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This module introduces the fundamental concepts and methods in the differentiation and integration

of vector-valued functions.

• Fundamentals: Vectors and scalars, the dot and cross products, the geometry of lines and

planes

• Taylor’s theorem in several dimensions

• Curves in three-dimensional space: Differentiation of curves, the tangent vector

• Partial derivatives and vector fields:

• Introduction to partial derivatives, scalar and (Cartesian) vector fields, the operators div, grad,

and curl in the Cartesian framework, applications of vector differentiation in electromagnetism

and fluid mechanics

• Mutli-variate integration: Area and volume as integrals, integrals of vector and scalar fields,

Stokes’s and Gauss’s theorems (statement and proof)

• Consequences of Stokes’s and Gauss’s theorems: Green’s theorems, the connection

between vector fields that are derivable from a potential and irrotational vector fields

• Curvilinear coordinate systems: Basic concepts, the metric tensor, scale factors, div, grad,

and curl in a general orthogonal curvilinear system, special curvilinear systems including spher-

ical and cylindrical polar coordinates

Further topics may include:

• Introduction to differential forms, exact and inexact differential forms

• Advanced integration Integrating the Gaussian function using polar coordinates, the gamma

function, the volume of a four-ball by appropriate coordinate parameterization, the volume of

a ball in an arbitrary (finite) number of dimensions using the gamma function



What will I learn?

On completion of this module students should be able to

1. Write down parametric equations for lines and planes, and perform standard calculations based

on these equations (e.g. points/lines of intersection, condition for lines to be skew);

2. Compute Taylor expansions for functions of one and several variables;

3. Differentiate scalar and vector fields expressed in a Cartesian framework;

4. Perform operations involving div, grad, and curl;

5. Perform line, surface, and volume integrals. The geometric objects involved in the integrals

may be lines, arbitrary curves, simple surfaces, and simple volumes, e.g. cubes, spheres,

cylinders, and pyramids;

6. State precisely and prove Gauss’s and Stokes’s theorems;

7. Derive corollaries of these theorems, including Green’s theorems and the necessary and suffi-

cient condition for a vector field to be derivable from a potential;

8. Compute the scale factors for arbitrary orthogonal curvilinear coordinate systems;

9. Apply the formulas for div, grad, and curl in arbitrary orthogonal curvilinear coordinate systems
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Chapter 1

Introduction

1.1 Overview

Here is the executive summary of the module:

This module involves the study of vector and scalar fields in two- and three-dimensional

space. A field is an object that assigns a vector or a scalar to each point in space. We

need to find out how to integrate and differentiate these things, hence vector integral

and differential calculus.

In more detail, a field is a map that assigns either a scalar or a vector to each point in the map

domain, giving scalar- and vector-fields, respectively. We study this concept in depth:

1. We review concepts of vectors, scalars, and vector algebra.

2. We review Taylor series in a single dimension and introduce Taylor series in several dimensions.

It is quite simply impossible to do this module without knowledge of such series and the

associated Taylor expansions.

3. We formulate the derivative of a scalar field, based on the gradient operator.

4. We learn how to differentiate vector fields, using the divergence and curl operators.

5. We define line and area integrals – generalization of integration on R.

6. We state and prove two fundamental theorems of vector integration – Gauss’ and Stokes’

theorems.1 These can be crudely thought of as generalizations of integration by parts.

1Sir George Gabriel Stokes F.R.S. Born in Skreen Co. Sligo, 1829, died in Cambridge, England, 1903.
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2 Chapter 1. Introduction

7. These topics are formulated against the backdrop of Cartesian space (that is, a triple (x, y, z) ∈
R3 labels points in space). However, the integration theorems enable us to generalize div ,

grad , and curl to differentiation on curved surfaces (‘manifolds’).

1.2 Learning and Assessment

Learning:

• Thirty six classes, three per week.2

• Optional tutorial.

• Graded homework assignments (see the assessment section below) and non-graded homework

assignments.

• One of the main goals of any degree in the mathematical sciences is to put problems into

a quantitative framework and hence to solve them. This will be accomplished through the

homework assignments, and autonomous student learning, or what used to be known less

grandiosely as studying. One way of studying is by independently practising the non-graded

homework assignments and by subsequently going through the answers in the tutorial classes.

You can also try reading a textbook about the subject. The Schaum’s textbook (see below)

contains lots of further supplementary problems for practice for these purposes.

Assessment:

• Two homework assignments, for a total of 10%;

• One in-class test, for a total of 20%;

• One end-of-semester exam, 70%;

Percentage scores-to-grades conversion:

In UCD, percentage scores have no meaning, and it is the letter grades that matter. The reason for

this is that letter grades, although qualitative in nature, have a very precise meaning. Thus, each

letter grade comes with a ‘grade descriptor’ which defines what that particular letter grade means

(e.g. ‘A’ means ‘Excellent’, ‘B’ means ‘Very Good’ etc.). The precise grade descriptors used for

this module (indeed, for all UCD modules) are found in the following document:

http://www.ucd.ie/registry/assessment/staff_info/modular grades explained staff.pdf

2Really, thirty four classes because of the October Bank Holiday
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Now, sometimes it is more convenient to award a numerical score to a piece of assessment and

hence to assign percentage scores, and from there to assign letter grades using a percentage-to-

grades conversion scheme. But the manner in which the percentage score is translated into a

qualitative grade is not set in stone and will vary from discipline to discipline. According to official

UCD policy,

The award of grades is a matter of academic judgement against agreed criteria (learning

outcomes and grade descriptors) and should not be simply a mathematical exercise...

clear grade descriptors will assist you in this effort....

There may be circumstances where an examiner wishes to convert percentage marks

to grades using a different scale [from the one used elsewhere in UCD] for pedagogical

reasons related to the form of the assessment... this grading scheme is a matter for the

individual examiner. It is good practice to describe the grading scheme and the rationale

to students in advance.

This policy can be found in the UCD Registry document alluded to earlier. In any case, any

percentage-to-grades conversion scheme should have the following characteristics:

• It should accurately reflect differences in student performance.

• It should be clear to students so that they should be able to chart their progress.

• It should be fair.

For these reasons, the percentage-to-grades conversion scheme of the School of Mathematics and

Statistics is hereby adopted for this module:

http://mathsci.ucd.ie/tl/grading/en06

Policy on late submission of homework:

The official UCD policy will be absolutely strictly adhered to3. As such, coursework that is late by

up to one week after the due date will have the grade awarded reduced by 10% (e.g. from 87%

to 77%); coursework submitted up to two weeks after the due date will have the grade reduced by

20% (e.g. from 87% to 67%). Coursework received more than two weeks after the due date will

not be accepted.

In addition, it will not be possible for me to accept late coursework via email in a scan or otherwise

– it will be the student’s responsibility to submit such late homework directly to me in paper form.

There are many reasons for this – not least because of incidents in the past where I have had to print

3http://www.ucd.ie/registry/academicsecretariat/docs/latesub po.pdf
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down pages and pages of late submissions consisting of jpeg after jpeg of mobile-phone photographs

of homework.

Policy on extenuating circumstances:

This module adheres to the policy on extenuating circumstances as outlined in the UCD Science

Handbook:

• Serious issues (serious illness, hospitalization, etc.) are dealt with through a formal process

administered by the College of Science;

• Minor issues (e.g. assignment/midterm missed due to minor illness) are dealt with through

direct contact with the lecturer – via email, with supporting documentation as necessary. In

order to keep track of such extenuating circumstances, please use the phase ‘minor extenuating

circumstances ACM20150’ in the subject line in the email.

Plagiarism:

Plagiarism is a serious academic offence. While plagiarism may be easy to commit unintentionally,

it is defined by the act not the intention.

• All students are responsible for being familiar with the Universitys policy statement on plagia-

rism and are encouraged, if in doubt, to seek guidance from an academic member of staff.

• The University encourages students to adopt good academic practice by maintaining academic

integrity in the presentation of all academic work.

• For more detailed information see:

http://www.ucd.ie/governance/resources/policypage-plagiarismpolicy/

Office hours:

I do not keep specific office hours. If you have a question, you can visit me whenever you like –

from 09:00-17:00. I am usually in my office if not lecturing. The office is E0.88 on the ground floor

of Science East. It is a little complicated to get to, although there are directions on the homepage

of my website. Thus, emailing me in the first instance might be a better idea:

onaraigh@maths.ucd.ie
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Textbooks

• Lecture notes will be put on the web. These are self-contained. They will be available before

class. It is anticipated that you will print them and bring them with you to class. You can

then annotate them and follow the proofs and calculations done on the board. Thus, you are

still expected to attend class, and I will occasionally deviate from the content of the notes,

give hints about solving the homework problems, or give a revision tips for the final exam.

