇Ψ,

= − i~2

2m

[∫
d3rk ·

[
∇
(
e−ik·rΨ

)
+ ike−ik·rΨ

]]
,

= − i~2

2m

∫
d3rk · ∇

(
e−ik·rΨ

)
− i~2

2m

∫
d3rik2e−ik·rΨ,
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and the first term vanishes by Gauss’s theorem, hence

i~
∂Ψ̂k

∂t
=

~2

2m

∫
d3rk2e−ik·rΨ =

~2k2

2m
Ψ̂k.

Thus, we obtain a dispersion relation

E = Ek =
~2k2

2m
=
p2

2m
,

and we solve the following equation in momentum space:

i~
∂Ψ̂k

∂t
= EkΨ̂k.

But we know the solution to this immediately:

Ψ̂k(t) = Ψ̂k(0)e−iEkt/~ := Cke−iEkt/~

We plug this back into the Fourier-transform solution:

Ψ(r, t) =

∫
d3k

(2π)3
eik·rΨ̂k(t),

=

∫
d3k

(2π)3
eik·rCke−iEkt/~.

The weights Ck can be obtained from the initial condition:

Ψ(r, t = 0) =

∫
d3k

(2π)3
eik·rCk,

= ψ0(r),

hence

Ck =

∫
d3re−ir·kψ0(r).

Let’s experiment with some specific initial data.

For simplicity, we focus on the one-dimensional case. The particle is prepared in the following state:

ψ0(x) = Ne−(x−x0)2/(4σ2), N =
1

(2πσ2)1/4
.
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where σ > 0 is some parameter. Hence,

Ck =

∫
dxe−ikxψ0(x),

= N

∫
dxe−ikxe−(x−x0)2/(4σ2),

To integrate ths, we complete the square in the following manner. First, call y = x− x0. Then,

Ck =

∫ ∞
−∞

dye−ik(y+x0)e−y
2/4σ2

,

= e−ikx0

∫ ∞
−∞

dye−ikye−y
2/4σ2

.

Call a := 1/4σ2. Then

Ck = e−ikx0

∫ ∞
−∞

dye−ikye−ay
2

,

= Ne−ikx0

∫ ∞
−∞

dye−ay
2−iky,

= Ne−ikx0

∫ ∞
−∞

dye−a(y2+(ik/a)y),

= Ne−ikx0

∫ ∞
−∞

dye−a[(y2+(ik/2a))2+k2/4a2],

= Ne−ikx0

∫ ∞
−∞

dye−a(y2+(ik/2a))2e−k
2/4a,

= Ne−ikx0e−k
2/4a

∫ ∞
−∞

dye−a(y2+(ik/2a))2 ,

= Ne−ikx0e−k
2/4a

∫ ∞
−∞

dye−ay
2

,

= Ne−ikx0e−k
2/4a

∫ ∞
−∞

dye−ay
2

,

=
N√
a
e−ikx0e−k

2/4a

∫ ∞
−∞

dze−z
2

,

= N

√
π

a
e−ikx0e−k

2/4a.

Restoring a = 1/4σ2, this is

Ck = N
√

4πσ2e−ikx0e−k
2σ2

.
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At later times,

Ψ(x, t) =

∫
dk

2π
eikxCke

−iEkt/~,

= N
√

4πσ2

∫
dk

2π
eikxe−ikx0e−iEkt/~e−k

2/4a,

= N
√

4πσ2

∫ ∞
−∞

dk

2π
eik(x−x0)e−k

2σ2

e−ik2~2t/2m,

= N
√

4πσ2

∫ ∞
−∞

dk

2π
eikbe−ck

2

,

where

b = x− x0, c = σ2 − i~t/2m.

Completing the square again,∫ ∞
−∞

dk eikbe−ck
2

=

∫ ∞
−∞

dk e−c(k
2−ikb/c),

=

∫ ∞
−∞

dk e−c[(k−ib/2c)2+b2/4c2],

=

∫ ∞
−∞

dk e−c(k
2−ikb/c)2e−b

2/4c,

= e−b
2/4c

∫ ∞
−∞

dk e−c(k
2−ikb/c)2 ,

= e−b
2/4c

∫ ∞
−∞

dk e−ck
2

,

= e−b
2/4c 1√

c

∫ ∞
−∞

dk e−k
2

,

= e−b
2/4c

√
π

c
.

Hence,

Ψ(x, t) = N
1

2π

√
4πσ2e−b

2/4c

√
π

c

Restoring the meaning of the coefficients, we have

Ψ(x, t) = N
1

2π

√
4πσ2 exp

[
− (x− x0)2/4

σ2 − i~t/2m

]√
π

σ2 − i~t/2m
,

or

Ψ(x, t) = N

√
σ2

σ2 − i~t/2m
exp

[
− (x− x0)2/4

σ2 − i~t/2m

]
.

Finally,

Ψ(x, t) = N

√
1

1− i~t/2mσ2
exp

[
−(x− x0)2/4σ2

1− i~t/2mσ2

]
.
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(a) (b)

Figure 10.1: (a) Time evolution of the probability density; (b) The same, for t = 0, 1, 2, 5, 10. Here
σ = 0.5 and ~/2m2 = 1.

A plot of the probability density associated with this result is shown in Fig. 10.1. Notes:

• The PDF spreads out over time – the particle’s position becomes less and less certain.

• The mean value of the particle’s position stays the same, since the PDF remains centred at

zero. In other words,
d

dt
xav = 0,

or
d

dt
〈x̂〉 = 0.

• This is called Ehrenfest’s theorem – the expected values of quantum observables obey the

classical-mechanical equations. In general,

d

dt
〈x̂〉 =

1

m
〈p̂〉,

d

dt
〈p̂〉 = −〈∂xU〉,

for a particle experiencing a potential U(x) (proof as homework). This is one way of stating

the correspondnce principle – that the laws of classical mechanics can be recovered in a

certain limit.

• For a system with a discrete spectrum, the correspondence principle states that quantum

mechanics reproduces the results of classical mechanics in the limit of large quantum numbers.



10.1. Plane waves 79

10.1 Plane waves

It can be verified that the Fourier-transformed function

ψ̂k = e−ik·r−iEkt/~, Ek =
~2k2

2m
,

satisfies the Schrödinger equation for a free particle. Relabelling, using p = ~k, we have

ψp(r) := ψ̂p,

= e−ip·r/~−iEpt/~, Ep =
p2

2m
.

This is called the plane-wave solution. Note:

• The plane-wave solution is not normalisable (‖ψp(r)‖2
2 = ∞). However, the plane waves do

solve the Schrödinger equation, so they must be physical states.

• Thus, we must extend the Hilbert space to include this case. Such an extension is called the

rigged Hilbert space. We simply note that the extension is required, and do not discuss this

functional-analysis topic any further.

• A simple calculation shows that the plane wave is a state of maximum positional uncertainty,

∆x =∞. However, the momentum is known exactly: ∆p = 0. Such a state does satisfy the

Heisenberg uncertainty principle when the calculation is done in a limiting fashion.

• A similar calculation shows that the Gaussian state is a state of minimal uncertainty, where

∆x∆p is exactly ~/2.



Chapter 11

One-dimensional bound states: Potential

wells

Reading material for this chapter: Mandl, Chapter 2

11.1 Particle in a box

The simplest one-dimensional potential well is the so-called particle-in-a-box. Here, the particle may

only move backwards and forwards along a straight line segment 0 < x < L with impenetrable

barriers at either end. The walls of the one-dimensional box may be visualised as regions of space

with an infinitely large potential energy. Conversely, the interior of the box has a constant, zero

potential. Thus, no forces act upon the particle inside the box and it can move freely in that region.

However, infinitely large forces repel the particle if it touches the walls of the box, preventing it from

escaping. The potential in this model is given as

U(x) =

0, 0 < x < L,

∞, otherwise,

(See Fig. 11.1). We now solve the Schrödinger equation for such a system. To keep with tradition,

we henceforth use the symbol Ψ(x) for the wavefunction.

Separation of variables

For a time-independent system, the Schrödinger equation reads

i~
∂

∂t
Ψ(x, t) = − ~2

2m

∂2

∂x2
Ψ(x, t) + U(x)Ψ(x, t).

80
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Figure 11.1: Potential well for the particle-in-a-box calculation (infinitely deep well).

Because the right-hand side has no manifest time dependence, we can perform a separation of

variables:

Ψ(x, t) = T (t)ψ(x).

Substitute this trial solution into the Schrödinger equation and divide the result by Tψ. The result

is

i~
T ′(t)

T
=
− ~2

2m
∂2

∂x2
ψ(x) + U(x)ψ(x)

ψ(x)
.

The LHS is a function of t alone, while the RHS is a function of x alone. The only way for this to

be true is if LHS = RHS = Const. := E, where E is a constant. Thus,

dT

dt
= −iE/~ =⇒ T (t) = T (0)e−iEt/~.

Immediately we see that E has the interpretation of energy. Focus on the space part:

− ~2

2m

∂2

∂x2
ψ(x) + U(x)ψ(x) = Eψ(x).

We have Ĥψ = Eψ, which is an eigenvalue problem.

An eigenvalue problem

Inside the box, no forces act upon the particle, and U(x) = 0. Thus, in the region 0 < x < L, we

are to solve

− ~2

2m

∂2

∂x2
ψ(x) = Eψ.
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We take E > 0 (shortly we shall see why).

k2 := 2mE/~2,

the solution is

ψ(x) = A sin(kx) +B cos(kx).

The boundary conditions require that the probability current vanish at x = 0 and x = L, since

the probability to find the particle outside of the box is zero. This requirement, together with the

continuity of ψ at x = 0 and x = L, yields ψ(0) = ψ(L) = 0, which forces B = 0. We are left with

ψ(x) = A sin(kx).

However, we still must satisfy

sin(kL) = 0.

The only way for this to be true is if kL = nπ, where n = 1, 2, · · · is a positive integer. Thus, the

wavenumber is quantised:

k2 =
n2π2

L2
=

2mEn
~2

.

Clearly, this quantises the energy, too:

En =
n2π2~2

2mL2
.

We are left with the following eigenfunctions:

ψn(x) = An sin
(nπx
L

)
,

with corresponding eigenvalue En = n2π2~2/2mL2. The constants An are fixed by normalisation:

∫ L

0

|ψn(x)|2dx = 1 =⇒ An =

√
2

L
.

In conclusion:

• Allowed states:

ψn(x) =

√
2

L
sin
(nπx
L

)
;

• Corresponding allowed energies:

En =
n2π2~2

2mL2
;
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Figure 11.2: Potential well for the particle-in-a-box calculation (finite well depth).

• Full, time-dependent wavefunction:

Ψn(x, t) = e−iEnt/~ψn(x).

Note: Had we taken E < 0, we would have a wavefunction ψ = Ae−|k|x + Be+|k|x, with k =

2m|E|/~2. However, such a choice cannot satisfy the boundary conditions. Similarly, if k = 0, then

only the trivial solution is possible, ψ = 0, which is not normalisable.

11.2 Wells of finite depth

Consider the potential well

U(x) =

0, −L/2 < x < L/2,

Γ, otherwise,

where Γ is some finite energy (See Fig. 11.2). As before, we solve the eigenvalue problem

− ~2

2m

∂2

∂x2
ψ(x) + U(x)ψ(x) = Eψ.
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We break up the solution into three regions:

ψ(x) =


ψI(x), if x < −L/2 (the region outside the box)

ψII(x), if − L/2 < x < L/2 (the region inside the box)

ψIII(x) if x > L/2 (the region outside the box).

Let’s focus on region II. As before, we solve

− ~2

2m

∂2

∂x2
ψ(x) = Eψ.

We take E > 0. Hence, the general solution is

ψII(x) = A sin(kx) +B cos(kx), k =
√

2mE/~.

Next, we focus on Region I. Here, U(x) = Γ, and Schrödinger’s equation reads

− ~2

2m

∂2

∂x2
ψ(x) + Γψ(x) = Eψ,

or

− ~2

2m

∂2

∂x2
ψ(x) = (E − Γ)ψ.

We are going to focus on the bound state, where

0 < E < Γ.

Thus, we have the equation

∂2

∂x2
ψ(x) = κ2ψ, κ =

√
2m (Γ− E) /~2 ∈ R.

The solution is thus

ψI(x) = C̃e−κx + Ceκx.

However, it can not be the case that limx→−∞ ψI(x) =∞; we therefore take C̃ = 0 and

ψI(x) = Ceκx.

A similar result holds in Region III:

ψIII(x) = De−κx.
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In summary,

ψ(x) =


Ceκx, if x < −L/2

A sin(kx) +B cos(kx), if − L/2 < x < L/2

De−κx if x > L/2,

and it remains to fix the constants of integration A,B,C,D. We stipulate that the probability

current be everywhere continuous. Thus, ψ and ∂xψ must be everywhere continuous; in particular,

they must be continuous at x = ±L/2. Thus,

ψI(−L/2) = ψII(−L/2),

∂xψI(−L/2) = ∂xψII(−L/2),

ψII(L/2) = ψIII(L/2),

∂xψII(L/2) = ∂xψII(L/2).

It is tempting solve the resulting four equations by brute force. However, it is simpler to observe

that the potential U(x) is symmetric under x → −x, and thus, the wavefunction must be either

even or odd. Let’s consider both cases now.

Even case: The even wavefunction satisfies ψ(x) = ψ(−x), and thus C = D and A = 0. In

other words,

ψ(x) =


Ceκx, if x < −L/2

B cos(kx), if − L/2 < x < L/2

Ce−κx if x > L/2,

Matching at x = −L/2 gives

Ce−κL/2 = B cos(kL/2),

κCe−κL/2 = Bk sin(kL/2).

Dividing the second equation by the first gives

κ = k tan(kL/2),

or

κ(E)− k(E) tan

(
k(E)L

2

)
= 0,

the roots of which give the allowed values of E.



86 Chapter 11. One-dimensional bound states: Potential wells

Odd case: The even wavefunction satisfies ψ(x) = −ψ(−x), and thus D = −C and B = 0. In

other words,

ψ(x) =


Ceκx, if x < −L/2

A sin(kx), if − L/2 < x < L/2

−Ce−κx if x > L/2,

Matching at x = −L/2 gives

Ce−κL/2 = −A sin(kL/2),

κCe−κL/2 = Ak cos(kL/2).

Dividing the first equation by the second gives

1

κ
= −1

k
tan(kL/2),

or

κ = −k cot(kL/2).

the roots of which give the allowed values of E.

Let us focus in more detail on the even case. Call

ε :=
√

2mE/~2 (L/2) , γ :=
√

2mΓ/~2 (L/2) .

Then the solvability condition reads

√
γ2 − ε2 = ε tan(ε).

Thus, consider the curves

y1,even(ε) = ε tan(ε),

y2,even(ε) =
√
γ2 − ε2,

where γ2 is fixed. The intersection points of these curves give the allowed ε-values, hence the allowed

values of energy. The corresponding curves for the odd case are

y1,odd(ε) = −ε cot(ε),

y2,odd(ε) =
√
γ2 − ε2,

These curves are shown in Fig. 11.3. For γ = 10, there are only seven allowed values of energy.
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(a) Even case (b) Odd case

Figure 11.3: Allowed values of energy for a symmetric square well.

Thus, the spectrum is discrete and finite. As γ increases, more and more allowed values of energy

become available. However, the spectrum always consists of a discrete number of points.

11.2.1 Asymptotic cases for Fig. 11.3

The case γ → 0 In this case, we can show that there is always at least one bound state. Focus

on the even case and Figure 11.3(a). We take γ → 0: the circle in the figure has an ever-decreasing

radius, while the curve y1(ε) behaves like a straight line, y1 ∼ ε. Such a curve will always intersect

in the positive quadrant with a circle centred at the origin, leading to precisely one bound state.

On the other hand, taking Fig. 11.3(b), the curve y1(ε) behaves like y1 ∼ −1 + (1/2)ε3 + HOT.

A quarter-circle of ever-decreasing radius located in the positive quadrant does not intersect this

curve, and there is no odd bound state in this limit.

The case γ →∞ Consider the even case first. We are to solve y1 = ε tan ε = y2 =∞. In other

words, we must solve tan ε =∞. This has solution

ε = π
(

1
2

+ n
)
, n ∈ {0, 1, 2, · · · }.

For the odd case, we must solve y1 = −ε cot ε = y2 = ∞. In other words, we must solve

cot ε = −∞, with solution ε = nπ, with n ∈ N.

The even case now reduces to

2ε = π (1 + 2n) = π × [all odd positive integers] ,
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while the odd case reduces to

2ε = 2nπ = π × [all even positive integers] ,

Combining both cases, we have

2ε = πn = π × [all positive integers] ,

or

ε = 1
2
πn, n = 1, 2, · · · ,

which is precisely the formula for the energy level of a square well of infinite height.



Chapter 12

One-dimensional scattering: Potential

barriers

Reading material for this chapter: Mandl, Chapter 2

Consider the situation shown schematically in the figure.

Figure 12.1: Schematic diagram for one-dimensional scattering

Mathematically, this corresponds to a potential-energy landscape

U(x) =

Γ, 0 < x < L,

0, otherwise,

and we have the following regions:

• Region I, x < 0.

• Region II, 0 < x < L.

• Region III, x > L.

89
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We assume that particles are incident on the barrier from x = −∞, and have energy E < Γ. We

determine if any particles are to be found in region III. We must allow for such a scenario a priori.

Thus, we have the wavefunctions of Fig. 12.2.

Figure 12.2: Boundary conditions for the scattering problem

It remains to compute these wavefunctions, and to see if the wavefunction in region III x > L is

nonzero. We first of all note that there are no left-travelling waves in this region, since no waves

are reflected at x = +∞. We now focus on solving the Schrödinger equation.

Region I Here U = 0, and the wavefunction is a plane wave:

ψI = Aie
ikx + Are

−ikx,

where k =
√

2mE/~.

Region II Here U = Γ. The eigenvalue problem reads

− ~2

2m

∂2

∂x2
ψ(x) + Γψ(x) = Eψ(x).

For E < Γ, the solution reads

ψII(x) = Bie
κx +Bre

−κx,

where

κ =
√

2m(Γ− E)/~.

Region III Here U = 0 and the wavefunction is again a plane wave. However, there is no possibility

of reflection, so any component of the wavefunction reaching this region has to be a right-travelling

one:

ψIII(x) = Ceikx.
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Instead of computing the coefficients Ai, Ar, Bi, Br, C, we focus instead on probability currents. In

region I, the incident probability current reads

Ji =
~

2mi

[(
Aie

ikx
)∗
∂x
(
Aie

ikx
)
−
(
Aie

ikx
)
∂x
(
Aie

ikx
)∗]

,

=
~

2mi

(
ik|Ai|2 + ik|Ai|2

)
,

=
~k
m
|Ai|2.

Similarly, the reflected current in region I is

Jr =
~k
m
|Ar|2,

and the transmitted current in region III is

Jt =
~k
m
|C|2

Conservation of probability requires that

Ji = Jr + Jt.

We define the following reflection coefficient

R =
Jr
Ji
,

and transmission coefficient

T =
Jt
Ji

;

conservation of probability yields R + T = 1. We compute these coefficients now.

First, we match ψ and its derivative at x = L:

ψII(L) = ψIII(L),

∂xψII(L) = ∂xψIII(L),
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In other words,

Bie
κL +Bre

−κL = CeikL,

κBie
κL − κBre

−κL = ikCeikL.

But this is a matrix problem:(
eκL e−κL,

κeκL −κe−κL

)(
Bi

Br

)
= CeikL

(
1

ik

)
.

The matrix has determinant −2κ and hence,(
Bi

Br

)
=
−1

2κ

(
−κe−κL −e−κL,

−κeκL eκL

)
CeikL

(
1

ik

)
,

or (
Bi

Br

)
=

C

2κ
eikL

(
κe−κL e−κL,

κeκL −eκL

)(
1

ik

)
.

In other words,

Bi =
CeikL

2κ
e−κL (κ+ ik) ,

Br =
CeikL

2κ
e+κL (κ− ik)

Next, we match ψ and its derivative at x = 0:

ψI(0) = ψII(0),

∂xψI(0) = ∂xψII(0),

In other words,

Ai + Ar = Bi +Br,

ikAi − ikAr = κBi − κBr.

Multiply the first equation by ik and add the two resulting equations. Obtain

2ikAi = Bi (ik + κ) +Br (ik − κ) .
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But we know what Bi and Br are:

2kiAi = CeikL ik + κ

2κ
e−κL (κ+ ik) + CeikL ik − κ

2κ
eκL (κ− ik)

Hence,

i
Ai
C

e−ikL =
1

4kκ
e−κL (κ+ ik)2 − 1

4kκ
eκL (κ− ik)2 ,

i
Ai
C

4κke−ikL = κ2
(
e−κL − eκL

)
+ 2ikκ

(
eκL + e−κL

)
+ k2

(
eκL − e−κL

)
,

= 2 sinh(κL)
(
k2 − κ2

)
+ 4ikκ cosh(κL).

Hence, ∣∣∣∣AiC
∣∣∣∣2 (4kκ)2 = 4 sinh2(κL)

(
k2 − κ2

)2
+ (4kκ)2 cosh2(κL),

= 4 sinh2(κL)
(
k2 − κ2

)2
+ (4kκ)2 [1 + sinh2 (κL)

]
,

= 4 sinh2(κL)
(
k2 + κ2

)2
+ (4kκ)2 .

Inverting, ∣∣∣∣ CAi
∣∣∣∣2 =

(4kκ)2

4 sinh2(κL) (k2 + κ2)2 + (4kκ)2 ,

=
(2kκ)2

sinh2(κL) (k2 + κ2)2 + (2kκ)2 ,

= T.

Thus,

T =
(2kκ)2

sinh2(κL) (k2 + κ2)2 + (2kκ)2 .

The reflection coefficient can be calculated in a similar way, or using R = 1− T . In any case,

R =
sinh2(κL) (k2 + κ2)

2

sinh2(κL) (k2 + κ2)2 + (2kκ)2

The non-dimensional form for T , using γ = L
√

2mΓ/~ and ε = L
√

2mE/~ reads

T (ε; γ) =
4|γ2 − ε2|ε2

sinh2
(√

γ2 − ε2
)
γ4 + 4|γ2 − ε2|ε2

.
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Figure 12.3: Transmission coefficient for particle energies less than the barrier height. The result is
non-zero: a portion of the particles pass through the barrier.

A plot of T (ε; γ = 10) is shown in Fig. 12.3. The result is NOT identically zero: particles pass

through the barrier.

These results call for some discussion. Consider a stream of classical particles incident on the barrier

from x = −∞. In region I, we have

p2
∞

2m
= 1

2
mv2
∞ = EI ≥ 0.

We are interested in the case E = EI < Γ. Suppose that the particle enters region II, with velocity

v0. Then
1
2
mv2

0 + Γ = E =⇒ 1
2
mv2

0 = E − Γ < 0,

which is impossible. Therefore, we conclude that all the particles remain in region I, and are thus

reflected off the potential barrier. In other words, no particles are transmitted into region III, and

Tclassical (E < Γ) = 0.

For E = EI > Γ, no such restriction exists, and all the particles pass into region III:

Tclassical (E > Γ) = 1.

Thus, the fact that TQM (E < Γ) 6= 0 is a remarkable, anti-classical result. Particles, ghostlike, pass

through a barrier. This is called quantum tunnelling.



Chapter 13

The harmonic oscillator

Reading material for this chapter: Mandl, Chapter 2

We study the Schrödinger equation for the celebrated potential

U(x) = 1
2
k0x

2,

in one dimension. The Hamiltonian is

Ĥ = − ~2

2m

∂2

∂x2
+ 1

2
k0x

2,

which is manifestly time independent. Thus, we can separate out the space and time dependence,

and solve the eigenvalue problem(
− ~2

2m

∂2

∂x2
+ 1

2
k0x

2

)
ψ(x) = Eψ(x).

13.1 Asymptotic solution

Before attempting a solution, we study the asymptotic behaviour, |x| → ∞. Then, the ODE to

solve looks like
~2

2m
ψ′′ = 1

2
k0x

2ψ := 1
2
mω2x2ψ.

In other words,

ψ′′ =
m2ω2

~2
x2ψ.

This implies a standard unit of length in the problem,

a =

√
~
mω

,

95
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and the asymptotic problem can be conveniently re-written as

ψ′′ ∼ x2

a4
ψ.

This form suggests that we re-write the trial solution as

ψ(x) = h(x)e−x
2/2a2 ,

since then,

ψ′′(x) =
x2

a4
h(x)e−x

2/2a2 +

(
h′′(x)− 2x

a2
h′(x)− h(x)

a2

)
e−x

2/2a2 ,

and we have captured the leading-order term in the approximation.

13.2 The solution

We substitute

ψ(x) = h(x)e−x
2/2a2

into the full eigenvalue problem

−ψ′′(x) +
x2

a4
ψ(x) = k2ψ(x), k2 =

2mE

~2
.

We obtain the expression

−
[
x2

a4
h(x) + h′′(x)− 2x

a2
h′(x)− h(x)

a2

]
e−x

2/2a2 +
x2

a2
h(x)e−x

2/2a2 = k2h(x)e−x
2/2a2 .

Tidying up, we have the following differential equation:

h′′(x)− 2x

a2
h′(x) +

(
k2 − 1

a2

)
h(x) = 0.

We introduce the non-dimensional variable s = x/a. In terms of this variable, the differential

equation to solve reads

d2h

ds2
− 2s

dh

ds
+ 2nh(s) = 0, 2n = k2a2 − 1

(This ODE is considered on p. 820 of Arfken and Weber). We propose a power-series solution for
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this equation:

h(s) =
∞∑
p=0

apx
p.

Substituting into the ODE, we obtain

∞∑
p=0

p (p− 1) apx
p−2 −

∞∑
p=0

2papx
p + 2n

∞∑
p=0

apx
p = 0,

or
∞∑
p=2

p (p− 1) apx
p−2 −

∞∑
p=1

2papx
p + 2n

∞∑
p=0

apx
p = 0.

We call q = p− 2 in the first sum, hence p = q + 2.

∞∑
q=0

(q + 2)(q + 1)aq+2x
q −

∞∑
p=0

(2n− 2p) apx
p = 0.

However, q is a dummy variable, so we let q → p, and we end up with

∞∑
p=0

(p+ 2)(p+ 1)ap+2x
p −

∞∑
p=0

2 (n− p) apxp = 0,

or
∞∑
p=0

[(p+ 2)(p+ 1)ap+2 + 2(n− p)ap]xp = 0.

The power series is identically zero, so each term must be zero. In other words,

(p+ 2)(p+ 1)ap+2 + 2(n− p)ap = 0, p = 0, 1, · · · ,

hence

ap+2 =
2(p− n)

(p+ 2)(p+ 1)
ap.

This splits into odd and even cases.

Even case: We take a0 to be a constant of integration and a1 = 0. Then a1 = a3 = a5 = · · · = 0,

and

ap+2 = 2ap
p− n

(p+ 1)(p+ 2)
, (∗)

hence

heven(s) = a0

[
1 +

2(−n)s2

2!
+

22(−n)(2− n)s4

4!
+ · · ·

]
.
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Similarly for the odd case, where we take a1 to be a constant of integration and a0 = 0. Thus,

a0 = a2 = a4 = · · · = 0, and

ap+2 = 2ap
p+ 1− n

(p+ 2)(p+ 3)
, (∗∗)

hence

hodd(s) = a1

[
1 +

2(1− n)s

3!
+

22(1− n)(3− n)s3

5!
+ · · ·

]
.

We must examine the asymptotic behaviour of these solutions. For large indices, the ratio of

successive terms in the even solution is
ap+2

ap
∼ 2

p
,

suggesting that heven(s) ∼ e2s2 as |s| → ∞. Similarly, the odd solution behaves as se2s2 as |s| → ∞.

THIS IS A DISASTER, since the solution must vanish as |x| → ∞. However, help is at hand: if we

insist that n be an integer, then the recursions (*) and (**) terminate, and h(s) is a polynomial.

These are called the Hermite polynomials, the first few of which are given in standard form here:

H0(s) = 1,

H1(s) = 2s,

H2(s) = 4s2 − 2,

H3(s) = 8s3 − 12s,

H4(s) = 16s4 − 48s2 + 12,

H5(s) = 32s5 − 160s3 + 120s,

H6(s) = 64s6 − 480s4 + 720s2 − 120,

H7(s) = 128s7 − 1344s5 + 3360s3 − 1680s,

H8(s) = 256s8 − 3584s6 + 13440s4 − 13440s2 + 1680,

H9(s) = 512s9 − 9216s7 + 48384s5 − 80640s3 + 30240s,

H10(s) = 1024s10 − 23040s8 + 161280s6 − 403200s4 + 302400s2 − 30240,

and are plotted in Fig. 13.1. These polynomials can be generated from the following property:

Hn(s) = (−1)nes
2 dn

dsn
e−s

2

= es
2/2

(
s− d

ds

)n
e−s

2/2
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Figure 13.1: The first six Hermite polynomials

Happily, these functions are orthogonal with respect to a weight:∫ ∞
−∞

Hn(s)Hm(s) e−s
2

ds = 0, n 6= m,∫ ∞
−∞

Hn(s)Hn(s) e−s
2

ds = n! 2n
√
π.

Putting these results together, the normalised wavefunctions of the Schrödinger equation are

ψn(x) =
1√

n!2nπ1/4a1/2
Hn(x/a)e−x

2/2a2 , a =
√
~/mω

where n = 0, 1, 2, · · · are necessarily integers.

But recall

2n+ 1 = a2k2,

2n+ 1 =
~
mω

2mE

~2
,

hence

En = ~ω
(
n+ 1

2

)
, n = 0, 1, 2, · · · ,

and the energy is quantised.

The first few normalised wavefunctions are shown in Figure 13.2.
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Figure 13.2: Normalised states of the harmonic oscillator.

From now on the useful shorthand

Nn :=
1√

n!2nπ1/4a1/2

will be used, such that

ψn(x) = NnHn(x/a)e−x
2/2a2 .

13.3 Creation and annihilation

We define the operators

â+ =
1√
2a

(
x̂− i

mω
p̂

)
,

and its adjoint

â− =
1√
2a

(
x̂+

i

mω
p̂

)
,

(NOTE THE SIGNS!) such that

â− = â†+.
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In the position representation, p̂ = −i~∂x, and

â+ =
1√
2a

(
x− ~

mω
∂x

)
,

â− =
1√
2a

(
x+

~
mω

∂x

)
,

We act on the eigenstate ψn(x) with the annihilation operator. The following recursion relation

is useful (Arfken and Weber, p. 817)

∂sHn(s) = 2nHn−1(s).

Thus,

â−ψn(x) =
1√
2a

(
x+ a2∂x

)
ψn(x),

=
1√
2a
xψn(x) +

1√
2a
a2Nn∂x

[
Hn(x/a)e−x

2/2a2
]
,

=
1√
2a
xψn(x) +

1√
2a
a2NnHn(x/a)

(
−x/a2

)
e−x

2/2a2 +
1√
2a
a2Nne

−x2/2a2 1

a
∂sHn(s),

=
1√
2a
Nne

−x2/2a22nHn−1(s),

=
1√
2

2nNn

Nn−1

Nn−1Hn−1(s)e−x
2/2a2 , . . . . . .

Nn

Nn−1

= 1√
2
√
n
,

=
√
nψn−1(x).

Similarly, using

Hn+1(s) = 2sHn(s)− 2nHn−1(s)

we obtain

â+ψn(x) =
√
n+ 1ψn+1(x).

We can also show that

â+â−ψn(x) = nψn(x).

Thus,

N̂ := â+â−

is the number operator, and tells us how many quanta of energy are in the system. (Note the order:

we MUST act with the annihilation operator BEFORE acting with the creation operator) We have

the following interpretations:

• The operator â+ ‘creates’ a quantum of energy;
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• The operator â− ‘destroys’ a quantum of energy;

• The operator N̂ tells us how many quanta of energy are in the system.



Chapter 14

The Schrödinger equation of the hydrogen

atom

Reading material for this chapter: Mandl, Chapter 2

We study the Schrödinger equation for a system of two particles that attract each other under the

potential

U(r) = −k0e
2

|r|
,

in three dimensions. We assume that one particle (the positively charged ‘proton’, charge +e) is

much more massive than the other particle (the negatively charged ‘electron’, charge −e), and treat

the proton as a fixed force centre, with origin O. This assumption can be made rigorous using

the definition of reduced mass, although we do not pursue this here. The positive constant k0

is introduced to take care of any prefactors arising from particular choices of physical units (e.g.

k0 = 1/4πε0 in SI). The Hamiltonian for the electron reads

Ĥ = − ~2

2m
∇2 − k0e

2

r
,

where r = (x, y, z) is the electron’s position and r = |r|. This is manifestly time independent, and

we therefore separate out the space and time dependence, and solve the eigenvalue problem(
− ~2

2m
∇2 − k0e

2

r

)
ψ(r) = Eψ(r).

This is accomplished using the separation-of-variables technique.
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14.1 Separation of variables

First, we perform some scaling arguments. We multiply the Schrödinger equation by 2m/~2 to

obtain

−∇2ψ − 2mk0e
2

~2

1

r
ψ(r) = −k2ψ(r), −k2 = 2mE/~2.

We identify a lengthscale

a0 :=
~2

mk0e2
,

and focus on solving

−∇2ψ − 2

a0r
ψ = −k2ψ. (∗)

We are searching for bound states (E < 0), and it is therefore useful to write the RHS as −k2, an

inherently negative quantity.

Because the potential is spherically symmetric, we solve the problem in spherical polar coordinates.

In this system, the Laplacian has the form

∇2ψ =
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2sin2 θ

∂2ψ

∂ϕ2
,

where θ is the polar angle and ϕ is the azimuthal angle (Figure 14.1)1.

1Note the convention: θ is for the polar angle, and ϕ is for the azimuthal angle. Some authors use the opposite
convention. Pay no attention to them!
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Figure 14.1: Spherical polar coordinates

Substituting this form into the Schrödinger equation (*), we obtain

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2sin2 θ

∂2ψ

∂ϕ2
+

2

a0r
ψ = k2ψ.

We attempt a separation-of-variables solution:

ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ).

We substitute this trial solution into the PDE and divide the answer by R(r)Θ(θ)Φ(ϕ). Obtain

1

R

1

r2

∂

∂r

(
r2∂R

∂r

)
+

2

a0r
+

1

Θ

1

r2 sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1

Φ

1

r2 sin2 θ

∂2Φ

∂ϕ2
= k2.

Multiply up by r2:

1

R

∂

∂r

(
r2∂R

∂r

)
+

2r

a0

− k2r2 +
1

Θ

1

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1

Φ

1

sin2 θ

∂2Φ

∂ϕ2
= 0.

In other words,

1

R

∂

∂r

(
r2∂R

∂r

)
+

2r

a0

− k2r2 = −
[

1

Θ

1

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1

Φ

1

sin2 θ

∂2Φ

∂ϕ2

]
.
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Now the LHS is a function of r alone and the RHS is a function of angles. The only way for this to

hold is if both sides are constant:

1

R

∂

∂r

(
r2∂R

∂r

)
+

2r

a0

− k2r2 = L2,

1

Θ

1

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1

Φ

1

sin2 θ

∂2Φ

∂ϕ2
= −L2,

where L2 is a constant whose sign is yet to be determined.

Let’s take the second of these equations and multiply it by sin2 θ. The result is

1

Θ
sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ L2 sin2 θ +

1

Φ

∂2Φ

∂ϕ2
= 0.

Re-arranging,
1

Θ
sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ L2 sin2 θ = − 1

Φ

∂2Φ

∂ϕ2
.

This forces LHS = RHS = Const., which we call −m2:

1

Θ
sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ L2 sin2 θ = m2,

− 1

Φ

∂2Φ

∂ϕ2
= m2.

Let’s take the second of these equations:

∂2Φ

∂ϕ2
+m2Φ = 0,

with solution

Φ = e±iϕ.

We require a continuous, single-valued wavefunction:

Φ(ϕ) = Φ(ϕ+ 2π),

hence

m ∈ Z.

We return to
1

Θ
sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ L2 sin2 θ = m2,

or

sin θ
∂

∂θ

(
sin θ

∂Θ

∂θ

)
+
(
L2 sin2 θ −m2

)
Θ = 0.
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We are going to introduce a new variable

x = cos θ.

Hence,
d

dθ
=
dx

dθ

d

dx
= − sin θ

d

dx
,

and the ODE becomes

sin θ

(
− sin θ

d

dx

)[
sin θ

(
− sin θ

d

dx

)
Θ

]
+
(
L2 sin2 θ −m2

)
Θ = 0,

sin2 θ
d

dx

(
sin2 θ

dΘ

dx

)
+
(
L2 sin2 θ −m2

)
Θ = 0,

d

dx

(
sin2 θ

dΘ

dx

)
+

(
L2 − m2

sin2 θ

)
Θ = 0,

d

dx

[(
1− x2

) dΘ

dx

]
+

(
L2 − m2

1− x2

)
Θ = 0;

finally,

(
1− x2

) d2Θ

dx2
− 2x

dΘ

dx
+

(
L2 − m2

1− x2

)
Θ = 0. (14.1)

14.2 Polynomial solutions

As in the harmonic oscillator case, we implement a power series solution for Eq. (14.1) and impose

normalisatbility. The result is a set of polynomials called the associated Legendre polynomials.

The quantity L must be quantised to get a normalisable solution:

L2 = `(`+ 1),

` = 0, 1, 2, · · · ,

m = −`,−`+ 1, · · · , `− 1, `.

Thus, the Legendre polynomials depend on two integer indices, ` and m. The first few such

polynomials are shown below: (Arfken and Weber, p. 733):

P 0
0 (x) = 1,
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P−1
1 (x) = −1

2
P 1

1 (x),

P 0
1 (x) = x,

P 1
1 (x) = (1− x2)1/2,

P−2
2 (x) = 1

24
P 2

2 (x),

P−1
2 (x) = −1

6
P 1

2 (x),

P 0
2 (x) = 1

2
(3x2 − 1),

P 1
2 (x) = 3x(1− x2)1/2,

P 2
2 (x) = 3(1− x2),

Happily, there is a general expression for these polynomials (A&W, p. 782):

Pm
` (x) =

1

2``!
(1− x2)m/2

d`+m

dx`+m
(x2 − 1)`,

and they are orthogonal (A&W, p. 776):∫ 1

−1

Pm
p (x)Pm

` (x)dx =
2

2`+ 1

(`+m)!

(`−m)!
δp`, 0 ≤ m ≤ `

(same m-value in each polynomial to be integrated!). Combining the polar and the azimuthal

dependencies, we have the following solutions for the angular part of the wavefunction:

Θ(θ)Φ(ϕ) = Pm
` (cos θ)eimϕ,

where

` = 0, 1, 2, · · · ,

m = −`,−`+ 1, · · · , `− 1, `.

For convenience, these angular functions are combined together as spherical harmonics (A&W,

p. 788):

Y m
` (θ, ϕ) = (−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm
` (cos θ) eimϕ,
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which satisfy the orthogonality relation∫ π

θ=0

∫ 2π

ϕ=0

Y m
` (θ, ϕ)Y m′∗

`′ (θ, ϕ) dΩ = δ``′ δmm′ ,

where

dΩ = sin θdθ dϕ

is the element of solid angle. This is the thing to remember!

Finally, we revisit the radial equation:

1

R

∂

∂r

(
r2∂R

∂r

)
+

2r

a0

− k2r2 = L2 = `(`+ 1),

∂

∂r

(
r2∂R

∂r

)
+

[
2r

a0

− k2r2 − `(`+ 1)

]
R(r) = 0.

We try one more trick:

u(r) = R(r)r =⇒ R(r) = u(r)/r.

Then

d

dr

(
r2dR

dr

)
=

d

dr

(
r2 d

dr

u

r

)
,

=
d

dr

[
r2

(
u′

r
− u

r2

)]
,

=
d

dr
(u′r − u) ,

= ru′′r + u′ − u′,

= ru′′.

Thus

r
d2u

dr2
+

[
2r

a0

− k2r2 − `(`+ 1)

]
u

r
= 0,

or
d2u

dr2
=

[
k2 − 2

a0r
+
`(`+ 1)

r2

]
u.

We are interested in bounds states (E < 0, k2 > 0). Thus, define a new dimensionless measure of

distance,

s = kr.

The ODE then reads
d2u

ds2
=

[
1− 2

a0k

1

s
+
`(`+ 1)

s2

]
u.
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The form of this equation matches exactly with that considered by Arfken and Weber (p. 834). The

power-series method yields a solution

u(r) = s`+1e−sL2l+1
n−l−1(2s),

where

L2l+1
n−l−1(2s)

is an associated Laguerre polynomial. In order for these polynomials to exist – and hence, in

order for a normalisable solution to exist – we have the following conditions on ak:

n =
1

ak
,

where n must be a positive integer (normalisability), AND

` < n.

But

ak =
~2

mk0e2

√
2m|E|
~

.

Hence,

−2mE

~2

(
~2

mk0e2

)2

= a2k2,

=
1

n2
, n = 1, 2, · · · ,

and

E = − 1

n2

(
mk0e

2

~2

)2 ~2

2m
,

= −mk
2
0e

4

2~2

1

n2
,

= En.

In other words,

En = − 1

n2

mk2
0e

4

2~2
, n = 1, 2, · · · ,

and in SI units,

En = − 1

n2

1

(4πε0)2

me4

2~2
, n = 1, 2, · · · ,
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which agrees exactly with the Bohr picture.