• There are some books for extra reading, if desired:

– Vector analysis and an introduction to tensor analysis, M. R. Spiegel, Schaum’s Outline

Series, McGraw–Hill (Three copies in library, 515.63 SPI).

– Mathematical methods for physicists, G. B. Arfken, H. J. Weber, and F. Harris, Wiley,

Fifth Edition (Two copies of seventh edition in library, 510.2453 ARF).

– Vectors, tensors and the basic equations of fluid mechanics, R. Aris, Dover (One copy

in library, 532.00151 ARI; also available for £8.00 on Amazon.co.uk).

1.3 A modern perspective on vector calculus

Before beginning the lecture course, let us discuss a contemporary problem that uses the techniques

of vector calculus.

The advection-diffusion equation: The concentration C of a chemical in the atmosphere, a pollutant

on the sea-surface, or of a blob of dye in a container of fluid is a function of space and time:

C = C (x, t) , x =

(x, y) ∈ Ω ⊂ R2, or

(x, y, z) ∈ Ω ⊂ R3.

This concentration is stirred around by the flow field

u = (u (x, t) , v (x, t))

in two dimensions, or

u = (u (x, t) , v (x, t) , w (x, t))

in three dimensions. The flow is assumed to be incompressible: this means that density is conserved

along streamlines; mathematically,

∇ · u = 0.
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At the same time, the concentration is ‘diffused’, so that regions where the concentration possesses

high gradients are smoothed out, on a timescale

T = [Length scale of variation]2 /D

where D is the diffusion coefficient. The law that expresses these two processes is called the

advection-diffusion equation

∂C

∂t︸︷︷︸
Instantaneous changes in concentration

+ u · ∇C︸ ︷︷ ︸
Stirring by the flow

= D∇2C︸ ︷︷ ︸
Diffusion

. (1.1)

The integral theorems discussed previously can be used to show that

d

dt

∫
Ω

C (x, t) dnx = 0 + Boundary terms,

hence, the total amount of chemical is conserved. If we multiply Eq. (1.1) by C (x, t) and integrate

over the flow domain Ω, we obtain, using the same integral theorems as before,

d

dt

∫
Ω

1
2
C2 (x, t) dnx = −D

∫
Ω

|∇C (x, t) |2dnx+ Boundary terms.

If the flow and the concentration gradients satisfy certain conditions on the boundary, the last term

in this equation vanishes, and we are left with

d

dt

∫
Ω

1
2
C2 (x, t) dnx = −D

∫
Ω

|∇C (x, t) |2dnx,

and the variance in the concentration, away from its mean value, decays to zero. Thus, the chemical

becomes better and better mixed, over time.

The question of how fast the mixing is depends on the character of the flow. You will no doubt be

aware of a certain experiment involving coffee and milk: if you add a drop of milk to a cup of black

coffee and do not stir, the two components will eventually mix, but over a long interval. If you add

the milk and then stir, the homogenization is faster. Mixing times therefore depend on the flow. It

turns out that if the flow u is chaotic (in a sense described below), then the mixing is as close to

optimal as can be imagined. A flow u is chaotic if two initially neighbouring fluid particles separate

away from each other exponentially fast in time, under the influence of the flow. The average rate

of separation is called the Lyapunov exponent, Λ0.

One popular model of mixing in two dimensions is the random-phase sine flow, which is a succession
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(a) First half-period (b) Second half-period

Figure 1.1: Schematic description of the random-phase sine flow in each quasi-period.

of unidirectional quasi-periodic ‘whisking’ motions:

u = A0 sin (ky + φj) , v = 0, (1.2)

in the first half-period of the flow, and

u = 0, v = A0 sin (kx+ ψj) , (1.3)

in the second (See Fig. 1.1). Here φj and ψj are random phases that change after each whisking

motion and A0 and k are positive constants (‘amplitude’ and ‘wavenumber’ respectively). Particles

drawn along by this flow satisfy the trajectory equation

dx

dt
= v (x, t) ,

and can be tracked numerically. The time-averaged rate of separation along trajectories gives rise

to the Lyapunov exponent Λ0 (x) (Fig. 1.2), which varies in space but not in time (the spatial

variations label the trajectories). The decay rate of the concentration can also be measured (it is

exponential). The energy of the flow is the space-time average

E = lim
T→∞

1

T

∫ T

0

dt

∫
Ω

d2x|u (x, t) |2.

By the end of this course, you should be able to see that

E = 1
2
A2

0,
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(a) A0 = 0.5 (b) A0 = 1 (c) A0 = 2

Figure 1.2: The Lyapunov exponent Λ0 (x) for different trajectories (the constant Λ0 is the average
over all trajectories, and is positive). The larger the value of A0, the larger the values taken by
Λ0 (x).

independent of wavenumber. Referring to Fig. 1.2, the more energy you put into the flow, the better

mixed it becomes. This in part answers the question about stirring the cup of coffee: stirring, that

is inputting mechanical energy (in the correct, chaotic, fashion), increases the Lyapunov exponent,

and hence promotes mixing.

Note, from Fig. 1.2 that the Lyapunov exponent Λ0 (x) can be calculated numerically for a given

flow, and in fact is an averaged separation rate, averaged over an infinitely long time interval. There

is a finite-time analogue, the finite-time Lyapunov exponent, when the temporal averaging is over

a finite interval τ , and denoted by Λ0 (x; τ). Ridges in this quantity are called Lagrangian coherent

structures 4. A ridge is a local maximum in only one direction. Just as a ridge in a mountain range

is a barrier to transport, so too is a ridge in the FTLE: particles cannot flow through them. Ridges

can be found in the ocean and act as barriers to pollution dispersal, or to the uniform distribution

of micro-organisms (as in Fig. 1.3). Before people discovered Lagrangian coherent structures, they

thought tides would wash away pollution. However, these structures persist through tides, and they

represent a permanent barrier.

4See ‘Finding Order in the Apparent Chaos of Currents’, New York Times, 28 September 2009.
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(a)

(b)

Figure 1.3: (a) A snapshot of the FTLE in Monterey Bay, CA, at a particular point in time (they
can evolve in time); (b) A snapshot of the distribution of sea-surface chlorphyll: this very clearly
is contained within the transport barriers represented by the ridges in the FTLE. (Taken from the
webpage http://www.cds.caltech.edu/˜shawn)/LCS-tutorial/).



Chapter 2

Vectors – revision

Overview

We review some basics of vector algebra that have already been covered in MATH 10340.

2.1 The connection between vectors and Cartesian coordi-

nates

A vector is a quantity with magnitude and direction. A point P in space can be labelled by

coordinates (a1, a2, a3) with respect to some Cartesian coordinate frame with origin O. The distance

from O to P is thus

|OP | =
√
a2

1 + a2
2 + a2

3.

Associated with O and P is a direction – from O to P . Thus, we identify
−→
OP as a vector with

direction from O to P , with magnitude
√
a2

1 + a2
2 + a2

3. We can also identify the vector by its

coordinates, writing
−→
OP ≡ (a1, a2, a3) ≡ a.

Two vectors,
−→
OP = a = (a1, a2, a3) and

−→
OQ = b = (b1, b2, b3) can be added together in an obvious

way:

a+ b = (a1 + b1, a2 + b2, a3 + b3).

This is consistent with the parallelogram law of vector addition – see Fig. 2.1. We also have the

notion of scalar multiplication: if λ ∈ R, and if
−→
OP = a = (a1, a2, a3), then

λ
(−→
OP
)

= λa = λ(a1, a2, a3)
def
= (λa1, λa2, λa3).

10
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Figure 2.1: Parallelogram law for vector addition

In this way, we identify unit vectors (vectors of length one) that point along the three distinguished,

mutually perpendicular directions of the Cartesian frame:

x̂ = (1, 0, 0), ŷ = (0, 1, 0), ẑ = (0, 0, 1).

This introduces further consistency to the identification of triples (e.g. (a1, a2, a3)) with vectors,

since

−→
OP = a = (a1, a2, a3) = a1(1, 0, 0) + a2(0, 1, 0) + a3(0, 0, 1) = a1x̂+ a2ŷ + a3ẑ.
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2.2 The dot product

Definition 2.1 Take two vectors a = (a1, a2, a3) and b = (b1, b2, b3). The dot product is a

combination of these two vectors that returns a scalar, and is defined as follows:

a · b = a1b1 + a2b2 + a3b3.