Note: the associated Laguerre polynomials can be generated according to the relation

Lpn(x) =
exx−p

n!

dn

dxn
(
e−xxn+p

)
,

and are orthogonal with respect to a weighting function:∫ ∞
0

e−xxpLpn(x)Lpm(x) dx =
(n+ p)!

n!
δnm (∗)

(The same p-value in each polynomial to be integrated!).

There remain some issues to tidy up. Consider again the argument of the radial function:

s = kr, k =
√

2m|E|/~2.

Now

|E| =
1

n2

mk2
0e

4

2~2
,

2m|E|
~2

=
1

n2

m2k2
0e

4

2~4
,√

2m|E|
~2

= =
1

n

mk0e
2

~2
,

=
1

n

1

a0

.

Hence,

R(r) =
u(r)

r
,

=
1

r

(
r

na0

)`+1

e−r/na0L2`+1
n−l−1

(
2r

na0

)
,

=
1

na0

(
r

na0

)`
e−r/na0L2`+1

n−l−1

(
2r

na0

)
.

However, this result is only correct up to normalisation. Thus, we introduce

Rn` = Nn`

(
2r

na0

)`
e−r/na0L2`+1

n−l−1

(
2r

na0

)
.

In view of the orthogonality relation (*) (the orthogonality condition on (Lpn,Lpm)),

Nn` =

√
(n− l − 1)!

2n(n+ l)!

(
2

na0

)3

.



112 Chapter 14. The Schrödinger equation of the hydrogen atom

The final solution for the hydrogen atom is

ψn`m(r, θ, ϕ) =

√
(n− l − 1)!

2n(n+ l)!

(
2

na0

)3(
2r

na0

)`
e−r/na0L2`+1

n−l−1

(
2r

na0

)
Y m
` (θ, ϕ),

En = − 1

n2

mk2
0e

4

2~2
.

14.3 Notes on the solution

• The energy levels are quantised according to the positive integer n = 1, 2, · · · . The label n is

called the principal quantum number.

• The quantity L2 = ~`(`+1) has the interpretation of angular momentum. For each n-value,

there are ` = 0, 1, 2, · · · , n− 1 allowed values of an angular momentum.

• The quantity m has the interpretation of the angular momentum in the z-direction. For

each `-value, there are m = −`, · · · , ` allowed values of the projection.

• Hence, for n = 1 there is precisely one possible state with quantum numbers (n, `,m) =

(1, 0, 0) .

• For n = 2 there are four possible states, with quantum numbers

(n, `,m) = (1, 0, 0), (1, 1,−1), (1, 1, 0), (1, 1,−1).

• For n = 3 there are nine possible states, with quantum numbers

(n, `,m) = (3, 0, 0), (3, 1,−1), (3, 1, 0), (3, 1,−1),

(3, 2,−2), (3, 3,−1), (3, 2, 0), (3, 2, 1) (3, 2, 2).

• The degeneracy of an energy level En refers to the fact that the level accommodates several

distinct eigenstates (different values of angular momentum). Each `-value corresponds to

2` + 1 distinct states, and there are ` = 0, 1, · · · , n − 1 possible `-values for a given energy

level. Thus, the degree of degeneracy is

degeneracy of En =
n−1∑
`=0

(2`+ 1) = n2.
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• In spectroscopy, the states are classified according to the angular-momentum eigenvalue `:

– ` = 0 – s-states;

– ` = 1 – p-states;

– ` = 2 – d-states;

and thereafter alphabetically2

• First few radial wavefunctions (normalised):

R10(r) =
2

a
3/2
0

e−r/a0 ,

R20(r) =
2

(2a0)3/2

(
1− r

2a0

)
e−r/2a0 ,

R21(r) =
2√

3(2a0)3/2

r

a0

e−r/2a0 .

See Fig. 14.2.

Figure 14.2: First few radial wavefunctions, hydrogen atom.

14.4 Spherical harmonics – visualisations

In Figs. 14.3–14.6 we have plotted the real part of the spherical harmonics corresponding to ` =

0, 1, 3, 3. The Matlab code to do this is given in Appendix A.

2Mnemonic: “Silly Physicists Deny Feeling Gravity”.
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Figure 14.3: The ` = 0 spherical harmonic.

(a) m = 1 (b) m = 0 (c) m = −1

Figure 14.4: Real part of the ` = 1 spherical harmonics.

(a) m = 2 (b) m = 1 (c) m = 0

(d) m = −1 (e) m = −2

Figure 14.5: Real part of the ` = 2 spherical harmonics.
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(a) m = 3 (b) m = 2 (c) m = 1 (d) m = 0

(e) m = −1 (f) m = −2 (g) m = −3

Figure 14.6: Real part of the ` = 3 spherical harmonics.



Chapter 15

General treatment of central potentials

Reading material for this chapter: None recommended

15.1 Introduction

We study the Schrödinger equation for a particle that experiences a force from the general central

potential

U(r) = U(r).

in three dimensions. We are going to recycle much from our experience with the hydrogen atom.

The Hamiltonian reads

Ĥ = − ~2

2m
∇2 + U(r)

This is manifestly time independent, and we therefore separate out the space and time dependence,

and solve the eigenvalue problem(
− ~2

2m
∇2 + U(r)

)
ψ(r) = Eψ(r).

This is solved using spherical harmonics.

15.2 The solution

In our treatment of the hydrogen atom, the nature of the potential did not enter into the angular

solution. Thus, we propose a solution

ψ(r) = R(r)Y`m(θ, ϕ),
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for the eigenvalue problem. Acting on this solution with the Laplacian gives

∇2ψ =
Y`m
r2

∂

∂r

(
r2∂R

∂r

)
− `(`+ 1)

r2
R(r)Y`m.

Hence, the Schrödinger equation reads

− ~2

2m

[
Y`m
r2

∂

∂r

(
r2∂R

∂r

)
− `(`+ 1)

r2
R(r)Y`m

]
+ U(r)R(r)Y`m = ER(r)Y`m. (∗)

Radial part

We can freely divide out by Y`m in Eq. (*) to give

− ~2

2m

[
1

r2

∂

∂r

(
r2∂R

∂r

)
− `(`+ 1)

r2
R(r)

]
+ U(r)R(r) = ER(r).

Now we perform the magic substitution R(r) = u(r)/r:

1

r2

∂

∂r

(
r2∂R

∂r

)
=

1

r

∂2u

∂r2
.

and the Schrödinger equation reduces to

− ~2

2m

[
u′′

r
− `(`+ 1)

r2

u

r

]
+ U(r)

u

r
= E

u

r
.

Multiplying up by r gives

− ~2

2m

[
u′′ − `(`+ 1)

r2
u

]
+ U(r)u = Eu.

Now here is the wonderful trick: We introduce an effective potential

Ueff(r) = U(r) +
~2

2m

`(`+ 1)

r2
.

Then, the Schrödinger equation reduces to a quasi-one-dimensional form:

− ~2

2m
u′′ + Ueff(r)u = Eu.

In conclusion, we have reduced the problem of obtaining the full wavefunction φ(r, θ, ϕ), to a

comparatively simple, quasi-one-dimensional problem, using the following sequence of steps:
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Figure 15.1: Effective potential for hydrogen, ` > 0.

• ψ(r, θ, ϕ) = R(r)Y`m(θ, ϕ);

• R(r) = u(r)/r;

• Effective potential: Ueff(r) = U(r) + (~2/2m)`(`+ 1)/r2;

• Quasi-one-dimensional model: (−~2/2m)u′′ + Ueff(r)u = Eu;

• Solve the latter for the eigenvalues of energy.

Note finally the effective potential for hydrogen (` 6= 0) (Fig. 15.1). For ` > 0, the potential is

positive as r → 0 – there is an effective repulsive force as the nucleus is the electron approaches

the nucleus. This is sometimes referred to as the centrifugal barrier.



Chapter 16

Angular momentum

Reading material for this chapter: Mandl, Chapter 2

16.1 Overview

In previous chapters, we isolated the angular part of the Laplacian, ∆:

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
.

Call the part inside the square brackets ∆Ω:

∆Ω =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
.

In previous chapters, we solved

∆ΩY (θ, ϕ) = −L2Y (θ, ϕ),

and found that the answer was spherical harmonics:

Y (θ, ϕ) = Y`m(θ, ϕ),

L2 = `(`+ 1),

` = 0, 1, 2, · · · ,

m = −`,−`+ 1, · · · , `− 1, `.

We interpreted these solutions as eigenfunctions of angular momentum, with eigenvalues `. The

secondary eigenvalues m related to the component of angular momentum measured along the z-

axis. We are going to study this interpretation further, and construct an abstract theory of angular

momentum, independent of the position representation. However, in this chapter, we continue to
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work in the position representation to gain and justify our identification of the angular part of the

Laplacian with angular momentum.

16.2 The definition

Let r̂ and p̂ be the usual position and momentum operators with canonical commutation relation

[̂ri, p̂j] = −i~δij.

The angular-momentum operator is defined as

L̂ = r̂× p̂.

Going over to the position representation, this is

L̂ = −i~r ×∇.

We use spherical polar coordinates:

r = rr̂,

∇ =
r̂

hr
∂r +

θ̂

hθ
∂θ +

ϕ̂

hϕ
∂ϕ,

r̂ × θ̂ = ϕ̂,

where (r̂, θ̂, ϕ̂) are an orthonormal triad and

(hr, hθ, hϕ) = (1, r, r sin θ)

are the scale factors of the spherical polar coordinate system. Hence,

L̂ = −i~r

[
ϕ̂

hθ
∂θ −

θ̂

hϕ
∂ϕ

]
.

Recall,

x = (r sin θ cosϕ, r sin θ sinϕ, r cos θ),

θ̂ =
1

hθ

∂x

∂θ
,

ϕ̂ =
1

hϕ

∂x

∂ϕ
.
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It follows that

ẑ · θ̂ = − sin θ,

ẑ · ϕ̂ = 0,

and hence, the projection of angular momentum on to the z-axis is

L̂z = ẑ · L̂,

= −i~r

(
− ẑ · θ̂

hϕ
∂ϕ

)
,

= −i~∂ϕ.

Now let’s compute the action of L̂
2

on a function Y (θ, ϕ). We need to be careful here because θ̂

and ϕ̂ depend on space:

L̂
2
Y

−~2r2
=

(
ϕ̂

hθ
∂θ −

θ̂

hϕ
∂ϕ

)
·

(
ϕ̂

hθ
∂θY −

θ̂

hϕ
∂ϕY

)
,

=
ϕ̂

hθ
· ∂θ
(
ϕ̂

hθ
∂θY

)
− ϕ̂

hθ
· ∂θ

(
θ̂

hϕ
∂ϕY

)
− θ̂

hϕ
· ∂ϕ

(
ϕ̂

hθ
∂θY

)
+
θ̂

hϕ
· ∂ϕ

(
θ̂

hϕ
∂ϕY

)
,

=
1

hθ
∂θ

(
∂θY

hθ

)
+

1

h2
θ

∂θY (ϕ̂ · ∂θϕ̂)− 1

hθhϕ
∂ϕY

(
ϕ̂ · ∂θθ̂

)
− 1

hθhϕ
∂θY

(
θ̂ · ∂θϕ̂

)
,

1

hϕ
∂ϕ

(
∂ϕY

hϕ

)
+

1

h2
ϕ

∂ϕY
(
θ̂ · ∂ϕθ̂

)
.

A lot of the cross terms can be made to go away. For example,

|θ̂|2 = 1 =⇒ θ̂ · ∂ϕθ̂ = 0, |ϕ̂|2 = 1 =⇒ ϕ̂ · ∂θϕ̂ = 0.

The other two cross terms require direct computation:

ϕ̂ = (− sinϕ, cosϕ, 0),

θ̂ = (cos θ cosϕ, cosθ sinϕ,− sin θ),

∂ϕϕ̂ = (− cosϕ,− sinϕ, 0),

∂θθ̂ = (− sin θ cosϕ,− sin θ sinϕ,− cos θ),

hence

θ̂ · ∂ϕϕ̂ = − cos θ, ϕ̂ · ∂θθ̂ = 0.
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Hence,

L̂
2
Y

−~2r2
=

1

hθ
∂θ

(
∂θY

hθ

)
+

1

hϕ
∂ϕ

(
∂ϕY

hϕ

)
− 1

hθhϕ

(
ϕ̂ · ∂ϕθ̂

)
∂θY.

We substitute:

hθ = r, hϕ = r sin θ, θ̂ · ∂ϕϕ̂ = − cos θ,

hence

L̂
2
Y

−~2r2
=

1

r2
∂θθY +

1

r2 sin2 θ
∂ϕϕY +

1

r2

cos θ

sin θ
∂θY,

=
1

r2

[
1

sin θ
∂θ (sin θ∂θY ) +

1

sin2 θ
∂ϕϕY

]
,

=
1

r2
∆ΩY.

Thus, starting out with the standard definition of angular momentum, we have shown,

L̂ := −i~r ×∇,

L̂
2

= −~2∆Ω, (= L̂2
x + L̂2

y + L̂2
z)

ẑ · L̂ = −i~∂ϕ, (= L̂z).

We now return to Cartesian coordinates and derive commutation relations between the Cartesian

components of the angular-momentum operator L̂.

16.3 Commutation relations

Define

L̂ = −i~r ×∇.

In other words,

L̂x = −i~ (y∂z − z∂y) ,

L̂y = −i~ (z∂x − x∂z) ,

L̂z = −i~ (x∂y − y∂x) .
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We compute

L̂xL̂yY

(−i~)2
= (y∂z − z∂y)(z∂xY − x∂zY ),

= y∂z(zYx)− xyYzz − z2Yyx + xzYyz,

= yYx + yzYxz − xyYzz − z2Yyx + xzYyz.

Similarly,
L̂yL̂xY

(−i~)2
= xYy + xzYzy − xyYzz − z2Yxy + xyYxz.

Subtracting gives
L̂xL̂yY − L̂yL̂xY

(−i~)2
= yYx − xYy = − (x∂y − y∂x)Y.

In other words, [
L̂x, L̂y

]
(−i~)2

Y = − (x∂y − y∂x)Y,[
L̂x, L̂y

]
= (i~)(−i~) (x∂y − y∂x)Y,

= i~L̂zY.

Performing cyclic permutations on the coordinates gives the following general commutation relation:

[
L̂i, L̂j

]
= i~

3∑
k=1

εijkL̂k. (∗)

Going back to the spherical-polar coordinate representation for an instant, it is readily shown that

[∆Ω, ∂ϕ]Y = 0,

and thus, [
L̂

2
, L̂z

]
= 0.

However, there is nothing special about the z-direction – we could just as easily have set up a

coordinate system where the polar angle is measured from the x- or y-axis. Thus,[
L̂

2
, L̂x

]
=
[
L̂

2
, L̂y

]
=
[
L̂

2
, L̂z

]
= 0.

Thus, {L̂
2
, L̂z} are compatible operators, and there is a simultaneous basis of eigenvectors for them

– the spherical harmonics. However, in view of the commutation relation (*), it is not possible to

obtain a simultaneous eigenbasis for {L̂
2
, L̂x, L̂z}, say. Hence, {L̂

2
, L̂z} is a maximally commuting
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set of operators, or a complete set of commuting observables (CSCO).



Chapter 17

Angular momentum: abstract setting

Reading material for this chapter: Mandl, Chapter 5

17.1 Abstract setting

In this chapter we define angular momentum in an abstract setting. The spherical harmonics just

discussed are then just one representation of this abstract formalism. First, a definition:

Definition 17.1 An Lie algebra g is a complex vector space endowed with a a binary operation

called the Lie bracket:

g× g → g,

(a, b) → [a, b],

such that the following axioms hold:

• Bilinearity:

[λa+ µb, c] = λ[a, b] + µ[b, c], [c, λa+ µb] = λ[c, a] + µ[c, b],

• [a, a] = 0

• The Jacobi identity:

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0

for all a, b, b ∈ g and λ, µ ∈ C. Note that the properties (1)–(3) imply that the Lie bracket is

antisymmetric,

[a, b] = −[b, a],

125
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for all a and b in g.

Example

Let H be a complex vector space. Denote by L(H) the set of all linear operators from H to itself.

The set L(H) is itself a complex vector space. Introduce a binary operation on L(H) using operator

composition. This enables us to define the commutator on L(H):

[·, ·] : L(H)× L(H) → L(H),

(S, T ) 7→ [S, T ] := ST − TS. (17.1)

We have the following theorem:

Theorem 17.1 The operator commutator defined in Equation (17.1) is bilinear, satisfies [S, S] = 0

for all S ∈ L(H) and satisfies the Jacobi identity.

The proof of the first two properties is straightforward. The proof of the third property is by direct

computation:

[A, [B,C]] = A[B,C]− [B,C]A,

= A(BC − CB)− (BC − CB)A,

= ABC − ACB −BCA+ CBA.

where the brackets (·) are not important here because operator composition is associative. Similarly,

[B, [C,A]] = BCA−BAC − CAB + ACB,

and

[C, [A,B]] = CAB − CBA− ABC +BAC.

Add up:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

Thus, L(H) is a Lie group with the operator commutator as the Lie bracket.

As a realisation of this concept, consider the set Cn×n. This can be identified as the set L(Cn),

i.e. the set of all linear operators on complex-valued column vectors. This is a Lie algebra, with Lie

bracket given by the matrix commutator,

[A,B] = AB −BA.
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Again, it is immediately obvious that the matrix commutator is bilinear, satisfies [A,A] = 0, and

satisfies the Jacobi identity. Thus, Cn×n is a Lie algebra.

17.2 The Lie Algebra of Angular Momentum

Let H denote the state space of angular momentum. The angular momentum operator is

J = Jxx̂+ Jyŷ + Jzẑ,

where x̂ is the unit vector in the x direction etc. and Jx is the component of angular momentum

in the x-direction etc. The set of all finite operator compositions of Jx, Jy and Jz together with all

linear combinations of Jx, Jy and Jz and all linear combinations of finite compositions is a complex

vector space, denoted in the present context by L(H). The set L(H) by construction is closed

under addition of operators, scalar multiplication, and composition of operators. Using the operator

composition as a bracket, L(H) is made into a Lie algebra.

We now consider the vector subspace of L(H) formed as follows:

S (Jx, Jy, Jz)

and we impose the canonical commutation relation

[Ji, Jj] = i~
3∑

k=1

εijkJk. (17.2)

The vector subspace S (Jx, Jy, Jz) is closed under linear combinations and scalar multiplication. It

is also closed under the canonical commutation relation (17.2). We have:

• S (Jx, Jy, Jz) is a complex vector space.

• The bracket in Equation (17.2) takes elements in S (Jx, Jy, Jz) and sends them to other

elements in S (Jx, Jy, Jz).

• The bracket in Equation (17.2) is bilinear, satisfies [a, a] = 0 for all a ∈ S (Jx, Jy, Jz) and

satisfies the Jacobi identity – these properties are inherited from the bracket operating on

the full set L(H).

Thus, S (Jx, Jy, Jz) is a Lie algebra in its own right – it is the Lie algebra of angular momentum.

In practice, not only are Jx, Jy and Jz of interest, but also J2 = J2
x + J2

y + J2
z . Therefore, it is of

interest not only to study S (Jx, Jy, Jz) but also L(H), got by forming the closure of S (Jx, Jy, Jz)
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under combinations of operator composition, addition and scalar multiplication. This is called the

enveloping algebra.

We now prove the following results about the Lie algebra of angular momentum:

Theorem 17.2 The following results hold for the algebra just defined:

1. The operator J2 commutes with all elements of the algebra.

2. The pair {Jz, J2} is a maximally-commuting set, with eigenvalues (~m, ~2λ), such that

λ ≥ 0, m2 ≤ λ.

3. The Jz-eigenspaces are non-degenerate.

4. For a given λ-value, there is a maximum and a minimum m-value.

5. There is only a finite number eigenvalues of Jz and J2, in the relation

Eigenvalues of J2 = ~2j(j + 1), j = 0, 1
2
, 1, 3

2
, · · · ,

Eigenvalues of Jz = ~m, m = −j, · · · , j.

Proof:

1. We use the following commutation relation for products:

[A,BC] = [A,B]C +B[A,C].

Hence,

[Jz, J
2] = [Jz, J

2
x ] + [Jz, J

2
y ],

= [Jz, Jx]Jx + Jx[Jz, Jx] + [Jz, Jy]Jy + Jy[Jz, Jy],

= i~JyJx + i~JxJy − i~JxJy − i~JyJx,

= 0.

2. The set {J2, Jz} is a commuting set. Forming another set such as {J2, Jz, Jx} leads to

a non-commuting triple, since [Jx, Jz] 6= 0. Since {Jx, Jy, Jz} are assumed to be linearly

independent, the maximum possible set of commuting observables is given by {J2, Jz}. It

follows that there is a basis of simultaneous eigenvectors for this set, or a complete set of

commuting observables (CSCO).
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3. To show that the Jz-eigenspaces are non-degenerate, two approaches can be taken. The

first is to note that if the eigenspaces were degenerate, then there would be a third quantum

number characterizing the angular momentum. But this is not possible, since J2 and Jz are a

complete set of commuting observables associated with precisely two quantum numbers – the

eigenvalues of J2 and Jz respectively. A second but related approach is to assume that a third

quantum number exists (say µ), labelling the supposed degeneracy of the Jz eigenstates, such

that the eigenstates are |λ,m, µ〉. It is possible to go over to the position representation of

angular momentum, which is valid for λ = j(j+1), with j ∈ {0, 1, 2, · · · } and m = −j, · · · , j
whereupon we have

〈θ, ϕ|λ,m, µ〉 = Yj,m(θ, ϕ).