The dot product inherits many of the usual properties of ordinary multiplication:

1. Commutative: a · b = b · a,

2. Distributive: a · (b+ c) = a · b+ a · c. Also, (a+ b) · c = a · c+ b · c,

for all a, b, and c in R3. Here R3 denotes all triples (x, y, z), where x, y, and z are real numbers;

equivalently, it denotes all points in three-dimensional space.

The dot product can also be used to compute the length (magnitude) of a vector, as

mag(a) =
√
a2

1 + a2
2 + a2

3 =
√
a · a.

Henceforth, we denote mag(a) as |a|.

Using the properties of dot-product multiplication, we can prove the following theorem:

Theorem 2.1 Let a and b be vectors in R3. Then

a · b = |a||b| cos θ,

where 0 ≤ θ ≤ π is the angle between a and b.

Proof: Introduce c := a− b. We apply the laws of dot-product multiplication to obtain

c · c = (a− b) · (a− b) , (2.1)

= a · a− 2a · b+ b · b, (2.2)

|c|2 = |a|2 − 2a · b+ |b|2. (2.3)

However, we refer to the triangle in Fig. 2.2,
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Figure 2.2: Sketch for applying the cosine rule to the dot-product of vectors a and b

and we apply the cosine rule, to obtain

|c|2 = |a|2 + |b|2 − 2|a||b| cos θ. (2.4)

Equating Equations (2.3) and (2.4), we obtain

a · b = |a||b| cos θ,

as required.

Corollary 2.1 Two vectors a and b are orthogonal (perpendicular) if and only if

a · b = 0.

Example: consider

x̂ · ŷ = (1, 0, 0) · (0, 1, 0) = 1× 0 + 0× 0 + 0× 0 = 0.

Not surprisingly, x̂ and ŷ have zero dot product (and hence, are orthogonal), as they point along

different mutually-perpendicular axes. Also, x̂ · x̂ = 1 etc. The vectors x̂, ŷ, and ẑ are called an

orthonormal triad.
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2.3 The vector or cross product

Given vectors a and b, we have seen how to form a scalar. We can also form a third vector from

these two vectors, using the cross or vector product:

Definition 2.2 (Cross product)

a× b =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣ , (2.5)

= x̂ (a2b3 − a3b2)− ŷ (a1b3 − a3b1) + ẑ (a1b2 − a2b1) ,

= x̂ (a2b3 − a3b2) + ŷ (a3b1 − a1b3) + ẑ (a1b2 − a2b1) , .

Properties of the vector or cross product:

1. Skew-symmetry: a× b = −b× a,

2. Linearity: (λa)× b = a× (λb) = λ (a× b), for λ ∈ R.

3. Distributive: a× (b+ c) = a× b+ a× c.

These results readily follow from the determinant definition. Result (1) is particularly weird. Note:

a× a = −a× a, Result (1),

2a× a = 0,

a× a = 0.

Example: Let

a = x̂+ 3ŷ + ẑ, b = 2x̂− ŷ + 2ẑ.

Then

a× b =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

1 3 1

2 −1 2

∣∣∣∣∣∣∣∣ = 7x̂− 7ẑ.



2.4. Geometrical treatment of cross product 15

Example: The orthonormal triad x̂, ŷ, and ẑ satisfy

x̂× ŷ = ẑ,

ŷ × ẑ = x̂,

ẑ × x̂ = ŷ. (2.6)

2.4 Geometrical treatment of cross product

So far, our treatment of the cross product has been in terms of a particular choice of Cartesian axes.

However, the definition of the cross product is in fact independent of any choice of such axes. To

demonstrate this, we re-construct the cross product.

Step 1: Finding the length of a× b

Note that

|a× b|2 + (a · b)2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

+ (a1b1 + a2b2 + a3b3)2 ,

=
(
a2

1 + a2
2 + a2

3

) (
b2

1 + b2
2 + b2

3

)
,

= |a|2|b|2.

Hence,

|a× b|2 = |a|2|b|2 − (a · b)2 ,

= |a|2|b|2
(
1− cos2 θ

)
,

= |a|2|b|2 sin2 θ

and

|a× b| = |a||b| sin θ,

where 0 ≤ θ ≤ π, such that the relation |a× b| ≥ 0 is satisfied.
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Step 2: Finding the direction of a× b

Note that

a · (a× b) = a1 (a2b3 − a3b2) + a2 (a3b1 − a1b3) + a3 (a1b2 − a2b1) ,

= 0.

Similarly, b · (a× b) = 0. Hence, a × b is a vector perpendicular to both a and b. It remains to

find the sense of a× b. Indeed, this is arbitrary and must be fixed. We fix it such that we have a

right-handed system, and such that the following rule-of-thumb is satisfied (Figure 2.3).

Figure 2.3: The right-hand rule.

Choosing a right-hand rule means that relations (2.6) are satisfied (x̂, ŷ, and ẑ form a ‘right-handed’

system). This also corresponds to putting a plus sign in front of the determinant in the original

definition of the cross product.

In summary, a × b is a vector of magnitude |a||b| sin θ, that is normal to both a and

b, and whose sense is determined by the right-hand rule.

2.4.1 The cross product as an area

Consider a parallelogram, whose two adjacent sides are made up of vectors a and b (Fig. 2.4). The
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Figure 2.4: The cross product as an area

area of the parallelogram is

A = (base length)× (perpendicular height) ,

= (base length) |b| sin θ,

= |a||b| sin θ,

= |a× b|.

2.5 The scalar triple product and volume

We can form a scalar from the three vectors a, b, and c by combining the operations just defined:

a · (b× c) . (2.7)

This is the so-called ‘scalar triple product’.

Theorem 2.2 The scalar triple product a · (b× c) is identically equal to∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣ .

Proof: By brute force,

(a1x̂+ a2ŷ + a3ẑ)

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣
= (a1x̂+ a2ŷ + a3ẑ) · [(b2c3 − c2b3) x̂+ (b3c1 − b1c3) ŷ + (b1c2 − b2c1) ẑ]

= a1 (b2c3 − c2b3) + a2 (b3c1 − b1c3) + a3 (b1c2 − b2c1) ,
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which is the determinant of the theorem.

Now consider a parallelepiped spanned by the vectors a, b, and c (Figure 2.5)

Figure 2.5: The scalar triple product as a volume

Volume of parallelepiped = (Perpendicular height)× (Base area)

= (|a| cosϕ)× (|b||c| sin θ) ,

= (|a| cosϕ) (|b× c|) ,

= a · (b× c) .

Corollary 2.2 Three nonzero vectors a, b, and c are coplanar if and only if a · (b× c) = 0.

Proof: The equation a · (b× c) = 0 holds iff the volume of the parallelepiped spanned by the three

vectors is zero iff the perpendicular height is zero, iff the three vectors are coplanar.

2.6 The vector triple product

Given three vectors a, b, and c, we can form yet another vector,

a× (b× c) . (2.8)

The brackets are important because the cross product is not associative, e.g.

x̂× (x̂× ŷ) = x̂× ẑ = −ŷ,
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but

(x̂× x̂)× ŷ = 0× ŷ = 0.

Theorem 2.3 The vector triple product satisfies

a× (b× c) = b (a · c)− c (a · b) , (2.9)

a result that can be recalled by the mnemonic ‘BAC minus CAB’.

Proof: Without loss of generality, we prove the result in a frame wherein the x- and y-axes of our

frame lie in the plane generated by b and c. In fact, we may take

c = x̂c1,

b = b1x̂+ b2ŷ,

and

a = a1x̂+ a2ŷ + a3ẑ.

The result then follows by a brute-force calculation of the LHS and the RHS of Eq. (2.9).



Chapter 3

The geometry of lines and planes

Overview

In this section we show how vector operations can be used to describe lines and planes in three-

dimensional space. Some of this material will have been covered already in MATH 10340 but it is of

vital importance to this module, so it is repeated here. The reason why these ideas are so important

is that they carry over to general (smooth) curves and surfaces, which can be approximated to

arbitrary precision by collections of line segments and planar surfaces.

20
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3.1 The equation of a line

Problem: Find the equation of a straight line which passes through two given points A and B

having position vectors a and b w.r.t. an origin O.

Solution: Let r be the position vector of any point

P on the line through A and B. From the figure,

−→
OA+

−→
AP =

−→
OP =⇒ a+

−→
AP = r

=⇒
−→
AP = r − a,

and

−→
OA+

−→
AB =

−−→
OB =⇒ a+

−→
AB = b

=⇒
−→
AB = b− a.

But
−→
AP and

−→
AB are colinear, hence

−→
AP = t

−→
AB = t (b− a) ,

where t is some real number. Putting these equations together gives

r = a+ t (b− a) .