This is an identity, yet the supposed quantum number µ does not appear on the right-hand

side. Thus, we are forced to conclude that the quantum number µ does not exist, and hence

that the Jz-eigenspaces are non-degenerate.

4. We show that |m| ≤ λ. Let J2 have eigenvalues ~2λ and let Jz have eigenvalues ~m.

Let |φ〉 be an arbitrary norm-one state and let |χ〉 = Jx|φ〉. We have,

〈φ|J2
x |φ〉 = 〈φ|JxJx|φ〉,

= 〈φ|Jx|χ〉,

= 〈φ|J†x|χ〉,

= 〈χ|χ〉,

≥ 0.

Similarly for the other components; it follows that λ ≥ 0.

As yet we do not know what the precise values of (λ,m) are. However, we may write down

the simultaneous eigenbasis {|λ,m〉}λ,m, which spans the vector space of states, such that

J2|λ,m〉 = ~2λ|λ,m〉,

Jz|λ,m〉 = ~m|λ,m〉.

Hence

〈λ,m|J2|λ,m〉 = ~2λ,

〈λ,m|J2
z |λ,m〉 = ~2m2.

In addition,

〈λ,m|J2
x + J2

y |λ,m〉 = 〈λ,m|J2 − J2
z |λ,m〉 ≥ 0,
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hence

λ−m2 ≥ 0,

Thus, the m-eigenvalue is bounded in the sense that m2 ≤ λ, as required.

5. Quantisation of λ: we introduce the ladder operators

J± = Jx ± iJy,

such that

[Jz, J±] = ±~J±, [J2, J±] = 0

(this is easily shown by direct computation, applying the canonical commutation relation).

Hence,

JzJ±|λ,m〉 = (J±Jz ± ~J±)|λ,m〉,

= J±(Jz ± ~)|λ,m〉,

= ~(m± 1)J±|λ,m〉.

Thus, if |λ,m〉 is a unit-norm eigenvector with Jz-eigenvalue m, then J±|λ,m〉 is an eigen-

vector with Jz-eigenvalue m+ 1:

J±|λ,m〉 = c±(λ,m)|λ,m+ 1〉.

From result 2, we know that |m| ≤ λ. Now for m to possess a maximum value – which we

call j – this procedure for stepping between consecutive subspaces must fail eventually:

J+|λ, j〉 = 0,

which also implies that

J−J+|λ, j〉 = 0. (17.3)

But

J±J+ = J2 − J2
z − ~Jz.

Hence, Equation (17.3) reduces to

~2λ− ~2j2 − ~2j = 0,

or

λ = j(j + 1),
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which is the form of the J2-eigenvalues. By a similar argument, the minimum eigenvalue of

Jz is −j, and

J−|λ,−j〉 = 0.

We operate repeatedly on the minimum state |λ,−j〉 with J−. This produces states propor-

tional to

|λ,−j〉, |λ,−j + 1〉, · · · , |λ, j − 1〉, |λ, j〉.

This sequence has 2j + 1 elements – hence, j must be an integer or a half-integer.

We show that this list is exhaustive and includes all possible Jz-eigenvalues. We use a proof

by contradiction: assume that there is a Jz-eigenvalue β, with

β 6∈ {−j,−j + 1, · · · , j − 1, j}.

We act repeatedly on |j, β〉 to obtain a further Jz-eigenvalue α, such that

−j < α < −j + 1,

where the inequalities are strict. We now consider J−|j, α〉. Two possibilities arise:

(a) J−|j, α〉 6= 0. In this case, J−|j, α〉 is an eigenvector of Jz with eigenvalue α − 1.

However, this contradicts the fact that −j is the minimum eigenvalue of Jz. This case

cannot therefore occur.

(b) J−|j, α〉 = 0. Then, J+J−|j, α〉 = 0 also, or

(
J2 − J2

z + ~Jz
)
|j, α〉 = 0.

But |j, α〉 6= 0, hence

j(j + 1)− α (α− 1) = 0,

with solution α = −j. This contradicts the strictness of the inequalities −j < α <

−j + 1. This case cannot therefore occur.

Indeed, the two cases are ruled out, which implies a contradiction. This means that β 6∈
{−j,−j + 1, · · · , j − 1, j} does not exist, which further implies that the set ~{−j,−j +

1, · · · , j − 1, j} is the complete set of Jz-eigenvalues.

Finally, for completeness, we derive the form of the constants of proportionality c±(j,m) (we replace

the label λ with the label j from now on).
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We have

J+|j,m〉 = c+(j,m)|j,m+ 1〉,

〈j,m|J†P = c+(j,m)∗〈j,m+ 1|,

〈j,m|J− = c+(j,m)∗〈j,m+ 1| . . . J− = J†+.

Hence,

〈j,m|J−J+|h,m〉 = |c+(j,m)|2〈j,m+ 1|j,m+ 1〉 = |c+(j,m)|2.

But J±J+ = J2 − J2
z − ~Jz, hence

〈j,m|J−J+|h,m〉 = 〈j,m|J2 − J2
z − ~Jz|j,m〉,

= ~2j(j + 1)− ~2m− ~m,

= ~2 [j(j + 1)−m(m+ 1)] ,

= |c+(j,m)|2.

Taking c+ to be real, we have

c±(j,m) = ~
√
j(j + 1)−m(m± 1).

17.3 Representations

The following are matrix representations for the abstract algebra just defined:

• j = 1/2 representation: Consider again the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
.

Form the angular-momentum operators

Jx =
~
2
σx, Jy =

~
2
σy, Jz =

~
2
σz.

We know that

σ2 := σ2
x + σ2

y + σ2
z = 3I, σz

(
1

0

)
=

(
1

0

)
,

hence

J2 = J2
x + J2

y + J2
z =

3~2

4
= ~2 1

2

(
1
2

+ 1
)
,
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and

Jz

(
1

0

)
=
(

1
2
~
)( 1

0

)
Hence, the Pauli matrices satisfy the commutation relation for the algebra of angular momen-

tum for j = 1/2. The set {Jz, J2} is maximally commuting.

• j = 1 representation:

Jx =
~√
2


0 1 0

1 0 1

0 1 0

 , Jy =
~√
2


0 −i 0

i 0 −i
0 i 0

 , Jz = ~


1 0 0

0 0 0

0 0 −1

 .

Form the Casimir operator

J2 = J2
z + J2

y + J2
x ,

= ~2


1 0 0

0 0 0

0 0 1

+ 1
2
~2


1 0 −1

0 2 0

−1 0 1

+ 1
2
~2


1 0 1

0 2 0

1 0 1

 ,

= 2~2I.

Identify j(j + 1) = 2, hence j = 1. The matrices {Jx, Jy, Jz} satisfy the CCR, and the set

{J2, Jz} is maximally commuting.

A simultaneous basis for {J2, Jz} is the usual one:

|1〉 =


1

0

0

 , |0〉 =


0

1

0

 , | − 1〉 =


0

0

−1

 ,

with

Jz|1〉 = ~(+1)|1〉, Jz|0〉 = ~(0)|0〉, Jz| − 1〉 = ~(−1)|0〉.
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Intrinsic angular momentum

Reading material for this chapter: Mandl, Chapters 2, 4, and 5

18.1 Overview

In the last chapter, we saw how to construct a matrix representation for angular-momentum quantum

numbers j = 1/2 and j = 1:

• j = 1/2 representation:

Ĵx =
~
2

(
0 1

1 0

)
, Ĵy =

~
2

(
0 −i

i 0

)
, Ĵz =

~
2

(
1 0

0 −1

)
,

with

Ĵ
2

= 3
2
~2I,

and

Ĵz|±〉 = ~(±1)|±〉.

• j = 1 representation:

Ĵx =
~√
2


0 1 0

1 0 1

0 1 0

 , Ĵy =
~√
2


0 −i 0

i 0 −i
0 i 0

 , Ĵz = ~


1 0 0

0 0 0

0 0 −1

 ,

with

Ĵ
2

= 2~2I,

134
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Figure 18.1: The Stern–Gerlach experiment

and

Ĵz|1〉 = ~(+1)|1〉, Ĵz|0〉 = ~(0)|0〉, Ĵz| − 1〉 = ~(−1)|0〉.

It is tempting to ask, ‘why bother’. Previously, we have found that the electron bound to the

hydrogen atom possesses angular momentum ~
√
`(`+ 1) because it ‘orbits’ a force centre – just as

the earth orbiting the sun has angular momentum. In this chapter, we are going to find out that the

electron also has intrinsic angular momentum that it possesses whether it is free or bound. As a

loose analogy, compare this intrinsic angular momentum to the angular momentum of the earth due

to its spinning on its axis1. Continuing with this analogy, we call intrinsic angular momentum spin.

18.2 Stern–Gerlach experiment

Consider the experimental setup shown in Fig. 18.1.

• A beam of (electrically neutral) atomic particles is passed through an inhomogeneous magnetic

field B(x). The particles have a magnetic dipole moment µ, and the force experienced by

the particles in the field is therefore

F = −∇U U = −µ ·B,

or

F = µz
dB

dz
,

assuming the inhomogeneous direction coincides with the z-axis. The particles emerge from

the device and are incident on an observation screen. Classically, one would expect to see a

1A very loose analogy, since the electron has no spatial extent, and thus, the formula J = mrv ought to yield
zero.
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continuous pattern, spread along the z-axis, and symmetric about z = 0. If the particles have

zero magnetic moment, one would expect to see a diffuse spot at the centre of the screen.

• Instead, one finds patterns of 1, 2, 3, · · · discrete spots about the undeflected direction z = 0.

The original beam splits into several beams. The number of spots depends on the intrinsic

angular momentum of the atoms in the beam.

• Classically, it can be shown that the magnetic dipole moment of a particle with angular

momentum is

µ =
Q

2m
J , (∗)

where J is the angular momentum and Q is the charge of the particle (but see the last point for

the quantum-mechanical correction to this formula). If the angular momentum is quantised,

with principal quantum number j, then there are only 2j+ 1 possible values for the projection

of the angular momentum on to the z-axis, and hence, only 2j + 1 possible values for the

magnetic force. Thus, the beam splits into 2j + 1 sub-beams, each observed on the screen.

• This experiment can be repeated with electrons. The experiment is adjusted to take account

of the Lorentz force – the fact that charged particles experience a force perpendicular to

the motion, to prevent the electrons from being deflected. One finds only two spots on the

observation screen – suggesting that the electrons have an intrinsic angular momentum with

principal quantum number 2j + 1 = 2 =⇒ j = 1/2.

• For electrons, the intrinsic magnetic moment associated with the spin S is given by

µ =
−ge
2me

S,

where g is Dirac’s g-factor, and g ≈ 2. This is a consequence of solving the relativistic wave

equation for the electron, a problem you might encounter in later modules.

18.3 Identical particles

Consider two particles with identical mass, charge, spin, etc. Classically, we can identify the particles

by their position, and they can therefore be distinguished one from another. However, the uncertainty

principle means that we cannot do this under quantum mechanics. Thus, the particles are identical.

This has implications for the form of the wavefunction of the two-particle system.

Let Ψ(1, A; 2, B) be the wavefunction of the two-particle system. This means that particle 1 occupies

state A and particle 2 occupies state B. Consider the operation

Ψ(1, A; 2, B)→ EΨ(1, A; 2, B) = Ψ(2, A; 1, B),
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which means that particle 2 is now in state A, and particle 1 is in state B. Mathematically, we have

E2Ψ(1, A; 2, B) = Ψ(1, A; 2, B). (18.1)

Now, the fact that the particles are identical means that the wavefunction should be an eigenfunction

of the exchange operator, such that

EΨ(1, A; 2, B) = Ψ(2, A; 1, B),

= λΨ(1, A; 2, B);

Equation (??) demonstrates that λ2 = 1, hence

λ = ±1.

Thus, the state vector of a pair of identical particles is either symmetric under exchange:

Ψ(2, A; 1, B) = +Ψ(1, A; 2, B)

OR antisymmetric under exchange:

Ψ(2, A; 1, B) = −Ψ(1, A; 2, B)

This provides a useful classification of types of particles:

• Particles whose wavefunctions are symmetric under exchange are called Bosons;

• Particles whose wavefunctions are antisymmetric under exchange are called Fermions.

It also happens that

• Bosons have integer spin;

• Fermions have half-integer spin.

This is called the spin-statistics theorem, and is a consequence of quantum field theory.

Examples:

• Bosons: pions (spin zero), photons (spin 1).

• Fermions: protons, neutrons, electrons (all spin 1/2).
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18.4 Pauli’s exclusion principle

Consider two identical, non-interacting Fermions. By the second postulate, the state of the com-

posite system is formed by tensor products, such as

Ψ(1, A; 2, B) = ψ(A, 1)ψ(B; 2).

which means that particle 1 is in single-particle state A, and particle 2 is in single-particle state B.

However, the correct wavefunction is antysymmetric:

Ψ(1, A; 2, B) = ψ(A, 1)ψ(B; 2)− ψ(B, 1)ψ(A, 2),

which is a state wherein particle 1 is in state A and particle 2 is in state B, OR, particle 2 is in

state A and particle in is in state B (we cannot tell these situations apart). Now let’s compute the

wavefunction corresponding to both particles occupying the single-particle state A, it is

Ψ(1, A; 2, A) = ψ(A, 1)ψ(A, 2)− ψ(A, 1)ψ(A, 2) = 0,

and the probability that both fermions occupy the same single-particle state A is identically

zero. This is Pauli’s exclusion principle.

Example: Write down the ground-state wavefunction for a composite system comprising two

non-interacting, spin-1/2 Fermions.

The answer involves two parts: A spatial wavefunction, for the spatial degrees of freedom, and a

spin state. Because the spin- and spatial-degrees of freedom do not interact, the total wavefunction

is a product:

Ψ(1, 2) = ψ(r1, r2)S(1, 2),

where ψ(r1, r2) is the spatial wavefunction and S(1, 2) is a spin state.

The total wavefunction Ψ(1, 2) is antisymmetric under exchange. This means:

• The spatial wavefunction is symmetric and the spin state is antisymmetric, OR

• The spatial wavefunction is antisymmetric and the spin state is symmetric.

We consider case 1 first. Let’s look at the spin states. Particle 1 can be in a state |+, 1〉 and

particle 2 can be in a state |−, 1〉, or vice versa, but it is not possible for both states to be in the

same spin state. Thus

|1, 2〉 = |+, 1〉|−, 2〉 − |−, 1〉|+, 2〉,
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or

|1, 2〉 =

(
1

0

)
1

⊗

(
0

−1

)
2

−

(
0

−1

)
1

⊗

(
1

0

)
2

.

Hence,

Ψ(1, 2) =
1√
2
ψsymmetric(r1, r2)

[(
1

0

)
1

⊗

(
0

−1

)
2

−

(
0

−1

)
1

⊗

(
1

0

)
2

]
.

Now let us examine case 2. We can form three symmetric spin states from the single-particle spin

states:

Both particles spin up = |1,+〉|2,+〉,

Both particles spin down = |1,−〉|2,−〉,

Spin up, down, symmetric combo. = |1,+〉|2,−〉+ |1,−〉|2, 〉,

or (
1

0

)
1

⊗

(
1

0

)
2

,

(
0

−1

)
1

⊗

(
0

−1

)
2

,

(
1

0

)
1

⊗

(
0

−1

)
2

+

(
0

−1

)
1

⊗

(
1

0

)
2

,

respectively. Thus, the other possible form for the composite wavefunction is

Ψ(1, 2) = ψantisymmetric(r1, r2)

[(
1

0

)
1

⊗

(
1

0

)
2

]
,

or ψantisymmetric(r1, r2)

[
0

(
0

−1

)
1

⊗

(
0

−1

)
2

]
,

or
1√
2
ψantisymmetric(r1, r2)

[(
1

0

)
1

⊗

(
0

−1

)
2

+

(
0

−1

)
1

⊗

(
1

0

)
2

]
.

Now we focus on the spatial part of the wavefunction; in particular, we examine the ground state.

We cannot make progress without specifying the details of the potential field. We focus for simplicity
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on the one-dimensional case, and we assume

Ĥ = Ĥ1 + Ĥ2,

Ĥ1 = − ~2

2m
∂2
x1

+ U(x1),

Ĥ2 = − ~2

2m
∂2
x2

+ U(x2).

The eigenvalue problem Ĥψ(x1, x2) = Eψ(x1, x2) therefore separates, and the ground-state of the

system is a product of two single-particle ground states:

ψgs(x1, x2) = ψ0gs(x1)ψ0gs(x2),

up to exchange symmetry, with eigenvalue

Egs = 2E0gs.

However, no antisymmetric ground-state wavefunction exists, since by definition of the ground state,

both particles occupy the minimum energy level. Thus, the spatial wavefunction in the ground state

is necessarily symmetric, and the total wavefunction is

Ψgs(1, 2) =
1√
2
ψ0gs(x1)ψ0gs(x2)

[(
1

0

)
1

⊗

(
0

−1

)
2

+

(
0

−1

)
1

⊗

(
1

0

)
2

]
.

Thus, the ground state consists of a spin-up, spin-down pair of fermions. Such a pair is called a

singlet state.

18.5 The periodic table

We discuss many-electrons atoms now, and outline how the periodic table follows from consideration

of the hydrogen atom, and Pauli’s exclusion principle.

• Consider first the dynamics of a single electron in the system. In a crude approximation,

one ignores the repulsive interactions between the electron and its neighbours, and treats the

electron as though it experiences a Coulomb force arising from the positive nucleus, of strength

Ze (Z is the number of protons in the nucleus).

• At the next level of approximation, one takes account of the repulsive force between the

electrons by supposing that the single electron of interest does not experience the ‘bare’

Coulombic force, but rather one diminished or ‘screened’ by the fact that a cloud of negative
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electrons surrounds the positive core. This approximation can be described by a central

potential.

• Thus, we are reduced again to the problem of motion in a central potential, using a screened

potential.

• We compute the energy levels of this potential using the theory derived in Ch. 15. The

potential is not the simple Coulombic one, and the energy levels are non-dengenerate with

respect to the angular-momentum quantum number, En → En`.

• It is possible, in this description, to write down the energy levels from the lowest to the highest.

These are:

1s, 2s, 2p, 3s, 3p, [4s, 3d], 4p, [5s, 4d], 5p, · · ·

(the bracketed terms have very similar energies). For a given n, the energy En` increases as `

increases: the large values of angular momentum create a ‘centrifugal barrier’ which prevents

the electron from entering into the core region. When small-` electrons enter this region, they

sample the unscreened nuclear charge, which leads to a higher energy binding the electron to

the nucleus.

• We fill each single-particle state or orbital starting with the ground state.

• From the previous section, we can fit two electrons into the ground state – one is spin up,

and the other is spin down.

• The next state is also an s state, with ` = 0, so it too can hold two electrons.

• The next state is a p state, with ` = 1. This is 2`+ 1 = 3-fold degenerate, and can hold six

(= 3× 2) electrons.

• The most stable and non-reacting elements have closed shells, where each energy level is

filled with electrons. The energy gap between filled shells and the next available ‘slot’ is large.

• For example, Z = 2 has 2(1s) electrons, and forms a closed shell. This is Helium.

• The next such atom has Z = 10, with the first shell closed 2(1s), as well as the second (2(2s)

and 6(2p)) states. This is Neon.
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Addition of angular momenta

Reading material for this chapter: Mandl, Chapter 5

In this chapter we find the resultant angular momentum of a composite system where each compo-

nent of the system has its own angular momentum.

Let Ĵ1, Ĵ2 be two independent angular momenta that satisfy the canonical commutation relation

(CCR):

[Ĵnx, Ĵny] = i~Ĵnz + CPs, [Ĵnx, Ĵ
2
n] = 0, &c.,

where n = 1, 2 labels the subsystems. Because the subsystems are independent, we have

[Ĵ1x, Ĵ2,y] = 0, &c..

This is true for the spins of two particles. It is also true for a spin and an orbital angular momentum,

since these operators act on different degrees of freedom.

We define a total angular momentum

Ĵ := Ĵ1 ⊗ I2 + I1 ⊗ Ĵ2,

which acts on tensor products of the composite system.