Thus, two vectors are sufficient to specify a line in space: a vector r0 := a whose tip lies on the

line, and a vector e = b− a that lies along the line. We therefore write

r = r0 + te.

A straight line is thus a one-parameter curve.

Now let’s go over to the Cartesian form of the line:

x = x0 + tex,

y = y0 + tey,

z = z0 + tez.
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Eliminating t between the equations (if possible) gives

x− x0

ex
=
y − y0

ey
=
z − z0

ez
.

If the line lies entirely in the x-y plane, then z = 0 and the elimination is carried out on only the x-

and y-variables:
x− x0

ex
=
y − y0

ey
=⇒ y = y0 +

ey
ex

(x− x0) ,

which is the standard equation of the line in a plane with slope m = ey/ex.
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3.2 The perpendicular distance between a point and a line

Problem: Let r (t) = r0 + te be the equation of a straight line L, and let P be a point with

position vector a (henceforth written as P (a)). Find the shortest distance between the line and

the point.

Solution: The shortest distance between the point

P and the line L is in fact the perpendicular dis-

tance. Suppose that a perpendicular dropped from

P to L intersects L at position vector r1, such

that

r1 = r0 + t1e (3.1)

(Refer to the figure).

By construction of this perpendicular, the line a− r1 is perpendicular to the line, or

e · (a− r1) = 0.

Hence,

e · a = e · r1 = e · (r0 + t1e) = e · r0 + t1e
2.

Solving for t1,

t1 =
e · (a− r0)

|e|2
.

Substitute this expression into Equation (3.1):

r1 = r0 + e
e · (a− r0)

|e|2
:= r0 + ê [ê · (a− r0)] ,

where ê = e/|e| is a unit vector along the line L. The perpendicular distance is thus

d⊥ = |a− r1| ,

= |(a− r0)− [ê · (a− r0)] ê| ,

= |(r0 − a) + [ê · (a− r0)] ê| ,

= |(r0 − a)− [ê · (r0 − a)] ê| .
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This is a valid final answer. However, a little more manipulation yields

d2
⊥ = (r0 − a)2 − |ê · (r0 − a) |2 = (r0 − a)2 (1− cos2 θ

)
= (r0 − a)2 sin2 θ = | (r0 − a)× ê|2,

hence

d⊥ = | (r0 − a)× ê|.

Now suppose the line lies in the x-y plane only. The equation of the line is αx+ βy + γ = 0, with

slope m = −α/β. But ey/ex = m = m/1, hence

e = (ex, ey) = (1,m), ê =
(1,m)√
1 +m2

=
(1,−α/β)√
1 + α2/β2

=
(β,−α)√
α2 + β2

Thus,

d2
⊥ =

1

α2 + β2

∣∣∣∣∣∣(x0, y0, 0)× (β,−α, 0)︸ ︷︷ ︸
=r0×ê

− (a1, a2, 0)× (β,−α, 0)︸ ︷︷ ︸
=a×ê

∣∣∣∣∣∣
2

,

=
1

α2 + β2
| − (y0β + x0α) + (a2β + a1α) |2,

=
1

α2 + β2
|γ + (a2β + a1α) |2,

=
|a1α + a2β + γ|2

α2 + β2
.
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3.3 The equation of a plane

Problem: Find the equation of a plane which passes through three given points A, B, and C

having position vectors a, b, and c w.r.t. an origin O.

Solution: By construction, the vectors

v1 :=
−→
BA = a− b,

v2 :=
−−→
BC = c− b,

lie in the plane we call Π (see the accompanying

figure). A normal to this plane is

n = v2 × v1 = (c− b)× (a− b)

= a× b+ b× c+ c× a.

The equation of a plane is subset of all vectors r = (x, y, z) in R3, such that the vector r − b is

perpendicular to n:

Π =
{
r ∈ R3| (r − b) · (a× b+ b× c+ c× a) = 0

}
.

Simplifying, the general vector r lies in the plane Π if and only if

r · (a× b+ b× c+ c× a)︸ ︷︷ ︸
normal vector

= b · (c× a)︸ ︷︷ ︸
a constant

.

Note that the general equation of a plane in three dimensions is

Π (n, r0) =
{
r ∈ R3| (r − r0) · n = 0

}
. (3.2)

The plane is thus parametrized by the normal vector n and a reference vector r0 whose tip lies in

the plane (Fig. 3.1). If nz 6= 0, we have the Cartesian expression

z = z0 + (y0 − y)
ny
nz

+ (x0 − x)
nx
nz
.

Thus, a point z = z(x, y) on a surface is labelled by two parameters, x and y. A plane is therefore

a two-parameter object, just as a line was a one-parameter curve.



26 Chapter 3. The geometry of lines and planes

Figure 3.1: Figure for the general equation of a plane

3.4 Skew lines and intersecting lines in three dimensions

Skew lines are a very nice application of three-dimensional geometry. In two dimensions, two non-

parallel lines definitely intersect. However, in three dimensions, they need not intersect: they can

“go around” one another.

We first of all consider two intersecting lines. In other words, we assume intersection and compute

explicitly the point of intersection in terms of the parameters of the two lines.

rL(t) = r0 + te,

rM(u) = s0 + uf ,

and we show that their point of intersection rL(t0) = rM(u0) is given by the solution of the equation(
(r0 − s0) · e
(r0 − s0) · f

)
=

(
−|e|2 e · f
−e · f |f |2

)(
t0

u0

)
.
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By assumption, the point of intersection exists. Hence,

r0 + t0e = s0 + u0f ,

for parameter values t0 and u0. Re-arrange,

r0 − s0 = u0f − t0e.

Take the scalar product of this equation with e:

(r0 − s0) · e = u0f · e− t0|e|2;

do the same thing with vector f :

(r0 − s0) · f = u0|f |2 − t0e · f .

Gather up:

(r0 − s0) · e = −t0|e|2 + u0f · e,

(r0 − s0) · f = −t0e · f + u0|f |2,

which is the required result:(
(r0 − s0) · e
(r0 − s0) · f

)
=

(
−|e|2 e · f
−e · f |f |2

)(
t0

u0

)
.

In the previous example, we were told that the point of intersection exists. It was then fairly

straightforward to compute that point. We now look at the converse, and formulate a general

condition for the point of intersection to exist. We start with the two lines

rL(t) = r0 + te,

rM(u) = s0 + uf .

From the first part, a candidate point (t0, u0) for the intersection is the solution of the equation(
(r0 − s0) · e
(r0 − s0) · f

)
=

(
−|e|2 e · f
−e · f |f |2

)(
t0

u0

)
,
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provided the solution exists. Now the determinant of this matrix is

−|e|2|f |2 + (e · f)2 = −|e× f |2.

Thus, if e× f 6= 0, the pair (t0, u0)T , with

(
t0

u0

)
=

(
−|e|2 e · f
−e · f |f |2

)−1(
(r0 − s0) · e
(r0 − s0) · f

)

is certainly a candidate solution. In plugging the solution of the matrix equation back into the

intersection condition

r0 − s0 = u0f − t0e,

we must be very careful: the only way to go from the solution of the matrix equation to the

intersection condition is if r0 − s0 lies entirely in the plane generated by e and f . However, in

general,

r0 − s0 = αe+ βf + γe× f .

Thus, we require γ = 0, or

(r0 − s0) · (e× f) = 0.

Therefore, a set of sufficient conditions for the lines to intersect is the following:

e× f 6= 0 AND (3.3)

(r0 − s0) · (e× f) = 0. (3.4)

Condition (3.4) states that r0 − s0 lies entirely in the plane generated by e and f and thus,

(r0 − s0) · e and (r0 − s0) · f can not both be zero. In geometrical language, the condition is that

e and f must be non-parallel AND the difference r0 − s0 must lie entirely in the plane generated

by e and f . Lines that satisfy the first condition but not the second are called skew lines.
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Figure 3.2: Vectors coplanar Figure 3.3: Skew lines: Vectors non-coplanar
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Ordinary derivatives of vectors

Overview

In many applications, we must consider a vector in R3 that varies continuously as a single parameter

is varied. In particular, in mechanics, the position x of a particle is a function of time. Such a

situation is called a curve: a curve γ is a map

γ : R → R3,

t → xγ (t) = (xγ (t) , yγ (t) , zγ (t)) .

Here xγ(·), yγ(·), and zγ(·) are functions of time that give the Cartesian coordinates of the particle.

Although not technically correct, in this section we drop the curve label γ and write xγ(t) = x(t) =

(x(t), y(t), z(t)). Such sloppiness even has a formal name: it is called an abuse of notation.

4.1 Definitions and properties

Definition 4.1 (Derivative of a curve) Let x(t) be a curve parametrized by the parameter t.