Example: Consider again a composite system formed from two uncharged spin-1/2 Fermions. Re-

call the singlet state, which has one spin-up component and one spin-down component, in an

antisymmetric form:

|Singlet〉 = |+, 1〉|−, 2〉 − |−, 1〉|+, 2〉,

or, in matrix representation,

|1, 2〉 =

(
1

0

)
1

⊗

(
0

−1

)
2

−

(
0

−1

)
1

⊗

(
1

0

)
2

.
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This is an eigenstate of angular momentum: The angular momentum along the z-direction is given

by the operator

Ĵz = Ĵ1z ⊗ I + I⊗ Ĵ2z,

such that

Ĵz|1, 2〉 =
(

Ĵ1z ⊗ I + I⊗ Ĵ2z

)[( 1

0

)
1

⊗

(
0

−1

)
2

−

(
0

−1

)
1

⊗

(
1

0

)
2

]
,

=
(

Ĵ1z ⊗ I
)[( 1

0

)
1

⊗

(
0

−1

)
2

−

(
0

−1

)
1

⊗

(
1

0

)
2

]
(
I⊗ Ĵ2z

)[( 1

0

)
1

⊗

(
0

−1

)
2

−

(
0

−1

)
1

⊗

(
1

0

)
2

]

=

[
Ĵ1z

(
1

0

)
1

]
⊗

(
0

−1

)
2

−

[
Ĵ1z

(
0

−1

)
1

]
⊗

(
1

0

)
2

,(
1

0

)
1

⊗

[
Ĵ2z ⊗

(
0

−1

)
2

]
−

(
0

−1

)
1

⊗

[
Ĵ2z

(
1

0

)
2

]
,

=
~
2

(
1

0

)
1

⊗

(
0

−1

)
2

+
~
2

(
0

−1

)
1

⊗

(
1

0

)
2

− ~
2

(
1

0

)
1

⊗

(
0

−1

)
2

− ~
2

(
0

−1

)
1

⊗

(
1

0

)
2

,

= 0,

= 0|1, 2〉.

Thus, the composite state has zero total angular momentum along the z-direction. Note also, that

using formal tensor-product notation is very cumbersome, so instead, we will be more informal, and

use notation such as

Ĵ := Ĵ1 + Ĵ2,

for the tensor-product operator.

Having defined the addition of angular-momentum operators, Ĵ := Ĵ1 + Ĵ2, note that {Ĵx, Ĵy, Ĵz}
satisfy the CCR:

[Ĵx, Ĵy] = i~Ĵz + CPs.

Note also the existence of a square operator:

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z,
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that satisfies

[Ĵ2, Ĵz] = 0, &c.

We also have

[Ĵ2, Ĵ2
1] = [Ĵ2, Ĵ2

2].

As a consequence of these commutation relations, the results of Ch. 17 apply: {Ĵz, Ĵ2} are simul-

taneously diagonalisable, Ĵ2 has eigenvalues J(J + 1), where J is integral or half-integral, and Ĵz

has eigenvalues M , where

M = −J,−J + 1, · · · , J − 1, J.

We have not yet been able to determine what are the allowed values of J . We do this now. The

result is called the angular momentum addition theorem.

Theorem 19.1 Let Ĵ1, Ĵ2 be two independent angular momenta that satisfy the CCR, and let j1

and j2 be the eigenvalues of Ĵ
2

1 and Ĵ
2

2, respectively. Form the sum

Ĵ = Ĵ1 + Ĵ2.

Then the eigenvalues of Ĵ
2

take only discrete values ~2J(J + 1),

J = |j1 − j2|, |j1 − j2|+ 1, . . . j1 + j2.

Proof: Observe that the composite system possesses two complete sets of commutating observables:

1. The set {Ĵ2
1, Ĵ

2
2, Ĵ1z, Ĵ2z} is a maximally commuting set with a simultaneous basis of eigen-

vectors given by tensor products

{|j1,m1〉|j2,m2〉}(j1,j2,m1,m2),

where m1 = −j1, · · · , j1 &c. We will also denote this basis by

|j1,m1〉|j2,m2〉 ≡ |j1,m1; j2,m2〉.

2. The set {Ĵz, Ĵ2, Ĵ2
1, Ĵ

2
2} is also a maximally commuting set, with a simultaneous basis of

eigenvectors

{|j1, j2, J,M〉}(j1,j2,J,M).

Note that the two maximally commuting sets are incompatible. Basis (1) implies the completeness
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relation ∑
m1

∑
m2

|j1,m1; j2,m2〉〈j1,m1; j2,m2| = I,

while basis (2) implies the relation

∑
J

∑
M

|j1, j2, J,M〉〈j1, j2, J,M | = I.

Thus,

|j1, j2, J,M〉 =
∑
m1

∑
m2

〈j1,m1; j2,m2|j1, j2, J,M〉|j1,m1; j2,m2〉.

We call

C(j1, j2,m1,m2; J,M) := 〈j1,m1; j2,m2|j1, j2, J,M〉

the Clebsh–Gordon coefficient.

Now C(j1, j2,m1,m2; J,M) = 0 unless M = m1 +m2. For, by definition, Ĵz = Ĵ1z + Ĵ2z, hence(
Ĵz − Ĵ1z − Ĵ2z

)
|j1, j2, J,M〉 = 0.

We pair this with the 〈j1,m1; j2,m2|:

0 = 〈j1,m1; j2,m2|
(

Ĵz − Ĵ1z − Ĵ2z

)
|j1, j2, J,M〉,

= ~(M −m1 −m2)〈j1,m1; j2,m2|j1, j2, J,M〉,

= ~(M −m1 −m2)C(j1, j2,m1,m2; J,M),

which forces C = 0 unless M = m1 + m2. Thus, the maximum possible value of M is j1 + j2,

which coincides with the maximum possible value of J ,

max(J) = j1 + j2.

Note that there are (2j1 + 1) possible m1-values, and (2j2 + 1) possible m2-values. Thus, the

dimension of the vector space is (2j1 + 1)(2j2 + 1), and there are (2j1 + 1)(2j2 + 1) possible kets:

|j1,m1; j2,m2〉

(these are the type-1 kets from the first CSCO). However,

|j1, j2; J,M〉(j1,j2,J,M)

is an equally good basis, so there must be (2j1 + 1)(2j2 + 1) kets of this form, too (type 2). For
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each J value there are 2J + 1 type-2 kets. Thus, there are

∑
J allowed

2J + 1

type-2 kets, or
j1+j2∑
Jmin

2J + 1

type-2 kets. But the number of type-1 and type-2 kets is the same:

j1+j2∑
Jmin

2J + 1 = (2j1 + 1)(2j2 + 1).

The only solution to this equation is

Jmin = |j1 − j2|.

This concludes the proof.

Note: There is a general method for computing the Clesbsh–Gordon coefficients, but it is very

unwieldy. For small-angular-momentum quantum numbers, the addition can be done in an intuitive

fashion. We have already seen how to combine orbitals to obtain the angular momentum states of

a pair of spin-1/2 fermions. We now look at a similar example.

Example: An electron bound to a nucleus is in an p state. Compute its total angular momentum.

Solution: The p state corresponds to ` = 1. Thus, we must add the orbital angular momentum L̂

with the spin angular momentum Ŝ and obtain a total angular momentum Ĵ.

Two possibilities for J : J = 3/2 OR J = 1/2.

Consider case 1 first, J = 3/2. Then, the top state had M = m1 + m2 = 3/2, which implies

sz = 1/2 and `z = 1. The only way for this to happen is for the electron to be spin up along the

z-axis, and for the projection of orbital angular momentum along the z-axis to be positive. Thus,

this state has the ket

|J = 3/2,M = 3/2〉 = |+〉Y1,1(θ, ϕ).

To obtain lower states, act on this with the ladder operator

J− = S− ⊗ IL + Is ⊗ L−,
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where

S−|+〉 = |−〉, S−|−〉 = 0,

and where

L−Y1,1 =
√

2Y1,0,

L−Y1,0 =
√

2Y1,−1,

L−Y1,−1 = 0.

Thus,

|3/2,M = 1/2〉 ∝ J− [|+〉Y1,1] ,

= |−〉Y1,1 +
√

2|+〉Y1,0.

Normalise:

|3/2,M = 1/2〉 = 1√
3

[
|−〉Y1,1 +

√
2|+〉Y1,0

]
.

Act again on this state with the lowering operator:

|3/2,M = −1/2〉 ∝ |−〉L−Y1,1 +
√

2|−〉Y1,0 +
√

2|+〉L−Y1,0,

=
√

2|−〉Y1,0 +
√

2|−〉Y1,0 + 2|+〉Y1,−1,

= 2
√

2|−〉Y1,0 + 2|+〉Y1,−1.

Normalise:

|3/2,M = −1/2〉 = 1√
3

[√
2|−〉Y1,0 + |+〉Y1,−1

]
.

To find the bottom state we can act with the lowering operator again, or note simply that in this

state, ms = −1/2, and m` = −1, hence,

|3/2,M = −3/2〉 = |−〉Y1,−1.
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To find the J = 1/2 eigenstates, we start with the top state, with M = 1/2. In this state, ms = 1/2

and m` = 0 OR ms = −1/2 and m` = 1. Thus,

〈1/2,M = 1/2| =〉α|+〉Y1,0 + β|−〉Y1,1,

and this state has no overlap with the other state built out of these product vectors:

〈3/2, 1/2|3/2, 1/2〉 = 0,

or [√
2〈+|Y1,0 + 〈−|Y1,1

]
[α|+〉Y1,0 + β|−〉Y1,1] = 0,

hence

β = −α
√

2,

and

|1/2, 1/2〉 = 1√
3

[
|+〉Y1,0 −

√
2|−〉Y1,1

]
,

which is normalised.

Finally, the bottom state can be found using the lowering operator:

|1/2,−1/2〉 ∝ |−〉Y1,0 + |+〉L−Y1,0 −
√

2|−〉L−Y1,1,

= |−〉Y1,0 +
√

2|+〉Y1,−1 −
√

2
√

2|−〉Y1,0,

= −|−〉Y1,0 +
√

2|+〉Y1,−1,

such that

|1/2,−1/2〉 = 1√
3

[√
2|+〉Y1,−1 − |−〉Y1,0

]
,

which is normalised and orthogonal to |3/2,−1/2〉:

〈3/2,−1/2|1/2,−1/2〉 = 0.

In this course, you will only encounter simple problems like this one, where the angular momentum

states can be worked out intuitively.
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Time-independent perturbation theory:

non-degenerate case

Reading material for this chapter: Mandl, Chapter 7

20.1 The idea

In this section we focus again on solving the Schrödinger equation for time-independent systems.

Recall that such systems reduce to an eigenvalue problem for the energy:

Ĥ|ψ〉 = E|ψ〉. (20.1)

There are not many such problems that are exactly solvable. In fact, in this course we have

considered most of them. Thus, it is helpful to consider approximate methods for general problems

of the type (20.1)

The first such method we consider is time-independent perturbation theory, in the non-degenerate

setting. Suppose that the problem

Ĥ0|φ〉 = E(0)|φ〉

is exactly solvable, with a discrete spectrum

E = E
(0)
1 , E

(0)
2 , · · · ,

that is non-degenerate:

E
(0)
i = E

(0)
j =⇒ i = j;
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in other words,

E
(0)
i = E

(0)
j =⇒ |E(0)

i 〉 = |E(0)
j 〉.

For definiteness, assume that the eigenvectors are the kets {|φn〉}∞n=1. We now focus on solving the

perturbed problem

Ĥ|ψn〉 = En|ψn〉, Ĥ = Ĥ0 + λV,

where λ is a small dimensionless parameter. If the perturbation is ‘nice’, and we assume it is,

then the Hilbert space for the unperturbed and perturbed problems is the same:

H(Ĥ0) = H(Ĥ).

Thus, by the completeness property of the basis {|φn〉}∞n=1, we may expand the solution |ψn〉 of the

perturbed problem in terms of a known set of states. This is the subject of this chapter.

20.2 The method

We are to solve

Ĥ|ψn〉 = En|ψn〉, Ĥ = Ĥ0 + λV,

given that λ is a small parameter. We pose the series solution

En =
∞∑
p=0

λpenp,

|ψn〉 =
∞∑
p=0

λp|φnp〉.

We assume wlog that the states |φn1〉, |φn2〉, · · · are orthogonal to the nth eigenstate of the unper-

turbed problem:

〈φn|φn1〉 = 〈φn|φn2〉 = · · · = 0.

Next, we substitute our trial solution into the eigenvalue problem:

(Ĥ0 + λV )|ψn〉 = (Ĥ0 + λV )
∞∑
p=0

λp|φnp〉,

= En|ψn〉,

=

(
∞∑
p=0

λpenp

)(
∞∑
p=0

λp|φnp〉

)
.
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In other words,

(Ĥ0 + λV )
∞∑
p=0

λp|φnp〉 =

(
∞∑
p=0

λpenp

)(
∞∑
p=0

λp|φnp〉

)
.

This is a power-series identity in λ; the identity must hold term-by-term.

We examine the zeroth-order term:

Ĥ0|φn0〉 = en0|φn0〉.

Thus, |φn0〉 = |φn〉 and en0 = E
(0)
n , and the zeroth-order problem is exactly the same as the

unperturbed problem.

Next, we examine the first-order term:

λĤ0|φn1〉+ λV |φn0〉 = λen0|φn1〉+ λen1|φn0〉.

Dividing out by λ and using the information about the zeroth-order terms, this becomes

Ĥ0|φn1〉+ V |φn〉 = E(0)
n |φn1〉+ en1|φn〉.

Re-arrange: (
Ĥ0 − E(0)

n

)
|φn1〉 = (−V + en1) |φn〉.

We take the scalar product of this identity with |φn〉:

〈φn|
(
Ĥ0 − E(0)

n

)
|φn1〉 = 〈φn| (−V + en1) |φn〉.

Consider the LHS. The operator Ĥ0 is Hermitian, so we can choose for it to operate on the bra

instead of the ket. But the bra is an eigenstate of Ĥ0, so the identity becomes

〈φn|
(
E(0)
n − E(0)

n

)
|φn〉 = 0 = 〈φn| (−V + en1) |φn〉.

In other words,

en1 = 〈φn|V |φn〉,

and

En = E(0)
n + λ〈φn|V |φn〉+O(λ2).



152 Chapter 20. Time-independent perturbation theory: non-degenerate case

To compute the corrected state vector, we consider the identity(
Ĥ0 − E(0)

n

)
|φn1〉 = (−V + en1) |φn〉

again. Take its scalar product with 〈φp|, with p 6= n. Thus,

〈φp|
(
Ĥ0 − E(0)

n

)
|φn1〉 = 〈φp| (−V + en1) |φn〉

We expand the correction |φn1〉 in terms of the basis elements |φn〉:

|φn1〉 =
∑
n6=p

Anp|φp〉.

Combining the last two equations, we have

〈φp|
(
Ĥ0 − E(0)

n

)(∑
n6=q

Anq|φq〉

)
= 〈φp| (−V + en1) |φn〉,(

E(0)
p − E(0)

n

)∑
n 6=q

Anq〈φp|φq〉 = −〈φp|V |φn〉,

Anp
(
E(0)
p − E(0)

n

)
= −〈φp|V |φn〉,

Anp = − 〈φp|V |φn〉
E

(0)
p − E(0)

n

, p 6= n.

Thus,

|φn1〉 =
∑
n 6=p

Anp|φp〉,

=
∑
n6=p

〈φp|V |φn〉
E

(0)
n − E(0)

p

|φp〉,

|ψn〉 = |φn〉+ λ|φn1〉+O(λ2),

and

|ψn〉 = |φn〉+ λ
∑
n6=p

〈φp|V |φn〉
E

(0)
n − E(0)

p

|φp〉+O(λ2).

We pass on to second-order perturbation theory, and derive the corrected energy only. At second

order, the power series in λ yields

λ2Ĥ0|φn2〉+ λ2V |φn1〉 = λ2en2|φn0〉+ λen1|φn1〉+ λ2en0|φn2〉.
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We divide out by λ2 and use the information supplied by the zeroth-order theory. The result is

Ĥ0|φn2〉+ V |φn1〉 = en2|φn〉+ en1|φn1〉+ E(0)
n |φn2〉.

Re-arrange: (
Ĥ0 − E(0)

n

)
|φn2〉 = en2|φn〉+ (en1 − V ) |φn1〉.

Take the scalar product with |φn〉. The result is

0 = en2 + 〈φn| (en1 − V ) |φn1〉. (∗)

Now use the information from the first-order theory. For example,

〈φn|en1|φn1〉 = en1〈φn|φn1〉,

= en1〈φn|

(∑
n 6=p

〈φp|V |φn〉
E

(0)
n − E(0)

p

|φp〉

)
,

= 0.

Hence, Eq. (*) becomes

en2 = 〈φn|V |φn1〉.

We use the first-order theory again:

en2 = 〈φn|V

(∑
n6=p

〈φp|V |φn〉
E

(0)
n − E(0)

p

|φp〉

)
,

=
∑
n6=p

〈φp|V |φn〉
E

(0)
n − E(0)

p

〈φn|V |φp〉,

=
∑
n6=p

|〈φp|V |φn〉|2

E
(0)
n − E(0)

p

.

Thus, to second order in perturbation theory,

En = E(0)
n + λ〈φn|V |φn〉+ λ2

∑
n6=p

|〈φp|V |φn〉|2

E
(0)
n − E(0)

p

+O(λ3).

Note: We require the corrections to the energy to be small, since λ is a small parameter. Typically,

the first-order correction to the energy is small. For the first-order correction to the wavefunction
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to be small, we require that

|λ〈φp|V |φn〉| � |E(0)
n − E(0)

p |, for all n 6= p.

If this is not the case, then the perturbation theory breaks down.

20.3 Example of nondegenerate perturbation theory

The Hamiltonian for a harmonic oscillator at frequency ω is the following:

Ĥ0 = − ~2

2m
∂2
x = 1

2
mω2x2.

Consider instead a particle that experiences an anharmonic potential, such that its Hamiltonian is

shifted to a new form:

Ĥ = Ĥ0 + qx4.

Identify a dimensionless parameter λ for the problem and compute the anharmonic correction to the

ground-state energy assuming this parameter is small.

Solution: We have the eigenvalue problem

− ~2

2m

∂2ψ

∂x2
+ 1

2
mω2x2ψ + qx4ψ = Eψ.

Multiply up by 2m/~2:

−∂
2ψ

∂x2
+
m2ω2

~2
x2 +

2mq

~2
x4ψ =

(
2mE/~2

)
ψ.

Each term now has dimensions of [Length]−2 [ψ]. Focus on the second term. We have,

1

[Length]2
=

[
m2ω2

~2

]
[Length]2.

We identify a length scale a:
1

a2
=
m2ω2

~2
a2,

or

a =

√
~
mω

.

We re-write the oscillator equation as

−∂
2ψ

∂x2
+
x2

a4
ψ +

2mq

~2
x4ψ =

(
2mE/~2

)
ψ,
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or

−∂
2ψ

∂x2
+
x2

a4
ψ +

2mqa6

~2

x4

a6
ψ =

(
2mE/~2

)
ψ,

Hence, we identify

λ =
2mqa6

~2
=

2mq

~2

~3

m3ω3
=

2q~
m2ω3

.

In other words,

q = λ

(
m2ω3

2~

)
,

and the perturbed problem to solve is

− ~2

2m

∂2ψ

∂x2
+ 1

2
mω2x2ψ + λ

(
m2ω3

2~

)
x4ψ = Eψ.

We therefore identify

V :=

(
m2ω3

2~

)
x4.

It is easy to check that this has dimensions of energy:[
m2ω3

2~
x4

]
=
M2T−3L4

ML2T−1
= ML2T−2 = [Energy] .

Thus, perturbation theory is valid provided the parameter λ is small:

λ :=
2q~
m2ω3

� 1.

The lowest-order correction to the ground-state energy of the oscillator is given by

E0 = 1
2
~ω + λ∆E,

where

∆E = 〈ψ0|V |ψ0〉,

and where |ψ0〉 is the ground state of the associated harmonic oscillator. In the position repre-

sentation,

ψ0(x) =

√
1√
πa
e−x

2/2a2 , a =

√
~
mω

.



156 Chapter 20. Time-independent perturbation theory: non-degenerate case

Hence,

λ∆E = λ
m2ω3

2~
1√
πa

∫ ∞
−∞

x4e−x
2/a2dx,

=
m2ω3

2~
1√
π
a4

∫ ∞
−∞

s4e−s
2

ds,

=
2q~
m2ω3

m2ω3

2~
a4

(
1√
π

∫ ∞
−∞

s4e−s
2

ds

)
,

= qa4I,

where I is just a pure number which we determine now. Consider

J(γ) =

∫ ∞
−∞

e−γs
2

ds =
√
π/γ.

Hence,

dJ

dγ
= −1

2

√
πγ−3/2 = −

∫ ∞
−∞

s2e−γs
2

ds.

Similarly,
d2J

dγ2
= 3

4

√
πγ−5/2 =

∫ ∞
−∞

s4e−γs
2

ds.

Setting γ = 1 here gives

3
4

√
π =

∫ ∞
−∞

s4e−γs
2

ds,

hence, the integral I has the value 3/4, and

E0 = 1
2
~ω + 3

4
qa4 +O(λ2).