The derivative of the curve with respect to t is defined as

dx

dt
= lim

∆t→0

x(t+ ∆t)− x(t)

∆t
,

provided the limit exists.

A similar definition holds for the higher derivatives. Since

x(t) = (x(t), y(t), z(t)) = x̂x(t) + ŷy(t) + ẑz(t),

30
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where x̂ etc. are constant vectors, this derivative can also be written as

dx

dt
= x̂

dx

dt
+ ŷ

dy

dt
+ ẑ

dz

dt
.

It should be clear that curves inherit all the properties of real-valued functions. In particular,

Theorem 4.1 The following properties are satisfied, for arbitrary differentiable curves A(t), B(t),

and C(t):

1.
d

dt
[A(t) +B(t)] =

dA

dt
+
dB

dt
,

2.
d

dt
[A(t) ·B(t)] = A(t) · dB

dt
+B(t) · dA

dt
,

3.
d

dt
[A(t)×B(t)] = A(t)× dB

dt
+
dA

dt
×B(t),

(note the order!)

4. For a scalar function f(t),

d

dt
[f(t)A(t)] = f(t)

dA

dt
+A

df

dt
,

5.
d

dt
[A · (B ×C)] = A ·

(
B × dC

dt

)
+A ·

(
dB

dt
×C

)
+
dA

dt
· (B ×C) ,

6.
d

dt
[A× (B ×C)] = A×

(
B × dC

dt

)
+A×

(
dB

dt
×C

)
+
dA

dt
× (B ×C) ,

Here we move the derivative ‘operator’ sequentially through the product.
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The proofs are straightforward because the vectors A = A1x̂ + A2ŷ + A3ŷ := (A1, A2, A3) etc.

inherit their differentiability properties from their components. For example,

d

dt
(A(t) ·B(t)) =

d

dt

3∑
i=1

Ai(t)Bi(t),

=
3∑
i=1

d

dt
[Ai(t)Bi(t)] ,

=
3∑
i=1

[
Ai(t)

dBi

dt
+
dAi
dt

Bi

]
,

= A · dB
dt

+
dA

dt
·B.

Theorem 4.2 Let x(t) be a curve in R3. Then dx(t)/dt is everywhere tangent to the curve.

Proof: Take a point x(t) on the curve and a neigh-

bouring point x(t + ∆t), also on the curve, where ∆t

is small. Form the difference

x(t+ ∆t)− x(t)

∆t
.

As the interval ∆t is made smaller, the difference x(t+

∆t)−x(t) comes to lie parallel to the curve (as in the

figure on the right), hence(
x(t+ ∆t)− x(t)

∆t

)
· n→ 0, as ∆t→ 0,

where n is a unit normal vector to the curve at the

point x(t). In other words,

dx

dt
· n = 0,

and the vector dx/dt is therefore everywhere tangent to

the curve x. Thus, dx/dt is often called the tangent

vector or the velocity vector.
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4.2 Frenet–Serret frame

We introduce the notion of arc length. Consider a curve x(t). Along the curve, a small line element

has length

ds2 = dx2 + dy2 + dz2.

Hence, the arc length along the curve, measured from a reference value x0 = x(t = 0) is

s(t) =

∫ s(t)

0

ds =

∫ s(t)

0

√
dx2 + dy2 + dz2 =∫ t

0

√(
dx

dt′

)2

+

(
dy

dt′

)2

+

(
dz

dt′

)2

dt′ =

∫ t

0

∣∣∣∣dxdt′
∣∣∣∣ dt′.

This is a straightforward integration because |dx(t)/dt| is a simple function of time. Moreover,

ds

dt
=

∣∣∣∣dxdt
∣∣∣∣ ≥ 0,

and the arclength is an increasing function of time. There is thus an inverse function t = t(s),

enabling a reparametrization of the curve according to arclength:

x̃(s) = x(t(s)).

Hence,
dx̃

ds
=
dx

dt

dt

ds
=
dx

dt

1∣∣dx
dt

∣∣ , (Chain Rule)

and dx̃/ds is a unit vector tangent to the curve:

T =
dx̃

ds
.

Now

T · T = 1,

hence

0 = T · dT
ds

+
dT

ds
· T =⇒ T · dT

ds
= 0,

and dT /ds is perpendicular to the tangent vector T . We therefore define a new unit vector N ∝
dT /ds that is normal to the tangent:

dT

ds
= κ(s)N ,

and N is the principal normal to the curve and κ is the curvature.
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Now our goal should be clear: we are deriving a triple of axes that move with the curve. T defines

an axis everywhere parallel to the curve; N defines an axis that is everywhere perpendicular to the

curve. In three dimensions, three axes are necessary: we therefore form a third unit vector

B := T ×N .

The triple (T ,N ,B) of axes along the curve x̃(s) parametrized by the arclength s is called the

Frenet–Serret frame.

Note:

dB

ds
= T × dN

ds
+
dT

ds
×N ,

= T × dN

ds
+ κN ×N ,

= T × dN

ds

Hence

T ·
(
dB

ds

)
= T ·

(
T × dN

ds

)
= 0,

and T is perpendicular to dB/ds. But B ·B = 1, hence

B ·
(
dB

ds

)
= 0.

Thus, dB/ds is perpendicular to T and B, and must therefore lie along N :

dB

ds
∝N .

We write
dB

ds
= −τ(s)N ,

where τ is the torsion. Finally, since (T ,N ,B) form a right-handed system (by construction), and

since B = T ×N , we may perform a cyclic permutation and obtain

N = B × T .

Operating on this with d/ds, we obtain

dN

ds
= B × dT

ds
+
dB

ds
× T ,

= B × (κN )− τ(N × T ),

= −κT + τB.
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Let us assemble our results:

Theorem 4.3 For the curve x(s) parametrized by arclength s, with

• T – unit tangent vector to curve ,

• N – unit vector normal to T ,

• B – a second unit vector normal to T , B = T ×N ,

the curvature κ and torsion τ are defined via the following equations:

dT

ds
= κ(s)N ,

dB

ds
= −τ(s)N ,

dN

ds
= τB − κT .

This framework is summarized graphically in Fig. 4.1.

Figure 4.1: The Frenet–Serret frame along a curve. The plane shown the osculating plane, and this
is the plane normal to the vector B. From http://en.wikipedia.org/wiki/Frenet-Serret formulas (3rd

August 2010)
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Frenet–Serret – Worked examples

Overview

We go through some worked examples that apply the Frenet–Serret formulas.

Example: Find the curvature and torsion of the curve y = f(x) in two dimensions.

Solution: As we know from school, a curve in two dimensions can always be written in the form

y = f(x).

In other words,

x = (x, f(x)). (5.1)

Now here, x is simply a label, which indicates that the first variable in the bracket pair (x, f(x))

ranges over the whole real line (or some interval thereof). Thus, we can re-write the curve (5.1) as

x = (t, f(t)).

The unit tangent vector is available immediately as

T = ẋ/|ẋ|,

where

ẋ :=
dx

dt
= (1, f ′(t)), |ẋ| =

√
1 + f ′(t)2.

Henceforth, to save chalk/ink/typing we write f instead of f(t) &c, the functional dependence of

36
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f on t being understood. Hence,

T =
(1, f ′)√
1 + f ′2

. (5.2)

To find the principal normal vector, we are going to have to differentiate Eq. (5.2):

dT

dt
=

(
d

dt
(1 + f ′2)−1/2,

d

dt

f ′

(1 + f ′2)1/2

)
,

=

(
− f ′f ′′

(1 + f ′2)3/2
,
(1 + f ′2)1/2f ′′ − f ′(1 + f ′2)−1/2f ′f ′′

1 + f ′2

)
,

=

(
− f ′f ′′

(1 + f ′2)3/2
,
(1 + f ′2)f ′′ − f ′f ′f ′′

(1 + f ′2)3/2

)
,

=

(
− f ′f ′′

(1 + f ′2)3/2
,

f ′′

(1 + f ′2)3/2

)
,

=
f ′′

(1 + f ′2)3/2
(−f ′, 1) .

Also,

dT

ds
=

dT

dt

/∣∣∣∣dxdt
∣∣∣∣ ,

=
f ′′

(1 + f ′2)3/2

(−f ′, 1)√
1 + f ′2

,

= κN .

Actually, there was some ambiguity in our identification of the curvature in the derivation of the FS

formulae – there are separate notions of signed and unsigned curvature. Here, we identify

κs :=
f ′′

(1 + f ′2)3/2

as the signed curvature of the curve (since it can take either sign). Also, we identify

Ns :=
(−f ′, 1)√

1 + f ′2

as the signed principal normal vector. The unsigned curvature is κus := |κs|, such that

κsNs = |κs|sign(κs)Ns = κussign(κs)Ns.

This gives an unsigned normal vector,

Nus = sign(κs)Ns,
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such that
dT

ds
= κusNus, κus ≥ 0.

To confuse matters more, there is further ambiguity in our choice of (Ns, κs): we can have either

κs = ± f ′′

(1 + f ′2)3/2
, Ns = ± (−f ′, 1)√

1 + f ′2
.

Choosing the positive sign means that the definition of (signed) curvature agrees with the ordinary

notion of curvature, as being a quantity proportional to the second derivative of the curve.

Because (T ,N ) live in the x-y plane for all time, it follows that B is in the z-direction:

B = ẑ.

Now

τ ∝ dB

dt
,

hence

τ = 0.

This makes sense: the torsion is actually a measure of how much the curve “twists” out of the plane

generated by (T ,N ). Since the curve lies in this plane for all time, it is impossible for it to “twist”

out of this plane, hence τ = 0:

Theorem 5.1 τ = 0 for a curve that lives entirely in the x-y plane.

Figure 5.1: Normal and tangent vectors for a two-dimensional curve.
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Example: Find the curvature and torsion of the a right-handed helix, given by the following

parametric equations

x(t) = r cos t, (5.3a)

y(t) = r sin t, (5.3b)

z(t) = vt, t ∈ [0,∞) , r, v > 0. (5.3c)

Note that Equations (5.3) correspond to a right-handed helix. For, imagine a particle that follows

the path (5.3). The particle does circular motion in the x-y plane and, at the same time, it moves

up the z-axis. Moreover, if you coil your four fingers in the sense of the circular motion, your thumb

points in the positive z-direction – the same direction of travel as the particle. Thus, the trajectory

satisfies the right-hand rule.

Solution: We first compute the tangent vector:

dx

dt
=

d

dt
(r cos t, r sin t, vt) ,

= (−r sin t, r cos t, v) ,∣∣∣∣dxdt
∣∣∣∣ =

√
r2 + v2,

dx

dt

/∣∣∣∣dxdt
∣∣∣∣ =

(−r sin t, r cos t, v)√
r2 + v2

.

Hence

T =
(−r sin t, r cos t, v)√

r2 + v2
.

Also,

dT

dt
=

(−r cos t,−r sin t, v)√
r2 + v2

,

and

dT

dt

/∣∣∣∣dxdt
∣∣∣∣ =

(−r cos t,−r sin t, 0)

r2 + v2
,

=
r

r2 + v2
(− cos t,− sin t, 0) ,

=
dT

ds
,

= κsNs.
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Hence,

Ns = ± (− cos t,− sin t, 0) , κs = ± r

r2 + v2
.

Here, by taking the positive sign, the unsigned and signed curvatures agree:

κus = κs =
r

r2 + v2
:= κ;

hence, the signed and unsigned normal vectors also agree:

Nus = Ns = − (cos t, sin t, 0) := N . (5.4)

This means that N is an inward-pointing unit normal (the sign choice here is free and arbitrary

choice). See Fig. 5.2 for more details. Here, the binormal points in the direction of motion (increasing

z), which is a consequence of our having chosen the principal normal vector to be inward-pointing.

Next, we compute the torsion. We have,

B = T ×N ,

=
1√

r2 + v2

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

−r sin t r cos t v

− cos t − sin t 0

∣∣∣∣∣∣∣∣ ,
=

1√
r2 + v2

(v sin t,−v cos t, r) .

Also,

dB

dt
=

1√
r2 + v2

(v cos t, v sin t, 0) ,

dB

dt

/ ∣∣∣∣dxdt
∣∣∣∣ =

v

r2 + v2
(cos t, sin t, 0) ,

= − v

r2 + v2
(− cos t,− sin t, 0) ,

dB

ds
= −τN .

Hence,

τ =
v

r2 + v2
.

Thus, the conventional minus sign in the formula dB/ds = −τN conspires to make the torsion of

a right-handed helix positive. Note also that the torsion remains positive regardless of whether we

take (+N ,+κ) or (−N ,−κ) to be the normal-curvature pair.

Note finally that for a helix,
τ

κ
=
v

r
.
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We therefore have the following result:

Theorem 5.2 The ratio of the torsion to the curvature is constant (t-independent) for a helix.

Figure 5.2: Frenet–Serret frame for a right-handed helix.

Example: Find the curvature and torsion of the general curve

x = t− t3/3, y = t2, z = t+ t3/3.

Solution: We have

x = (t− t3/3)x̂+ t2ŷ + (t+ t3/3)ẑ,

dx

dt
= (1− t2)x̂+ 2tŷ + (1 + t2)ẑ,∣∣∣∣dxdt

∣∣∣∣2 = (1− t2)2 + 4t2 + (1 + t2)2,

= 2(1 + 2t2 + t4) = 2(1 + t2)2.

ds

dt
=

∣∣∣∣dxdt
∣∣∣∣ =
√

2(1 + t2).

T =
dx

ds
=
dx

dt

/ds
dt

=
(1− t2)x̂+ 2tŷ + (1 + t2)ẑ√

2(1 + t2)
.
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Next,

dT

dt
=
{−2tx̂+ 2ŷ + 2tẑ}(1 + t2)− 2t{(1− t2)x̂+ 2tŷ + (1 + t2)ẑ}√

2(1 + t2)2
,

=
−4tx̂+ 2(1− t2)ŷ√

2(1 + t2)2
.

dT

ds
=

dT

dt

/ds
dt
,

=
−4tx̂+ 2(1− t2)ŷ

2(1 + t2)3
=
−2tx̂+ (1− t2)ŷ

(1 + t2)3
.

Using the second FS equation, (
dT

ds

)2

= κ2N 2 = κ2,

κ2 =

∣∣∣∣dTds
∣∣∣∣2 =

4t2 + (1− t2)2

(1 + t2)6
=

(1 + t2)2

(1 + t2)6
=

1

(1 + t2)4
.

Again, we take κs = κus = 1/(1 + t2)2: because both curvatures are positive in this example, there

is no need for the labels ‘s’ and ‘us’. Thus, we unambiguously use the formula

N =
1

κ

dT

ds

and compute

N =
(1 + t2)2{−2tx̂+ (1− t2)ŷ}

(1 + t2)3
=
−2tx̂+ (1− t2)ŷ

1 + t2
.

Furthermore,

B = T ×N ,

hence

B =
1√

2(1 + t2)2

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

(1− t2) 2t (1 + t2)

−2t (1− t2) 0

∣∣∣∣∣∣∣∣
=
−(1− t2)(1 + t2)x̂− 2t(1 + t2)ŷ + (1 + t2)2ẑ√

2(1 + t2)2

=
(t2 − 1)x̂− 2tŷ + (1 + t2)ẑ√

2(1 + t2)
.
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Next, we compute

dB

dt
=

(1 + t2){2tx̂− 2ŷ + 2tẑ} − 2t{(t2 − 1)x̂− 2tŷ + (1 + t2)ẑ}√
2(1 + t2)2

=

√
2{2tx̂− (1− t2)ŷ}

(1 + t2)2
.

dB

ds
=

dB

dt

/ds
dt
,

=
2tx̂− (1− t2)ŷ

(1 + t2)3
,

= − 1

(1 + t2)2

−2tx̂+ (1− t2)ŷ

(1 + t2)
,

= − N

(1 + t2)2
.

Now
dB

ds
= −τN .

Therefore

τ =
1

(1 + t2)2
.

In conclusion, the space curve x = t− t3/3, y = t2, z = t+ t3/3 has curvature

κ =
1

(1 + t2)2

and torsion

τ =
1

(1 + t2)2
.



Chapter 6

Partial derivatives and fields

Overview

In this section we formulate the theory of scalar functions of several variables and learn how to

differentiate such functions. The focus here in this chapter is on the elementary theory of partial

derivatives. Although elementary partial differentiation is covered elsewhere (e.g. MATH 20060),

it is repeated briefly here: it is important to get it right! Don’t worry – we will move on to more

involved topics in later chapters.

6.1 Partial derivatives

Definition 6.1 (Scalar field) A function φ (x1, x2, · · · , xn) of n variables is a map from a subset

of Rn to R:

φ : (Ω ⊂ Rn) → R

(x1, x2, · · · , xn) → φ (x1, x2, · · · , xn) .

The function φ assigns to each point (x1, x2, · · ·xn) ∈ Ω a real number (scalar), and is therefore

called a scalar field.