Note: We have been very careful here in specifying a dimensionless parameter λ and in constraining

it to be small before doing any calculations. Technically, this is essential. However, in practical

applications, we simply go to the last step; then, we would solve this problem simply by writing

down the relation

E0 = ~ω + 〈ψ0|qx4|ψ0〉+ · · · .

This is what we will do from now on.
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The second order

For mischief1, we go to second order in the perturbation theory, wherein the next correction to the

ground-state energy is the following:

E
(2)
0 = q2

∞∑
p=1

|〈φp|x4|φ0〉|2

−~ωp
.

We consider the following integral:

Ip =

∫ ∞
−∞

φpx
4φ0 dx, p 6= 0,

= NpN0

∫ ∞
−∞

Hp(x/a)e−x
2/a2x4 dx,

= NpN0

∫ ∞
−∞

Hp(s)e
−s2s4 ds.

But consider

H4(s) = 16s4 − 48s2 + 12,

H2(s) = 4s2 − 2,

H0(s) = 1.

Thus,

s4 = 1
16
H4(s) + 3

4
H2(s) + 3

4
H0(s).

Thus,

Ip = NpN0a
5

∫ ∞
−∞

Hp(s)
[

1
16
H4(s) + 3

4
Hs(s) + 3

4
H0(s)

]
ds,

= NpN0a
5
(

1
16

4!24
√
πδp,4 + 3

4
2!22
√
πδp,2 + 0

)
.

1Going to high order in perturbation theory is sometimes fruitless as well as mischievous. The reason is because
it is not known a priori what is the radius of convergence of the power-series expansions. A strange heuristic is
the following: given a complex-valued function f(z) analytic on a disc D of radius R, it is sometimes possible to
approximate f(z) by a truncated Taylor series even outside of the disc D. The approximation becomes poorer as
more terms are added to the (divergent) series. Therefore, outside the radius of convergence of the perturbation
theory, a low-order expansion can give some information about the energy spectrum, while a higher-order expansion
gives less information.
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Now,

E
(2)
0 = q2

∞∑
p=1

I2
p

−~ωp
,

= q2

∞∑
p=1

(−~ωp)−1 [NpN0a
5
(

1
16

4!24
√
πδp,4 + 3

4
2!22
√
πδp,2

)]2
,

and the only terms that survive in the sum are at p = 4 and p = 2, for which we have

N4N0a
5
(

1
16

4!24
√
π
)

= a5

(
1√
4!24

1

π1/4

1

a1/2

)(
1

π1/4

1

a1/2

)(
1
16

4!24
√
π
)
,

=

√
4!

24
a4,

and

N2N0a
5
(

3
4
2!22
√
π
)

= a5

(
1√
2!22

1

π1/4

1

a1/2

)(
1

π1/4

1

a1/2

)(
3
2
2!22
√
π
)
,

= 3

√
2!

22
a4.

Combine:

1

2~ω
I2

2 +
1

4~ω
I2

4 =
1

2~ω

(
4!

24
a8

)
+

1

4~ω

(
9× 2!

22
a8

)
,

= −21
8

a8

~ω
.

Hence,

E0 = ~ω + 3
4
qa4 − 21

8

a8

~ω
+O(q3).



Chapter 21

Time-independent perturbation theory:

degenerate case

Reading material for this chapter: Mandl, Chapter 7

21.1 Overview

In this chapter we continue with the time-independent perturbation theory, this time for cases where

the eigenvalues of energy are degenerate. The problem to solve is therefore modified from that in

Ch. 20: We start with the exactly-solvable problem

Ĥ0|φ〉 = E(0)|φ〉

with a discrete spectrum

E = E
(0)
1 , E

(0)
2 , · · · ,

The nth energy level is assumed to be s-fold degenerate, with eigenvectors

|un1〉, · · · , |uns〉,

such that

〈unα|unβ〉 = δαβ, α, β = 1, . . . , s.

It is required to compute the changes to the nth energy level due to the presence of a perturbation,

Ĥ0 → Ĥ := Ĥ0 + λV,

where λ is a small dimensionless parameter.

159
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It is not obvious a priori that the degeneracy will remain in place once the perturbation is added to

the problem. Thus, we assume that the energy level E
(0)
n splits into s new levels:

Eni = E(0)
n + λE

(1)
ni + λ2E

(0)
ni + · · · , i = 1, · · · , s.

Associated with each new energy level, there is an eigenvector:

|ψni〉 = |φni〉+ λ|φ(1)
ni 〉+ λ2|φ(2)

ni 〉+ · · · ,

where the states on the right-hand side are to be determined.

21.2 The solution

We focus on finding two quantities:

• The first-order correction to the energy, Eni = E
(0)
n + λE

(1)
ni ;

• The zeroth-order perturbed state: |ψni〉 = |φni〉+O(λ).

As before, we focus first of all on the zeroth-order expansion in the problem(
Ĥ0 + λ

) [
|φni〉+ λ|φ(1)

ni 〉
]

=
(
E(0)
n + λE

(1)
ni

) [
|φni〉+ λ|φ(1)

ni 〉
]
,

or

Ĥ0|φni〉 = E(0)
n |φni〉.

Now we go over to the first-order term:

Ĥ0|φ(1)
ni 〉+ V |φni〉 = E(0)

n |φ
(1)
ni 〉+ E

(1)
ni |φni〉.

Re-arranging gives (
Ĥ0 − E(0)

n

)
|φ(1)
ni 〉 =

(
E

(1)
ni − V

)
|φni〉.

This is similar to the result in the non-degenerate case. However, one key difference is that now we

do NOT know what the state |φni〉 is. We now determine it, and hence determine the first-order

corrections to the energy. Certainly, the state |φni〉 is a mixture of the eigenstates of the unperturbed

problem:

|φni〉 =
s∑

α=1

Ciα|unα〉.
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Thus, it suffices to determine the Ciα’s. We go back to the first-order equation:(
Ĥ0 − E(0)

n

)
|φ(1)
ni 〉 =

(
E

(1)
ni − V

)
|φni〉,

or (
Ĥ0 − E(0)

n

)
|φ(1)
ni 〉 =

(
E

(1)
ni − V

)( s∑
α=1

Ciα|unα〉

)
.

We take the scalar product of both sides with the bra 〈unβ|. Certainly 〈unβ|
(
Ĥ0 − E(0)

n

)
= 0,

hence

0 = 〈unβ|
(
E

(1)
ni − V

)( s∑
α=1

Ciα|unα〉

)
,

=

(
s∑

α=1

Ciα〈unβ|

)(
E

(1)
ni − V

)
|unα〉,

=
s∑

α=1

Ciα

[
E

(1)
ni δαβ − 〈unβ|V |unα〉

]
,

=
s∑

α=1

Ciα

[
E

(1)
ni δαβ − Vβα

]
Thus, we have a set of s homogeneous equations:

s∑
α=1

C1α

[
E

(1)
n1 δαβ − Vβα

]
= 0,

...
...

s∑
α=1

Csα
[
E(1)
ns δαβ − Vβα

]
= 0.

However, this is identical to s copies of the problem

[
E

(1)
ni Is×s − V

]
Ci1

. . .

Cis

 = 0,

which is an eigenvalue problem in the eigenvalue Ei
ni. In conclusion,

• The perturbed level-n energies are computed as

Eni = E(0)
n + λ∆Eni, i = 1, · · · , s
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where ∆Eni are the s eigenvalues of the problem

[∆EniIs×s − V ]Ci = 0.

• The perturbed level-n states are computed as

|ψni〉 = |φni〉+O(λ),

where the states |φni〉 are determined from eigenvectors of the problem:

|φni〉 =
n∑

α=1

Ciα|unα〉.

Before looking at an example, consider again the result just derived, namely that the perturbations

to the energy levels are eigenvalues of the problem

|V −∆EniI| = 0, Vαβ = 〈unα|V |unβ〉. (∗)

Suppose we can find a clever basis {|unα〉}sα=1 for the Hamiltonian Ĥ0 that is simultaneously a set

of eigenvectors for V . Then the eigenvalue problem (*) is diagonal, with eigenvalues

∆Eni = 〈uni|V |uni〉, i = 1, · · · , s.

This is guaranteed if (Ĥ0, V ) are compatible:[
Ĥ0, V

]
= 0.

For large problems (s� 1), it is a good idea to find such a clever basis before solving the determinant

problem. It will be a good idea to keep this approach in mind when we consider spin-orbit coupling

in Ch. 22.

Example: Consider a basic system

Ĥ0 =

(
E0 0

0 E0

)
,

to which is added a perturbation

Ĥ0 → Ĥ0 + λ

(
V0 V0

V0 0

)
.
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Show (i) that the basic system is degenerate; (ii) that the perturbation brakes the degeneracy. Hence,

compute the lowest-order correction to the energy, and write down the perturbed eigenstates.

The basic system is degenerate:(
E0 0

0 E0

)(
1

0

)
= E0

(
1

0

)
,(

E0 0

0 E0

)(
0

1

)
= E0

(
0

1

)
.

Hence, the states

|u1〉 =

(
1

0

)
, |u2〉 =

(
0

1

)
,

both have the same energy.

From the theory, the corrections ∆E to this energy are determined by the eigenvalue problem

|∆EI− V | = 0,

where

V11 = 〈u1|V |u1〉 = V0,

V12 = 〈u1|V |u2〉 = V0,

V21 = 〈u2|V |u1〉 = V0,

V22 = 〈u2|V |u2〉 = 0.

Thus, we solve ∣∣∣∣∣ V0 −∆E V0

V0 −∆E

∣∣∣∣∣ = 0. (∗)

Hence,

∆E = V0ϕ±, ϕ± =
1±
√

5

2
.

The perturbation therefore breaks the degeneracy and introduces new energy levels:

E01 = E0 + λV0ϕ+,

E02 = E0 + λV0ϕ−.

The corresponding new energy states are given by the eigenvectors of the problem (*). Up to

normalisation, these are

C1 = (1,−ϕ−) , C2 = (ϕ−, 1) .
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Thus, the perturbed upper state E01 has eigenvector

|ψ01〉 = |u1〉 − ϕ−|u2〉,

up to normalisation, whle the perturbed lower state E02 has eigenvector

|ψ02〉 = ϕ−|u1〉+ |u2〉,

up to normalisation.

Of course, this is a very silly example, because the perturbed system can be solved exactly. It is

readily seen that the exact solution to the perturbed problem is

E01 = E0 + λV0ϕ+,

E02 = E0 + λV0ϕ−,

with eigenvalues

|ψ01〉 =

(
1

−ϕ−

)
,

and

|ψ02〉 =

(
ϕ−

1

)
(up to normalisation). But these are precisely the lowest-order solutions of the perturbed problem.

Thus, we conclude that we have been very lucky, and that the lowest-order degenerate perturbation

theory agrees with the exact solution. It is very rare for this to happen.



Chapter 22

The fine structure of hydrogen

Reading material for this chapter: Mandl, Chapter 7; Young and Freedman, Chapters 28–29

22.1 Classical magnetic moments

Consider a particle of charge Q and mass m doing circular motion of radius r (Fig. 22.1). To an

observer in the lab frame, the particle carries a current, since

Current = I =
Charge in motion

Time
.

The appropriate value of time here is the period of the circular motion:

T =
2π

ω
=

2π

v/r
=

2πr

v
.

Thus,

I =
Qv

2πr
.

We define the magnetic moment as

µ = magnetic moment := Current× Area,

hence

µ = IA =

(
Qv

2πr

)
πr2 =

Qvr

2
.

Note, however, that the particle’s angular momentum is

L = mvr.

165
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Figure 22.1: Classical magnetic-moment vector of a current loop

Thus, the magnetic moment and the angular momentum are proportional:

µ =
Q

2m
L.

Because angular momentum is a vector, we promote the magnetic moment to vector status:

µ =
Q

2m
L,

which is perpendicular to the plane of the motion.

Next, we place the current loop in a uniform magnetic field B. In this exercise, we consider instead

a square current loop, although the principles are the same. The system is shown schematically

in Fig. 22.2. We focus on the highlighted point, and carry out a cross-section in the z − x plane

(Fig. 22.3). Here, the current loop consists of a charged particle (charge dQ) moving at velocity v

in the −y-direction. The particle experiences the Lorentz force dF = dQv ×B, which is in the

positive x-direction:

dF = dQvB, in the positive x direction.

Thus, a torque is exerted on the loop, that causes it to rotate. The torque is

dτ = dF̂ r,

where dF̂ is the projection of the force on to a direction perpendicular to the loop axis. In other

words,

dτ = dFr cosα,
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Figure 22.2: Current loop in a magnetic field

Figure 22.3: Current loop in a magnetic field
(zoom in on a point of interest)

or

dτ = dFr sinφ.

Restoring dQ, this is

dτ = dQvBr sinφ =
dQv

2
Bb sinφ.

Recall the definition of current:

I =
dQ

dt
,

hence

dQ = Idt =
I

v
dx.

Hence, the increment of torque along the top part of the current loop is

dτ =
dQv

2
Bb sinφ = 1

2
IB sinφ dx.

Integrating along the top segment of the loop gives dx → a. However, there is an identical

contribution to the total torque on the loop coming from the opposite wide. Thus, the total torque

on the loop is

IBab sinφ.

But A = ab, hence

τ = IAB sinφ,

or

τ = µB sinφ.

Next, we compute the work done by the magnetic force in rotating the loop through an angular
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Figure 22.4: As a consequence of Ampère’s Law (Maxwell’s equations), a current loop generates a
magnetic field.

increment dφ. This is

dW = F · dx = 2F̂ rdθ.

The factor of 2 comes from the fact that work is done by the force along both lengths of the loop.

Moreover, r = b/2. Hence,

dW = τdφ = µB sinφdφ.

Integrating gives

W (φ2)−W (φ1) = −µB cosφ
∣∣∣φ2
φ1

= −µ ·B
∣∣∣φ2
φ1
,

which implies the existence of a magnetic potential energy

U = −µ ·B.

22.2 Biot–Savart Law

We state without proof the following result: A current loop creates a magnetic field whose sense is

given by the right-hand rule; the magnitude of the field at the centre of the loop is

B =
µ0I

2r

where µ0 is the magnetic constant. This is a simple application of the Biot–Savart Law, which in

turn is a simple consequence of Maxwell’s equations in the static case (See Fig. 22.4).

Consider now a small, charged, ‘spinning particle’ with finite magnetic moment µ that sits at the
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Figure 22.5: The electron bound to a hydrogen atom, viewed in two different frames of reference.
Left: lab frame; right: electron’s rest frame.

centre of a current loop. The particle sees a magnetic field

B =
µ0I

2r
ẑ,

where ẑ is a unit vector perpendicular to the plane of the loop. The particle therefore experiences

a potential

USO = −B · µ.

We apply these ideas to the electron in a hydrogen atom.

22.3 Spin-orbit coupling in the hydrogen atom

In the lab frame, the electron ‘sees’ an electric field from the nucleus. However, if we go over to the

electron’s rest frame, it sees a current loop formed by the now-orbiting positive nucleus (Fig. 22.5).

Thus, in the frame of reference of the electron, there is a magnetic field

B =
µ0I

2r
, I =

e

T
=

e

2π
ω =

e

2πr
v,

hence

B =
µ0

4π

ev

r2
.

The sense of this field is given by

B =
µ0

4π

e

r3
r × v,

B =
µ0

4πme

e

r3
L,
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where L is the angular momentum of the electron as measured in the lab frame. Staying in the

electron’s rest frame, we remind ourselves that it has a finite magnetic moment:

µ = − g

2me

S, g ≈ 2,

and thus, there is a spin–orbit interaction potential:

USO = −µ ·B = +
µ0e

2

4πm2
e

1

r3
L · S.

But

µ0ε0 = c−2,

and this expression can be tidied up:

USO = −µ ·B = +
e2

4πε0r2

1

mec2r
L · S,

or or

USO =
1

mec2

1

r

dU
dr
L · S.

Unfortunately, this is wrong by a factor of two. If we carry out the calculation in a relativistically

correct fashion, we obtain the result

USO =
1

2mec2

1

r

dU
dr
L · S.

Note that this result, derived in the electron’s frame of reference, is exactly the same in the laboratory

frame. We return to this frame and compute the effects of this spin-orbit coupling on the energy

levels of hydrogen.

We consider the following perturbed Hamiltonian for the hydrogen atom:

Ĥ =

(
− ~2

2m
∇2 − e2

4πε0r

)
︸ ︷︷ ︸

=Ĥ0

+ =
1

2mec2

1

r

dU
dr
L · S

(we suppress the hats on the angular momentum operators). The eigenvalues E
(0)
n` of Ĥ0 are

2(2` + 1)-fold degenerate with respect to the orbital angular momentum (quantum number `).

Treating the spin-orbit interaction as small, we must use degenerate perturbation theory. Note that

the unperturbed eigenfunctions

Rn(r)Y`,m`(θ, ϕ)|±〉, (∗)
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do not diagonalise the perturbation USO because this contains a mixture of angular momentum

projections along various axes. However, if we re-write the perturbation as

USO =
1

4mec2

1

r

dU
dr

(
J2 −L2 − S2

)
,

where J = L+ S is the addition of the spin and orbital angular momenta, then the functions

|n, `, s, J,M〉

do diagonalise the perturbation. Here |n, `, s, J,M〉 is an eigenstate of the CSCO {L2,S2,J2, Jz}
got by a linear combination of the functions (*), and by the angular-momentum addition theorem.

Thus, the ‘clever eigenstates’ |uni〉 in the theoretical presentation of degenerate perturbation theory

that diagonalise both Ĥ0 and V are in fact the states |n, `, s, J,M〉. The theoretical formula for

the corrections to the energy levels was

∆E
(1)
ni = λ〈uni|V |uni〉.

Letting |uni〉 → |n, `, s, J,M〉, this is

∆E(n, `, J) = 〈n, `, s, J,M |USO|n, `, s, J,M〉,

or

∆E(n, `, J) =
1

4m2
ec

2
〈`, s, J,M |

(
J2 −L2 − S2

)
|`, s, J,M〉

〈1

r

dU

dr

〉
n`
,

=
~2

4m2c2

[
j(j + 1)− `(`+ 1)− 3

4

] 〈1

r

dU

dr

〉
n`
,

where 〈1

r

dU

dr

〉
n`

denotes the expectation value of r−1U ′(r) with respect to the function Rn`Y`,m`(θ, ϕ). This value

is independent of m` because the operator r−1U ′(r) is independent of ϕ. Carrying out this integral

(homework), we have 〈1

r

dU

dr

〉
n`

=
1

a3
0n

3`(`+ 1)(`+ 1
2
)
,

hence

∆E(n`j) =
1

4m2
ec

2

~2e2

4πε0a3n3

j(j + 1)− `(`+ 1)− 3
4

`(`+ 1)(`+ 1
2
)

,

or
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∆E(n`j) =
|En|
n
α2 j(j + 1)− `(`+ 1)− 3

4

`(`+ 1)(`+ 1
2
)

,

α2 =
e2

4πε0~c
,

En = −1
2

e2

4πε0n2
.

Note that there is no correction to the energy of s-states (` = 0), since then j = s = 1/2, and the

numerator is identically zero. In reality, there is a second O(α2) effect, due to relativistic effects,

wherein the dependence of the electron mass on its velocity is considered. This consideration leads

to a shift in the s-states.

That the energy levels are shifted is called splitting. The splitting is very difficult to see without

precise equipment. Thus, the spin-orbit features of the hydrogen atom are called fine structure

(Fig. 22.6). The small perturbation parameter α is called the fine-structure constant.
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Figure 22.6: Hydrogenic fine structure. Schematic shows effects of spin-orbit coupling and
relativistic-mass effect. Diagram uses spectroscopic notation – the letter is for the total or-
bital angular momentum and the letter with the subscript is for the total (spin+orbital) angular
momentum.



Chapter 23

Variational methods

Reading material for this chapter: Mandl, Chapter 8

23.1 Estimating the ground state of an arbitrary system

In this chapter we develop a neat trick to estimate the ground state of a fairly general system. It is

based on simple integrations and avoids the messy sums involved in perturbation theory.

23.2 The idea

Consider a system described by a Hamiltonian Ĥ, which possesses the complete set of orthonormal

eigenstates |u1〉, |u2〉, · · · , which are unknown. We write down the corresponding energy levels in

an ordered sequence:

E1 ≤ E2 ≤ · · · .

Any state |ψ〉 of the system can be expanded in terms of a sum of these eigenvectors:

|ψ〉 =
∞∑
n=1

cn|un〉.

Hence,
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

=

∑∞
n=1 |cn|2En∑∞
n=1 |cn|2

.

Now the sequence of energy levels is ordered, hence

〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

=

∑∞
n=1 |cn|2En∑∞
n=1 |cn|2

≥
∑∞

n=1 |cn|2E1∑∞
n=1 |cn|2

= E1,

174
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hence

E1 ≤
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

,

for any state |ψ〉 in the Hilbert space of solutions.

Thus, to estimate the ground state energy of the system, we write down a wavefunction ψ(α1, · · · , αs),

which possesses the qualitative features of the correct but unknown ground-state energy, and which

contains several free parameters α1, · · · , αs. Then,

E1 ≤ E(α1, · · · , αs) :=
〈ψ(α1, · · · , αs)|Ĥ|ψ(α1, · · · , αs)〉
〈ψ(α1, · · · , αs)|ψ(α1, · · · , αs)〉

,

for all values of the parameters α1, · · · , αs. By minimising over the parameters α1, · · · , αs, the

upper bound for the ground-state energy can be sharpened:

E1 ≤ min
α1,··· ,αs

E(α1, · · · , αs).

This procedure is called the variational technique.

23.3 The Yukawa potential

Estimate the ground-state energy of a particle experiencing the attractive central potential

U(r) = −g2 e
−Mr

r
,

where g2 and M are positive numbers.

Let’s write down the eigenvalue problem for the potential:

− ~2

2m
∇2ψ − g2

r
e−Mrψ = Eψ.

Multiply up by 2m/~2:

−∇2ψ − 2mg2

~2

e−Mr

r
ψ = (2mE/~2)ψ = −k2ψ.

Identify

a := ~2/mg2.

Thus, the eigenvalue problem is

−∇2ψ − 2

ar
e−Mrψ = −k2ψ.
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Formally, if M = 0, we recover the hydrogen atom. This suggests that the trial function should

look like the hydrogenic ground state, which is

1√
πa3/2

e−r/a.

However, we still need to take care of the exponential term. This term damps the potential to zero

very rapidly, suggesting wavefunctions that are localised very close to the force centre. Thus, we

propose a trial wavefunction that decays to zero more rapidly than the hydrogenic one:

ψ(r) =
α3/2

√
πa3/2

e−αr/a.

We now compute the expectation values, in detail.

First, the kinetic energy. We have

∇2e−αr/a =
1

r2

∂

∂r

(
r2 ∂

∂r
e−αr/a

)
,

=
∂2

∂r2
e−αr/a +

2

r ∂r
e−αr/a,

=

(
α2

a2
− 2α

ra

)
e−αr/a.

In addition, ∫
d3re−2αr/a =

∫ ∞
0

r2dr

∫
Ω

dΩ e−2αr/a,

= 4π

∫ ∞
0

r2e−2αr/adr,

= 4π
( a

2α

)3
∫ ∞

0

u2e−udα,

= 4π
( a

2α

)3

2!,

= π
a3

α3
,
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as well as ∫
d3r

1

r
e−2αr/a =

∫ ∞
0

rdr

∫
Ω

dΩ e−2αr/a,

= 4π

∫ ∞
0

re−2αr/adr,

= 4π
( a

2α

)2
∫ ∞

0

u2e−udα,

= 4π
( a

2α

)2

1!,

= π
a2

α2
.

Hence, ∫
d3r e−αr/a∇2e−αr/a =

∫
d3r e−αr/a

(
α2

a2
− 2α

ra

)
e−αr/a,

=
α2

a2

∫
d3r e−2αr/a − 2α

a

∫
d3r

1

r
e−2αr/a,

=
α2

a2

(
π
a3

α3

)
− 2α

a

(
π
a2

α2

)
,

= −πa
α
.

Thus, the expected value of the kinetic energy in this state is

∫
dd3r

α3/2

√
πa3/2

e−r/a
(
− ~2

2m
∇2

)
α3/2

√
πa3/2

e−r/a = − ~2

2m

α3

πa3

∫
d3r e−αr/a∇2e−αr/a =

~2

2m

α3

πa3

πa

α
=

~2α2

2ma2
.

Next, we compute ∫
d3e−αr/a

e−Mr

r
e−αr/a =

∫
d3 e

−Mr

r
e−2αr/a,

=

∫ ∞
0

r2dr

∫
Ω

dΩ
e−r(M+2α/a)

r
,

= 4π

∫ ∞
0

dr re−r(M+2α/a),

=
4π

(M + 2α/a)2

∫ ∞
0

duue−u,

=
4π

(M + 2α/a)2
.
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and the expected value of the potential energy is therefore

∫
d3r

α3/2

√
πa3/2

e−r/a
(
−g2 e

−Mr

r

)
α3/2

√
πa3/2

e−r/a =

− g2 α
3

πa3

∫
d3r e−2r/a e

−Mr

r
= −g2 α

3

πa3

4π

(M + 2α/a)2
.

Putting it all together, we have

E(α) =
~2α2

2ma2
− 4α3

a3

g2

(M + 2α/a)2
,

=
~2α2

2ma2
− 4α3

a3

g2

4α2

a2

(
1 + Ma

2α

)2 ,

=
~2α2

2ma2
− α

a

g2(
1 + Ma

2α

)2 ,

=
~2α2

2ma2
− α

a

~2

ma

(
1 +

Ma

2α

)−2

, g2 = ~2/ma,

=
~2α2

2ma2
− ~2α

ma2

(
1 +

Ma

2α

)−2

.

Before continuing, it is salutary to check that by setting M = 0 and α = 1, we recover the functional

form for the state of hydrogen:

E(α = 1,M = 0) =
~2

2ma2
− ~2

ma2
= − ~2

2ma2
.

This is indeed the case, since the ground state of hydrogen is

1Ry = 13.6eV = − ~2

2mea2
0

, a0 := Bohr radius.

Thus, our estimate for the ground state of the Yukawa potential is

E(α) =
~2α2

2ma2
− ~2α

ma2

(
1 +

Ma

2α

)−2

.

Next, we minimise E(α) as a function of α. This is just ordinary calculus, but it is tricky. Therefore,

we minimise the function graphically: We introduce an auxiliary function

D(α;µ) = α2 − 2α(
1 + µ

α

)2 , µ = Ma/2,

plot the function D(α) for different values of the parameter µ, and obtain the minimum that way.

Fig. 23.1 shows the curve D(α;µ = 0) and D(α;µ = 0.4). Both curves possess minima. The
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Figure 23.1: Minimisation procedure for computing the ground-state energy of the Yukawa potential.

Figure 23.2: Minimisation procedure for computing the ground-state energy of the Yukawa potential
(continued).

minimum at µ = 0 is at exactly αmin = 1 – precisely the value for a hydrogenic system. The

minimum value of α clearly decreases as µ is increased. The minimum disappears completely at

µ = 0.5. Thus, only for cases below this value can the hydrogenic model be used to construct

bound states. Finally, the parametric dependence of αmin and Dmin on µ is shown in Fig. 23.2. In

conclusion, our estimate for the ground-state energy of the Yukawa system is

E0 ≈
~2

2ma2
D(αmin;µ),

where µ = Ma/2, and where the non-dimensional function D(αmin;µ) is obtained graphically.

Note that D(αmin;µ) < 0 for µ < 1/2: the model ground state is indeed a bound state, provided

M is not too large.
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23.4 Ground state of helium

Helium contains two electrons orbiting a nucleus of two protons and two neutrons. Thus, the nucleus

has charge +2e. We know from the discussion in Ch. 18 that the electrons in a multi-electron atom

occupy single-particle-like states. Thus, we fill the single-particle states of the helium atom with

electrons. The ground state has no orbital angular momentum, and the only electron quantum

number that can vary is therefore the spin. Energy minimisation dictates that both electrons occupy

the ground state, thus they must have opposite spin. Thus, the spin component of the wavefunction

is antisymmetric, and the spatial part is symmetric. The spatial part can therefore be written as

ψ(r1, r2) = ψgs(r1)ψgs(r2).

We have absolutely no idea what ψgs(·) is. In a naive picture, we might assume that the electron

ignores its neighbour altogether, and experiences the bare nuclear charge. Then, the ground-state

wavefunction would he hydrogenic:

ψgs(r) =
Z3/2

√
πa

3/2
0

e−Z|r|/a0 , a0 =
4πε0~2

me2
, Z = 2,

where Z = 2 is the number of positive charges in the nucleus. In this picture, the total ground-state

wavefunction would be

ψ(r1, r2) =
Z3/2

√
πa

3/2
0

e−Z|r1|/a0
Z3/2

√
πa

3/2
0

e−Z|r2|/a0 =
Z3

πa3
0

e−Z(|r1|+|r2|)/a0 .

However, a more sophisticated picture involves taking account of the effect of one electron on the

other. Thus, we imagine that electron B ‘gets in the way’ of electron A, and effectively reduces

the amount of positive charge electron A experiences from interacting with the nucleus. Therefore,

instead of a nuclear charge of Ze, electron A experiences a ‘screened’ nuclear charge αe, where α is

some unknown number between 0 and 2. Thus, our more sophisticated estimate for the ground-state

wavefunction is simply

ψ(r1, r2;α) =
α3

πa3
0

e−α(r1+r1)/a0 ;

note that this state is normalised. We compute the expectation value of the Hamiltonian

Ĥ = − ~2

2m
∇2

1 −
~2

2m
∇2

2 −
Ze2

4πε0r1

− Ze2

4πε0r2

+
e2

4πε0|r1 − r2|

in the state ψ(r1, r2;α) (note the inclusion of the electron-electron interaction term). We have,
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• Kinetic energy term:

〈ψ|
(
− ~2

2m
∇2

1 −
~2

2m
∇2

2

)
|ψ〉 =

~2α2

ma2
0

;

• Potential term (interactions with nucleus):

〈ψ|
(
− Ze2

4πε0r1

− Ze2

4πε0r2

)
|ψ〉 = − 2Ze2

4πε0a0

α;

• Electron-electron interaction term:

〈ψ| e2

4πε0|r1 − r2|
|ψ〉 =

e2

4πε0

(
Z3

πa3
0

)2 ∫ ∫
d3r1 d3r2

1

|r1 − r2|
e−2Z(|r1|+|r2|)/a0 .

The integral is tricky but it can be done analytically. We are left with

〈ψ| e2

4πε0|r1 − r2|
|ψ〉 = 5

4
αRy,

where

1 Ry =
~2

2ma2
0

= 13.6eV.

Putting it all together, we have

E(α) = 〈ψ(r1, r2;α)|Ĥ|ψ(r1, r2;α)〉 =
[
α2 −

(
2Z − 5

8

)]
Ry.

Computing dE/dα = 0 gives

α = Z − 5
16

= Zeff .

The corresponding energy is

E(α = Zeff) = −2
(
Z − 5

16

)2
Ry.

For helium, we have Z = 2, hence

E(α = Zeff) = −2
(

27
16

)2
Ry ≈ −5.7Ry.

The true (measured) ground-state energy is

E0 = −5.81Ry.

Our estimate is true to within 2% – a remarkable agreement! This reinforces the claim made in

Ch. 18 that the electrons in an atom live in states that resemble single-particle states.
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Numerical methods

In this section we develop a numerical method to solve the one-dimensional eigenvalue problem

− ~2

2m

d2ψ

dx2
+ U(x)ψ = Eψ

using the Chebyshev collocation method. Before doing this, we outline the method for a simpler

problem, for which analytical solutions are known.

The following books might help in understanding this last chapter:

• Chebyshev and Fourier spectral methods, J. P. Boyd, Dover Publications (2000). Boyd himself

has put a copy of this on his website and is therefore available for free in pdf form.

• Spectral methods in Matlab, L. N. Trefethen, SIAM Publications (2001).

You will see that this section of the course is more contemporary than others!

24.1 A simpler problem

Consider the equation1

d2f

dy2
= −λf, y ∈ [−L/2, L/2] ,

which is to be solved with vanishing boundary conditions

f(−L/2) = f(L/2) = 0.

1Matlab code: simple.m

182
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This is an eigenvalue problem in the eigenvalue λ. However, we already know the solution: it is

f(y) = fn(y) = sin(
√
λny), λn =

4π2

L2
n2, n = 1, 2, · · ·

or

f(y) = fn(y) = cos(
√
λny), λn =

4π2

L2

(
n+ 1

2

)2
, n = 0, 1, · · ·

where the apparently free parameter λ is now forced to take discrete values, λ = λn.

We are now going to ‘shoot a pigeon with a cannon’, and solve this problem numerically. We are

going to expand the solution in terms of a set of basis functions,

f(y) =
∞∑
n=0

anTn(x), x =
2

L
y,

where {Tn(x)}∞n=0 are a complete set of basis functions on the interval [−1, 1] called the Chebyshev

polynomials:

Tn(x) = cos(n arccos(x)).

Although this does not really look like a polynomial in x, it is!. The first few are shown here:

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1.

For more information on the properties of these functions, you may, in this instance, check out the

Wikipedia article. I can personally vouch for this article since I have contributed to it myself!

Just as {
1, sin

(
2nπ

L
x

)
, cos

(
2nπ

L
x

)}∞
n=1

are a good set of basis functions for periodic functions on an interval [−L/2, L/2], so too are

the Chebyshev polynomials for arbitrary functions on the same interval. Thus, we in expanding

the solution in terms of these exotic functions, instead of familiar sines and cosines, we are taking

into account the fact that the solution is not necessarily periodic. Of course, we must truncate the

expansion in a numerical framework, so we work with the approximate solution

fN(y) =
N∑
n=0

anTn(x).
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There are N+1 undetermined coefficients and two boundary conditions. That leaves N−1 conditions

to obtain. We therefore evaluate the ODE at N − 1 interior points to give N + 1 constraints on

the coefficients:

fN(−L/2) = 0,

d2fN
dy2

∣∣∣
y1

= −λfN(y1),

...
...

d2fN
dy2

∣∣∣
yN−1

= −λfN(yN−1),

fN(+L/2) = 0,

or

N∑
n=0

anTn(−1) = 0,

N∑
n=0

an

(
2

L

)2

T ′′n (x1) = −λ
N∑
n=0

anTn(x1),

...
...

N∑
n=0

an

(
2

L

)2

T ′′n (xN−1) = −λ
N∑
n=0

anTn(xN−1),

N∑
n=0

anTn(+1) = 0.

The interior points are NOT arbitrary: we evaluate at the N − 1 points

x1, x2, · · · , xN−1 = cos
( π
N

)
, cos

(
2
π

N

)
, · · · , cos

(
(N − 1)

π

N

)
;

these are the collocation points.

But now we have a generalised eigenvalue problem:

La = λMa,

where

L =



T0(−1) · · · TN(−1)

(2/L)2T ′′0 (x1) · · · (2/L)2T ′′N(x1)
...

...

(2/L)2T ′′0 (xN−1) · · · (2/L)2T ′′N(xN−1)

T0(+1) · · · TN(+1)


,
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M = −



0 · · · 0

T0(x1) · · · TN(x1)
...

...

T0(xN−1) · · · TN(xN−1)

0 · · · 0


,

and

a = (a0, · · · , an)T .

This is a standard problem, and can be solved using a numerical package, such as ‘eig’ in Matlab.

• Typing

d=eig(L,M);

in Matlab yields the first N + 1 eigenvalues.

• We must then check that the eigenvalues are real (a check for bugs in the code):

plot(imag(d),’o’)

• Having done that, we sort the eigenvalues in increasing order:

d=sort(d);

• Then, we plot the results.

plot(d,’o’)

• Typically, the solver yields an accurate answer only for the first few eigenvalues. Suppose

we want to find the first two eigenvalues accurately. We fix N and compute the first two

eigenvalues. We then increase N and compute the eigenvalues again. We continue increasing

N until the first two eigenvalues do not change upon varying N . The solver is then said to

have converged.

Happily, these solvers such as ‘eig’ tell us the eigenvectors as well as the eigenvalues. Typing

[V,D]=eig(L,M);

gives two (N+1)×(N+1) matrices. The matrix D is diagonal and corresponds to the eigenvalues,
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Figure 24.1: The spectrum of the problem f ′′(y) = −λf(y): comparison between numerical method
and theory. Here N = 100 and L = 2π.

for i=1:(N+1)

d(i)=D(i,i);

end

while the matrix V corresponds to the eigenvectors. Suppose we want to find the leading eigenvector.

We would pick out the leading eigenvalue:

[maxd,imax]=max(d);

(do NOT sort them!). The corresponding eigenvector is

a=V(:,imax),

i.e. the imaxth column of the matrix V . Finally then, our guess for the leading vector is

fN(y) =
n∑
n=0

anTn(x), x =
2

L
y.

The results of implementing this algorithm, with N = 100, are shown in Fig. 24.1. The first ten

numerically-generated modes are shown in the figure (dots), along with the analytical modes: red

lines for λ = (n + 1/2)2, and black lines for λ = n2 (Here L = 2π). The two calculations agree

exactly. I have also picked out the first two modes and computed the corresponding eigenfunctions

(Fig. 24.2)2. These eigenfunctions are ψ = cos(y/2) (lowest), and ψ = sin(y) (second lowest).

Again, the exact calculation and the numerical calculation agree very well. In the next section, we

answer the question, ‘how well?’

2Matlab code: make_eigenfunction_simple.m
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(a) (b)

Figure 24.2: The first two eigenfunctions of the problem f ′′(y) = −λf(y). Here N = 100 and
L = 2π.

24.2 Exponential convergence

In this section we examine some numerical issues surrounding the Chebyshev collocation method.

So far we have been quite casual in our use of nomenclature. For definiteness, we work on the

interval [−1, 1]. We start with the operator problem

Lf = λMf,

and construct the approximate solution

f(y) ≈ fN(y) =
N∑
n=0

anTn(x), x ∈ [−1, 1] .

Until now, we have called this a truncation, although really it is an interpolation. Let’s see why

the latter label is more appropriate.

First, recall the following result, due to Lagrange:

Theorem 24.1 Let f(x) be some function whose value is known at the discete points x0, x1, · · · , xN .

Then there exist polynomials C0(x), C1(x), · · · , CN(x) such that the function

PN(x) =
N∑
i=0

f(xi)Ci(x)

agrees with f(x) at the points x0, x1, · · · , xN :

PN(xi) = f(xi), i = 0, 1, · · · , N.
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Proof: Take

Ci(x) =
N∏

j=0,j 6=i

x− xj
xi − xj

.

Noting that

Ci(xk) = δik,

the result follows. This result establishes the existence of interpolating polynomials, but does not

tell us which ones are best. It turns out that the Chebyshev polynomials are among the better

polynomials, and that the non-uniform Chebyshev grid is best. In what follows, we explain why.

For illustration purposes, consider the problem Lf = λMf where boundary conditions are not

important. We pose the interpolation approximation

fN(x) = 1
2
b0T0(x) +

N−1∑
n=1

bnTn(x) + 1
2
bNTN(x)

We impose the condition that fN(x) and f(x) agree exactly at the points x0, x1, · · · , xN . We do

not know the value of f(x), but we do know the differential equation it solves. Thus, we have

LfN(xk) = λMfN(xk), k = 0, 1, · · ·N.

Then the following theorem holds:

Theorem 24.2 Let the interpolation grid be given by

xk = cos(kπ/N), k = 0, 1, · · ·N.

Let fN(x) be the interpolating polynomial of degree N which interpolates to f(x) on this grid:

fN(x) = 1
2
b0T0(x) +

N−1∑
n=1

bnTn(x) + 1
2
bNTN(x).

Finally, let {αn}n be the coefficients of the exact expansion of f(x) in Chebyshev polynomials:

f(x) = 1
2
α0T0(x) +

∞∑
n=1

αnTn(x)

Then,

bn =
2

N

[
1
2
f(x0)Tn(x0) +

N−1∑
k=0

f(xk)Tn(xk) + 1
2
f(xN)Tn(xN)

]
,
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which leads to the following bound:

|f(x)− fN(x)| ≤ 2
∞∑

n=N+1

|αn|.

Unfortunately, the proof of this theorem is beyond the scope of this course. Happily, however, we

can prove the following corollary:

Theorem 24.3 If the problem Lf = λMf is analytic, then the convergence of the interpolation

approximation in Theorem 24.2 is exponential.

Proof: If there are no singularities in the problem Lf = λMf , then a power-series solution is

possible, with finite radius of convergence. Continuing the power series into the complex plane gives

a solution that has derivatives of all order. Thus, we may assume that

|f (p)(x)| ≤Mp,

where the bound is independent of x ∈ [−1, 1].

Next, we note that a Chebyshev series is but a Fourier series in disguise! For, let θ = arccos(x).

Then,

f(x) = 1
2
α0 +

∞∑
n=1

αnTn(x) = 1
2
α0 +

∞∑
n=1

αn cos(nθ).

Differentiating both sides p times w.r.t. θ gives

∞∑
n=1

αnn
p<
(
ipeinθ

)
=
dpf

dθp
.

But note:

df

dθ
=

dx

dθ

df

dx
= − sin θ

df

dx
,

d2f

dθ
= sin2 θ

d2f

dx2
− cos θ

df

dx
,

and so on, implying that |dpf/dθp| ≤ M̃p, where the bound is independent of θ or x. Hence,∣∣∣∣∣
∞∑
n=0

αnn
p<
(
ipeinθ

)∣∣∣∣∣ ≤ M̃p,

and this is a convergent series. It follows that the general term tends to zero:

lim
n→∞

|αn|np = 0.
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At worst,

|αn| ≤ Ae−γn
δ

, n→∞,

for some positive parameters A and γ, and δ that are independent of n. Hence, there exists N0 ∈ N
such that

|αn| < Ae−γn
δ

, for all n > N0.