Examples:

• The elevation above sea level at any point in Ireland is a function of latitude and longitude;

• The pressure of an ideal gas is a function of temperature and density (Boyle’s Law);

44
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• The quantity theory of money says that the GDP of an economy is a function of the

velocity of money and the quantity of (broad) money in circulation.

In this section, we shall consider functions of two variables (x, y); the generalization to three or

more variables is straightforward. When we are given such a function, it is natural to ask how the

function varies as x changes, and as y changes. Equivalently, we want to know how the function

changes as we move in the ‘x-direction’, and in the ‘y’-direction’. Thus, we make small variations

in the x-coordinate, keeping y fixed:

φ (x+ δx, y) .

Then, we form the quotient
φ (x+ δx, y)− φ (x, y)

δx
.

Taking δx→ 0, we obtain the partial derivative of φ w.r.t. x (keeping y fixed):

∂φ

∂x
(x, y) = lim

δx→0

φ (x+ δx, y)− φ (x, y)

δx
.

Similarly, we have a partial derivative with w.r.t. y keeping x fixed: First, we form the quotient

φ (x, y + δy)− φ (x, y)

δy
,

then we take the limit as δy → 0:

∂φ

∂y
(x, y) = lim

δy→0

φ (x, y + δy)− φ (x, y)

δy
.

Thus

To form a partial derivative in the x-direction, you treat y as a constant and do ordinary

differentiation on the x-variable.

6.1.1 Worked examples

Example: Let φ (x, y) = x2 + y2. Compute the first partial derivatives of φ.

Solution: Let us hold y fixed and differentiate w.r.t. x:

∂φ

∂x
=

∂

∂x

(
x2 + y2

)
=

∂

∂x

(
x2 + Const.

)
=

∂

∂x

(
x2
)

= 2x.
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Now hold x fixed and differentiate w.r.t. y:

∂φ

∂y
=

∂

∂y

(
x2 + y2

)
=

∂

∂y

(
Const.+ y2

)
=

∂

∂y

(
y2
)

= 2y.

Example: Let φ (x, y) = x/y. Compute the first partial derivatives of φ.

Let us hold y fixed and differentiate w.r.t. x:

∂φ

∂x
=

∂

∂x

x

y
=

∂

∂x

x

Const.
=

1

Const.
=

1

y

Now hold x fixed and differentiate w.r.t. y:

∂φ

∂y
=

∂

∂y

x

y
=

∂

∂y

Const.

y
= −Const.

y2
= − x

y2

Example: The function φ (x, y, z) = 1/
√
x2 + y2 + z2 is a function of three variables. Compute

all three first partial derivatives of φ.

Solution: Let us hold y and z fixed and differentiate w.r.t. x:

∂φ

∂x
=

∂

∂x

1√
x2 + y2 + z2

=
∂

∂x

1√
x2 + Const.

=
∂

∂x

(
x2 + Const.

)−1/2

= −1
2

(
x2 + Const.

)−3/2
(2x) = − x

(x2 + Const.)3/2
= − x

(x2 + y2 + z2)3/2

Now hold x and z fixed and differentiate w.r.t. y:

∂φ

∂y
=

∂

∂y

1√
x2 + y2 + z2

=
∂

∂x

1√
Const.+ y2

=
∂

∂x

(
Const.+ y2

)−1/2

= −1
2

(
Const.+ y2

)−3/2
(2y) = − y

(Const.+ y2)3/2
= − y

(x2 + y2 + z2)3/2

Lastly, we hold x and y fixed and differentiate w.r.t. z:

∂φ

∂z
=

∂

∂z

1√
x2 + y2 + z2

=
∂

∂z

1√
Const.+ z2

=
∂

∂z

(
Const.+ z2

)−1/2

= −1
2

(
Const.+ z2

)−3/2
(2z) = − z

(Const.+ z2)3/2
= − z

(x2 + y2 + z2)3/2
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Pedantic notation

1. When the function φ is in fact a function of a single variable only (φ = φ (x), say) there is no

difference between ∂/∂x and d/dx. In that case, ∂φ/∂x = dφ/dx = φ′ (x).

2. To save chalk, we will sometimes write ∂φ/∂x as ∂xφ or even φx. A similar notation holds

for partial derivatives w.r.t. y and z.



Chapter 7

Introduction to Maclaurin series

Overview

This is an informal presentation of how to write a function f(x) as a power series. A more rigorous,

formal treatment, follows later. The idea is that the informal treatment will help you to understand

the whole approach. Only with this informal understanding (as well as fluency in the mathematical

techniques involved) can the more formal understanding be built up.

7.1 The basic idea of the Taylor and Maclaurin series

Suppose we have a differentiable function f(x). We can try to write it as a power series centred

at zero as follows:

f(x) =
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + · · · (7.1)

The question is – what are the values of cn? As it turns out, we can determine these in a systematic

way by repeated term-by-term differentiation of the power series. We have,

• f(0) = c0 – got by setting x = 0 in Equation (7.1)

• f ′(x) = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + · · · , hence

c1 = f ′(0).

• f ′′(x) = 2c2 + 3 · 2c3x+ 4 · 3c4x
2 + · · · , hence f ′′(0) = 2c2, hence

c2 = 1
2
f ′′(0).

48
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• f ′′′(x) = 3 · 2c3 + 4 · 3 · 2c4x+ · · · , hence f ′′′(0) = 3 · 2c3, hence

c3 = 1
3·2f

′′′(0).

• f (4)(x) = 4 · 3 · 2c4 + · · · , hence f (4)(0) = 4 · 3 · 2c4, hence

c4 = 1
4·3·2f

(4)(0).

Guess the pattern:

cn =
1

n!
f (n)(0), n = 0, 1, 2, · · · (7.2)

Going back to Equation (7.1), this gives

f(x) =
∞∑
n=0

cnx
n,

=
∞∑
n=0

f (n)(0)

n!
xn (7.3)

This expression is called the Maclaurin series of f(x).

A Macalurin series is an example of a power series centred at zero. We can guess what the corre-

sponding series should look like if the centre is at a 6= 0:

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n. (7.4)

This is the Taylor series of f(x) centred at a.

Watch movie: https://www.youtube.com/watch?v=IL93Sh8LpxM

7.2 Radius of convergence of a generic power series

Here, we look at the radius of convergence of a generic power series, without reference to any

particular Maclaurin series. However, to fix ideas, we will look at a specific example:

∞∑
n=0

(−1)nn

4n
(x+ 3)n :=

∞∑
n=0

an,

where the general term is an, with

an =
(−1)nn

4n
(x+ 3)n
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We apply the ratio test, which says to form the ratio

L = lim
n=∞

∣∣∣∣an+1

an

∣∣∣∣ ,
Then,

• The series converges if L < 1,

• The series diverges if L > 1,

• The test is inconclusive if L = 1 (another test should then be tried)

Here, L is related to the radius of convergence R of the power series, as we will see in the specific

example. A proof of the ratio test is provided in Appendix A.

We now apply the ratio test, identifying

an =
(−1)nn

4n
(x+ 3)n , an+1 =

(−1)n+1(n+ 1)

4n+1
(x+ 3)n+1

Hence,

L = lim
n→∞

∣∣∣∣∣ (−1)n+1(n+1)
4n+1 (x+ 3)n+1

(−1)nn
4n

(x+ 3)n

∣∣∣∣∣ ,
algebra!

= lim
n→∞

1
4

∣∣∣∣n+ 1

n

∣∣∣∣ |x+ 3|,

= 1
4
|x+ 3|.

We now require L < 1 for convergence, hence

1
4
|x+ 3| < 1,

hence

|x+ 3| < 4

Thus, R = 4 is the radius of convergence because the series converges for all values of x in an

interval (radius) of width 4 centred at 3, i.e. for |x+ 3| < 4.
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Remark: The radius of convergence can also be identified as follows:

L = lim
n→∞

∣∣∣∣∣ (−1)n+1(n+1)
4n+1 (x+ 3)n+1

(−1)nn
4n

(x+ 3)n

∣∣∣∣∣ ,
algebra!

= lim
n→∞

1
4

∣∣∣∣n+ 1

n

∣∣∣∣ |x+ 3|,

:= |x+ 3|(1/R),

hence

R =
1

limn→∞
1
4

(
n+1
n

) = 4.

Watch movie: https://www.youtube.com/watch?v=r8bK9j4vKco

7.3 The Maclaurin series of ex

Here, let f(x) = ex and recall Equation (7.3), viz. f(x) =
∑∞

n=0(1/n!)f (n)xn. We have

• f(x) = ex, hence f(0) = 1,

• f ′(x) = ex, hence f ′(0) = 1,

• f ′′(x) = ex (again!), hence f ′′(0) = 1.