Returning to the bound in the Theorem 24.2, we have

|f(x)− fN0(x)| ≤ 2
∞∑

n=N0+1

|αn|,

≤ 2A
∞∑

n=N0+1

e−γn
δ

,

≤ 2Ae−γ(N0+1)δ
∞∑
r=0

e−γr
δ

,

≤ Be−γN
δ
0

The error is thus proportional to e−γN
δ
0 and we therefore say that the Chebyshev collocation method

converges exponentially. Typically, this result generalises to situations where the boundary con-

ditions are built in to the interpolation coefficients.

24.3 The Schrödinger equation

We return to the Schrödinger equation

− ~2

2m

d2ψ

dx2
+ U(x)ψ = Eψ.

As usual, we multiply up by 2m/~2:

−d
2ψ

dx2
+

2m

~2
U(x)ψ =

(
2mE/~2

)
ψ.

We are going to assume that there is typical value of the potential energy, such that

U(x) = U0υ(x),

such that υ(x) is a dimensionless shape function. Thus,

−d
2ψ

dx2
+

2mU0

~2
υ(x)ψ =

(
2mE/~2

)
ψ.



24.3. The Schrödinger equation 191

Now
1

a2
= +

2mU0

~2

defines a typical lengthscale a, and we are left with

−d
2ψ

dx2
+

1

a2
υ(x)ψ =

(
2mE/~2

)
ψ.

However, we are going to define a dimensionless distance variable,

y := x/a,

hence

− 1

a2

d2ψ

ds2
+ +

1

a2
υ(y)ψ =

1

a2

(
2mE/~2

)
ψ.

Calling

λ :=
1

a2

(
2mE/~2

)
,

we are left with the following eigenvalue problem:

d2ψ

dy2
− υ(y)ψ = −λψ, (∗)

which we call the non-dimensional Schrödinger equation (NDSE). We now solve this equation nu-

merically.

We would like to expand the solution in terms of Chebyshev polynomials. However, the interval of

these polynomials is [−1, 1], while the non-dimensional Schrödinger equation (*) is defined on the

whole line. Therefore, we introduce a coordinate transformation,

y =
αx√

1− x2
, x =

y√
α2 + x2

,

where α is a positive real parameter that can be varied. Letting x ∈ [−1, 1] gives a y-variable that

ranges over the whole real line; the points x = ±1 correspond to y = ±∞. Thus, we propose an

approximate solution

ψN(y) =
N∑
n=0

anTn(x).

The second derivative of the approximate solution is

d2ψN
dy2

=
N∑
n=0

an

[(
dx

dy

)2

T ′′n (x) +
d2x

dy2
T ′n(x)

]
,
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where
dx

dy
=

α2

(α2 + y2)3/2
,

d2x

dy2
=

−3yα2

(α2 + y2)5/2
.

We now proceed to set up the collocation matrices.

The boundary conditions require that ψ should vanish at |y| =∞:

ψ(y = ±∞) = ψ(x = ±1) = 0,

hence
N∑
n=0

anTn(±1) = 0.

This gives two conditions on N + 1 unknowns. To obtain the N − 1 other conditions, we evaluate

the trial solution against the differential equation at N − 1 interior points,

xk = cos
(
k
π

N

)
, k = 1, 2, · · · , N − 1,

where

yk =
αxi√
1− x2

k

.

This gives

N∑
n=0

an

[(
dx

dy

)2

xk

T ′′n (xk) +

(
d2x

dy2

)
xk

T ′n(xk)

]
− υ(yk)

N∑
n=0

anT
′′
n (xk) =

N∑
n=0

anT
′′
n (xk).

We therefore form the following matrices:

L =



T0(−1) · · · TN (−1)(
dx
dy

)2
x1
T ′′0 (x1) +

(
d2x
dy2

)
x1

T ′0(x1)− υ(y1) · · ·
(

dx
dy

)2
x1
T ′′N (x1) +

(
d2x
dy2

)
x1

T ′N (x1)− υ(y1)

.

.

.

.

.

.(
dx
dy

)2
xN−1

T ′′0 (xN−1) +

(
d2x
dy2

)
xN−1

T ′0(xN−1)− υ(yN−1) · · ·
(

dx
dy

)2
xN−1

T ′′0 (xN−1) +

(
d2x
dy2

)
xN−1

T ′N (xN−1)− υ(yN−1)

T0(+1) · · · TN (+1)



M = −



0 · · · 0

T0(x1) · · · TN(x1)
...

...

T0(xN−1) · · · TN(xN−1)

0 · · · 0


,

and

a = (a0, · · · , an)T ,
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to give an eigenvalue problem

La = λMa.

24.4 Harmonic oscillator revisited

In this section, we again use a cannon to shoot birds, and apply the Chebyshev collocation method

to the harmonic oscillator3. To do this, we must first of all write down the NDSE.

Eigenvalue problem:

− ~2

2m

∂2ψ

∂y2
+ 1

2
mω2x2ψ = Eψ;

multiply up by 2m/~2:

−∂
2ψ

∂x2
+
m2ω2

~2
x2ψ = (2mE/~2)ψ.

Identify a standard unit of length:

1

a4
=
m2ω2

~2
, a =

√
~/mω.

Hence, the eigenvalue problem reads

−∂
2ψ

∂x2
+

1

a4
x2ψ = (2mE/~2)ψ.

Identify a non-dimensional variable of length:

y = x/a :

− 1

a2

∂2ψ

∂s2
+

1

a2
s2ψ = (2mE/~2)ψ.

Multiply up by a2 and then by −1:

∂2ψ

∂s2
− s2ψ = −λψ, λ = 2mE(a2/~2).

The NDSE for the harmonic oscillator is therefore

∂2ψ

∂s2
− s2ψ = −λψ, υ(s) = s2.

3Matlab code: schrodinger1.m, with u=y*y in lines 155-161
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As in the previous section, we propose the solution

ψN(y) =
N∑
n=0

anTn(x),

where

y =
αx√

1− x2
, x =

y√
α2 + x2

.

We introduce collocation points

xk = cos
(
k
π

N

)
, k = 1, 2, · · · , N − 1,

or

yk =
αxi√
1− x2

k

.

This gives

L =



T0(−1) · · · TN (−1)(
dx
dy

)2
x1
T ′′0 (x1) +

(
d2x
dy2

)
x1

T ′0(x1)− y
2
1 · · ·

(
dx
dy

)2
x1
T ′′N (x1) +

(
d2x
dy2

)
x1

T ′N (x1)− y21

.

.

.

.

.

.(
dx
dy

)2
xN−1

T ′′0 (xN−1) +

(
d2x
dy2

)
xN−1

T ′0(xN−1)− y2N−1 · · ·
(

dx
dy

)2
xN−1

T ′′0 (xN−1) +

(
d2x
dy2

)
xN−1

T ′N (xN−1)− y2N−1

T0(+1) · · · TN (+1)



M = −



0 · · · 0

T0(x1) · · · TN(x1)
...

...

T0(xN−1) · · · TN(xN−1)

0 · · · 0


,

and

a = (a0, · · · , an)T .

The eigenvalues are obtained by solving

La = λMa.

The spectrum is shown in Fig. 24.3 The first few numerically-generated modes are shown in the

figure (dots), along with the analytical modes: the parameter 2n in the Hermite differential equation

corresponds exactly to λ − 1, hence λ = λn = 2n + 1, where n = 0, 1, · · · . The two calculations

agree exactly for small n-values. The agreement is spoilt for higher n-values. However, increasing

N beyond N = 100 yields better agreement for this portion of the spectrum.

I have also picked out the first mode and computed the corresponding eigenfunction (Fig. 24.4).
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Figure 24.3: The spectrum of quantum harmonic oscillator: comparison between numerical method
and theory. Here N = 100.

Figure 24.4: First eigenfunction of the quantum harmomic oscillator: comparison between numerical
method and theory. Here N = 100.

This eigenfunction is ψ = e−y
2
. Again, excellent agreement is obtained.

24.5 Exotic potentials

Let’s compute the spectrum of the anharmonic oscillator with corresponding eigenvalue problem

− ~2

2m

∂2ψ

∂x2
+
(

1
2
mω2x2 + qx4

)
ψ = Eψ.

We need to find the NDSE. However, let’s take a shortcut. From Ch. 20, we know that a is the

lengthscale, where

a =
√

~/mω,
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Figure 24.5: The spectrum of the anharmonic oscillator: convergence study. Here ε = 0.5.

and that the Schrödinger equation can be re-written as

− ∂ψ
∂x2

+
x2

a4
ψ +

(
2mqa6

~2

)
x4

a6
ψ = (2mE/~2)ψ.

Introducing a parameter ε := 2mqa6/~2, this is

− ∂ψ
∂x2

+
x2

a4
ψ + ε

x4

a6
ψ = (2mE/~2)ψ.

We identify the non-dimensional distance variable y = x/a, hence

∂ψ

∂y2
−
(
s2 + εs4

)
ψ = −λψ.

As a final check on the correctness of the method, we compute the spectrum of this system with

ε = 0.01. We expect the ground-state eigenvalue to be

λgs = 1 + 3
4
ε = 1.0075.

The result with N = 500 or N = 600 is

λgs = 1.007373672,

and the small discrepancy can be explained by O(ε2) terms.

However, we can go beyond perturbation theory int the numerical setting. Thus, we compute the

eigenvalues and eigenvectors for ε = 0.5. Fig. 24.5 shows that the energy levels of the anharmonic
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(a) (b)

Figure 24.6: The first two eigenfunctions anharmonic oscillator. Here ε = 0.5 and N = 400.

oscillator are shifted above the harmonic analogues, and grow superlinearly (λn ∼ na, with a > 1).

Convergence is achieved for low n-values for N = 400. Fig. 24.6 shows the first two eigenfunctions4.

They look very similar to the solution of the ordinary quantum harmonic oscillator! This also indicates

why variational methods work so well: typically, the shape of the wavefunctions is determined by

symmetry considerations (odd, even), and by the condition that they should vanish at |x| = ∞;

these conditions place severe constraints on the shape, and thus systems that have the same kind

of Hamiltonian will also have the same kind of eigenfunctions.

4Matlab code: make_eigenfunction.m
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Perspectives

Recall from the introduction that Quantum Mechanics was introduced to eliminate a divergence or

an ‘infinity’ in the calculation for the spectral density of a blackbody. Recall also how relativistic

quantum mechanics was needed to develop a correct theory (with the correct prefactors) of spin-orbit

coupling in hydrogen.

If you take more advanced courses in quantum-field theory, you will find that this complete theory,

which involves the coupling of electronic charge to light, gives rise to other infinities. Feynman

managed to get rid of these infinities by introducing a renormalisation of the field theory, in which

the ‘bare’ electronic mass and charge are replaced with effective values, thus leading to convergent

probability amplitudes.

The Standard Model of particle physics contains only renormalisable operators. However, if you

combine general relativity and quantum field theory to obtain a quantum gravity, the result does

not appear to be renormalisable if the theory is constructed in a standard fashion. Thus, we are

apparently left with infinities.

Personally, I am not holding my breath, waiting for a solution to this problem (I strayed back into

classical mechanics, preferring its certainties). Indeed, I would much prefer to know if the many-

worlds solution to the problem of measurement is valid or not. Again, however, I am not holding

my breath. Answers on a postcard (or by other means) to Room 24, Science Building, UCD.

198



Appendix A

Matlab codes

A.1 Matlab code for generating spherical harmonics

function []=test_draw1(ell,m,flag)

dtheta=1;

dphi=1;

phi=0:dphi:360;

theta=0:dtheta:180;

[Phi Theta] = meshgrid(phi,theta);

Theta_rad=Theta*(pi/180);

Phi_rad=Phi*(pi/180);

if(ell==0)

temp=1+0*Theta_rad;

else

N=legendre(ell,cos(Theta_rad));

temp=N(abs(m)+1,:,:);

temp=((-1)^abs(m))*reshape(temp,length(theta),length(phi));

end

if(m>=0)

Pellm=temp;

else
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val1=(-1)^abs(m);

val2=factorial(ell-abs(m));

val3=factorial(ell+abs(m));

Pellm=val1*(val2/val3)*temp;

end

val0=(-1)^m;

val1=(2*ell+1)/(4*pi);

val2=factorial(ell-m);

val3=factorial(ell+m);

size(Pellm)

C=val0*sqrt(val1*val2/val3)*Pellm.*exp(sqrt(-1)*m*Phi_rad);

[x y z] = sph2cart(Phi_rad,(pi/2)-Theta_rad,1);

surf(x,y,z,real(C),’edgecolor’,’none’)

drawnow

colorbar

set(gca,’fontsize’,18,’fontname’,’times new roman’)

xlabel(’x’)

ylabel(’y’)

lighting phong

axis equal

camlight(’right’)

end



Appendix B

The Hamiltonian Formulation of Classical

Mechanics

B.1 Lagrangian mechanics

We start with the Lagrangian formulation of classical mechanics (CM), which we studied in ACM

20150: for generalized coordinates {qi}Ni=1 and generalized velocities {q̇i}Ni=1, the Lagrangian en-

codes all the information about the mechanical system:

L = T (qi, q̇i)− U(qi), (B.1)

where T is the kinetic energy and U is the potential energy. The dynamics of the mechanical system

are obtained by imposing stationarity of the action

S[qi, q̇i] =

∫ t2

t1

L(qi, q̇i)dt, (B.2)

which leads to the following Euler–Lagrange equations:

d

dt

∂L

∂q̇i
=
∂L

∂qi
, i = 1, · · · , N. (B.3)

Example: Consider particle motion in one space dimension. Then, q is the position (q ≡ x) and q̇

is the velocity. The Lagrangian is

L = 1
2
mq̇2 − U(q), (B.4)

and the Euler–Lagrange equations give

d

dt
(mq̇) = −U ′(q) =⇒ mq̈ = −U ′(q). (B.5)

201
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Thus, the Lagrangian formulation of mechanics implies the Newtonian formulation.

B.2 Hamiltonian mechanics

We define the generalized momenta conjugate the generalized coordinates qi:

pi :=
∂L

∂q̇i
. (B.6)

We are going to regard pi, qi, and q̇i as independent symbols and we are going to “get rid of”

the q̇i’s from the description of the dynamics. To do this, we introduce a new function:

H(pi, qi, q̇i) :=
∑
i

piq̇i − L(qi, q̇i). (B.7)

The function H is called the Legendre transformation of L w.r.t. the pair (q̇i, pi). We have the

following theorem:

Theorem: H in Eq. (B.7) is independent of q̇i.

To prove this, it suffices to differentiate H in Eq. (B.7) w.r.t. q̇i and show that the result is zero:

∂H

∂q̇i
= pi −

∂L

∂q̇i
,

which is zero by definition. Hence,

H = H(qi, pi) (B.8)

only. The quantity H so constructed is the Hamiltonian of the system.

Let us form the differential of H. We do so in two ways, based on Eqs. (B.7) and (B.8) respectively.

Consider the first way:

dH = q̇idpi + pidq̇i −
∂L

∂qi
dqi −

∂L

∂q̇i
dq̇i,

= q̇idpi −
∂L

∂qi
dqi +

(
pi −

∂L

∂q̇i

)
dq̇i,

= q̇idpi −
∂L

∂qi
dqi,

E.L.
= q̇idpi −

(
d

dt

∂L

∂q̇i

)
dqi,

= q̇idpi −
(
dpi
dt

)
dqi,

= q̇idpi − ṗidqi.
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Consider also the second way:

dH =
∂H

∂pi
dpi +

∂H

∂qi
dqi.

However, these approaches are totally equivalent, so we have

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, · · · , N. (B.9)

These are Hamilton’s equations of motion.

Example: We return to one-dimensional particle dynamics, where L = (mq̇2/2)−U(q). We identify

the momentum p conjugate to the generalized coordinate q:

p =
∂L

∂q̇
= mq̇ =⇒ q̇ =

1

m
p.

The Legendre transformation is

H = q̇p− L,

= mq̇2 − 1
2
mq̇2 + U(q),

= 1
2
mq̇2 + U(q),

=
1

2m
p2 + U(q),

= H(q, p).

Thus, H is the system’s energy!

Also,
∂H

∂q
= U ′(q), ∂H

∂p
=

1

m
p,

Hence,

q̇ =
∂H

∂p
=⇒ q̇ =

1

m
p,

and

ṗ = −∂H
∂q

=⇒ ṗ = −U ′(q).

B.3 Noether’s Theorem

A symmetry of the mechanical system is some transformation that acts on the system, and leaves

the mechanical properties of the system unchanged. Noether’s theorem says that any such sym-
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metry gives rise to a conserved quantity. In this section, we give some demonstrations of this

theorem, although we do not prove it in a general setting.

Example: Consider N particles interacting, for which the Hamiltonian is

H =
N∑
i=1

1

2mi

p2
i + U(q1, · · · , qN).

Here t does not appear explicitly in H:

H = H(qi, pi) =⇒ H(t+ ∆t) = H(t).

Thus, there is a conserved quantity associated with time translation t → t + ∆t. We know auto-

matically what this conserved quantity is: it is H itself. Now, we differentiate H w.r.t. time to

check if it is conserved:
dH

dt
=
∂H

∂qi
q̇i +

∂H

∂pi
ṗi +

∂H

∂t
,

and ∂H/∂t = 0 because t does not appear explicitly in H. Thus,

dH

dt
=

∂H

∂qi
q̇i +

∂H

∂pi
ṗi,

=
∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi
,

= 0.

Thus, the Noether quantity associated with time translation is H itself. Energy conservation and

the invariance of the system under time translation are intimately linked. Note finally, this

result relies on ∂tH = 0 and Hamilton’s equations.

We now consider one final example to demonstrate Noether’s theorem. We consider the Kepler

problem in the plane. We start with the associated Lagrangian problem in polar coordinates:

L = T − U = 1
2
m

(
ds

dt

)2

− U(r),

where the force is central, such that U = U(r) only. Also, we have ds2 = dr2 + r2dϕ2, such that(
ds

dt

)2

= ṙ2 + r2ϕ̇2,

and

L = 1
2
m
(
ṙ2 + r2ϕ̇2

)
− U(r).
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The generalized coordinates are (r, ϕ), and the conjugate momenta are thus

pr =
∂L

∂ṙ
= mṙ, pϕ =

∂L

∂ϕ
= mr2ϕ̇.

We carry out the Legendre transformation:

H = prṙ + pϕϕ̇− L,

= mṙ2 +mr2ϕ̇− 1
2
mṙ2 − 1

2
mr2ϕ̇+ U(r),

= 1
2
mṙ2 + 1

2
mr2ϕ̇+ U(r),

=
1

2m
p2
r +

1

2mr2
p2
ϕ + U(r).

Also,
∂H

∂pr
=

1

m
pr,

∂H

∂pϕ
=

1

mr2
pϕ,

and
∂H

∂r
= − 1

m

p2
ϕ

r3
+ U ′(r), ∂H

∂ϕ
= 0.

We assemble these partial derivatives into Hamilton’s equations. Start with the radial direction:

ṙ =
∂H

∂pr
, ṗr = −∂H

∂r
.

This gives

ṙ =
1

m
pr, ṗr =

1

m

p2
ϕ

r3
− U ′(r). (B.10)

We also have the tangential direction:

ϕ̇ =
∂H

∂pϕ
, ṗϕ = −∂H

∂ϕ
.

This gives

ϕ̇ =
1

mr2
pϕ, ṗϕ = 0.

Hence,

pϕ = Const. := J

This result is substituted into Eq. (B.10) to give

ṗr =
1

m

J2

r3
− U ′(r), pr = mṙ

or

mr̈ =
1

m

J2

r3
− U ′(r),
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or

mr̈ = −U ′eff(r), Ueff(r) =
J

2mr2
+ U(r).

Hamilton’s formulation is so clever that we have almost missed the existence of a Noether conserved

quantity! Let us go back and find it. Consider again the Kepler problem

H =
1

2m
p2
r +

1

2mr2
p2
ϕ + U(r).

Here, H is independent of ϕ: H = H(r, pr, pϕ) only, such that

H(ϕ+ ∆ϕ) = H(ϕ).

Thus, the mechanical system is invariant under rotations ϕ → ϕ + ∆ϕ. Since H = H(r, pr, pϕ),

we have that
∂H

∂ϕ
= 0.

But, by Hamilton’s equations,

ṗϕ = −∂H
∂ϕ

= 0.

Thus, the rotational symmetry ∂H/∂ϕ = 0 implies the conservation of angular momentum, pϕ =

Const.. This connection between rotational symmetry and conservation of angular momentum is

not so obvious in the other formulations of mechanics. That and the coordinate-free formulation in

Hamilton’s equations (i.e. not necessarily Cartesian) makes this particular formulation of CM very

useful.