Indeed,

f (n)(x) = ex

for all n = 0, 1, 2, · · · , hence

f (n)(0) = e0 = 1, n = 0, 1, 2, · · · .

Plug into Equation (??)

f(x) = ex =
∞∑
n=0

1

n!
xn.

We can use the ratio test to check the radius of convergence:

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ , an =
1

n!
xn,

= lim
n→∞

∣∣∣∣xn+1/(n+ 1)!

xn/n!

∣∣∣∣ ,
= |x| lim

n→∞

1

n
.
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Hence, L = 0 and the series converges for all real values of x, in other words, the radius of

convergence is infinite. Done otherwise,

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ , an =
1

n!
xn,

= |x| lim
n→∞

1

n
,

= |x|/R,

hence

R =
1

limn→∞
1
n

,

= lim
n→∞

(n),

=∞.

We can write down the Taylor series (i.e. arbitrary centre) of f(x) = ex, setting the centre at a.

As before, we have

f (n)(x) = ex =⇒ f (n)(a) = ea,

for all n = 0, 1, 2, · · · . We use the expression (7.4) for the Taylor series of a generic function f(x):

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n,

=
∞∑
n=0

ea

n!
(x− a)n,

= ea
∞∑
n=0

1

n!
(x− a)n,

where ea comes outside the sum because it is a constant.

Watch movie: https://www.youtube.com/watch?v=Rmt2vXW3s2U

7.4 Maclaurin series of sin(x)

We take

f(x) = sin(x) =
∞∑
n=0

f (n)(0)

n!
xn.

We start differentiating:

• f(x) = sin(x), hence f(0) = 0,
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• f ′(x) = cos(x), hence f ′(0) = 1,

• f ′′(x) = − sin(x), hence f ′′(0) = 0,

• f ′′′(x) = − cos(x), hence f ′′′(0) = −1,

• f (4)(x) = sin(x), hence f (4)(0) = 0.

Thus,

f(x) = f (4)(x),

so the above pattern is cyclic and will repeat after every four derivatives. Thus, start with

f(x) = f(0) + f ′(0)x+ 1
2
f ′′(0)x2 + 1

3!
f ′′′(0)x3 + 1

4!
f (4)(0)x4

+ 1
5!
f (5)(0)x5 + 1

6!
f (6)(0)x6 + 1

7!
f (7)(0)x7 + · · · ,

and fill in:

f(x) = 0 + 1 · x+ 0− 1
3!
x3 + 0 + 1 · 1

5!
x5 + 0− 1 · 1

7!
x7 + · · · .

Guess the pattern:

f(x) = sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

We can again use the ratio test to check the radius of convergence:

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ , an =
(−1)n

(2n+ 1)!
x2n+1,

= lim
n→∞

∣∣∣∣(−1)n+1x2(n+1)+1

[2(n+ 1) + 1]!

(2n+ 1)!

(−1)nx2n+1

∣∣∣∣ ,
= |x|2 lim

n→∞

1

(2n+ 3)(2n+ 2)
,

= 0.

Hence, L = 0 and the series converges for all real values of x, in other words, the radius of

convergence is infinite, R =∞.

As extra practice, try to guess / derive the similar expression for cos(x):

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!
= 1− 1

2!
x2 + 1

4!
x4 − 1

6!
x6 + · · · . (7.5)

Watch movie: https://www.youtube.com/watch?v=909lKnRCUiM
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7.5 Maclaurin series of 1/(1− x)

We take

f(x) =
1

1− x
=
∞∑
n=0

f (n)(0)

n!
xn.

We start differentiating:

• f(x) = (1− x)−1, hence f(0) = 1,

• f ′(x) = (−1)(−1)(1− x)−2, hence f ′(0) = 1,

• f ′′(x) = (−1)(−2)(1− x)−3, hence f ′′(0) = 2,

• f ′′′(x) = (−1)(−3)(−2)(1− x)−4, hence f ′′′(0) = 3× 2× 1,

Guessing the pattern, we have f (n)(0) = n!, hence

f(x) =
∞∑
n=0

xn.

We can again use the ratio test to check the radius of convergence:

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ , an = xn,

= lim
n→∞

|x| ,

= |x|.

Hence, L = |x| and the series converges for L < 1, i.e. for |x| < 1. In other words, the radius of

convergence is R = 1, with |x| < R = 1 for convergence.

Of course, this result can also be derived (for |x| < 1) by noting that
∑∞

n=0 x
n is a geometric

progression.

7.6 Maclaurin series – one more example

In this example a clever shortcut is used to avoid computing too many complicated derivatives. You

should try to use a similar shortcut whenever you suspect that your answer might involve a geometric

progression, which has a known series expansion.

Take

f(x) =
x3

x+ 8
.
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We know

f(x) =
∞∑
n=0

f (n)(0)

n!
xn.

Here, please don’t use

f (n)(x) =
dn

dxn

(
x3

x+ 8

)
.

Instead, notice that
1

1− r
=
∞∑
n=0

rn, |r| < 1

is the geometric progression. So,

1

x+ 8
=

1

8
(
1 + x

8

) ,
= 1

8

1

1−
(
−x

8

) ,
=⇒ r = −1

8
x.

Thus,
1

x+ 8
= 1

8

∞∑
n=0

1
8n

(−1)nxn,

provided |r| < 1, i.e. |x/8| < 1, hence |x| < 8. The radius of convergence is therefore R = 8, and

the series converges for all |x| < 8. Note that correspondingly, there is an interval of convergence,

−8 < x < 8.

Putting x3 together now with 1/(x+ 8) we have

x3

x+ 8
= 1

8
x3

∞∑
n=0

1
8n

(−1)n xn,

=
∞∑
n=0

(−1)nxn+3

8n+1
.

Watch movie: https://www.youtube.com/watch?v=rAloScFPX54
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7.7 Maclaurin series – one more example involving the radius

of convergence

In this section we look for the radius of convergence for the Maclaurin series of

f(x) = cos(x2).

Here, please don’t use

f(x) =
∞∑
n=0

f (n)(0)

n!
xn

directly. Instead, let’s start with the well-known formula

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!

(i.e. Equation (7.5)) and let x→ x2 everywhere, to obtain

cos(x2) =
∞∑
n=0

(−1)n(x2)2n

(2n)!
,

=
∞∑
n=0

(−1)nx4n

(2n)!
.

Thereby, identify

an =
(−1)nx4n

(2n)!

and compute

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ,
= lim

n→∞

∣∣∣∣(−1)n+1x4(n+1)

[2(n+ 1)]!

(2n)!

(−1)nx4n

∣∣∣∣ ,
= lim

n→∞

∣∣∣∣ −x4

(2n+ 2)(2n+ 1)

∣∣∣∣ ,
= 0.

Thus, L = 0 (and therefore, L < 1) for all real values of x and hence, the series converges for all

|x| <∞ and therefore, the radius of convergence is again infinite, i.e. R =∞.

Watch movie: https://www.youtube.com/watch?v=lv9Kqk7rxJw



Chapter 8

Taylor’s theorem in one and several

dimensions

Overview

We now introduce Taylor series in a more rigorous and precise way. The discussion starts with

Taylor polynomials, which are a way of approximating a smooth function by a polynomial. Under

certain conditions, this approximation becomes exact in the limit when the degree of the polynomial

tends to infinity. This is Taylor’s theorem. We further use this theory to extend Taylor’s theorem to

several dimensions, introducing along the way the notion of the differential of a function of several

variables.

8.1 Taylor’s theorem in one dimension

Let

f : [α, β] → R,

x 7→ f(x)

Suppose that f(x) is N -times differentiable on (α, β) N continuous derivatives. We start with

Taylor’s theorem in one dimension for f(x). We work with the so-called integral form of the

remainder:
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Theorem 8.1 Suppose that a and x are points in the interval (α, β). Then,

f(x) = f(a)+f ′(a)(x−a)+1
2
f ′′(a)(x−a)2+· · ·+ 1

(k − 1)!
f (k−1)(a)(x−a)k−1+Rk(x), 1 ≤ k ≤ N

(8.1)

where the remainder Rk(x) can be written in integral form as

Rk(x) =
1

(k − 1)!

∫ x

a

f (k)(t) (x− t)k−1 dt. (8.2)

Proof: We show this by mathematical induction. We first of all check that the proposition is true

for k = 1. By the fundamental theorem of calculus we have∫ x

a

f ′(t) dt = f(x)− f(a),

hence

f(x) = f(a) +

∫ x

a

f ′(t) dt,

which agrees with the statement of the theorem at k = 1.

Assume now that the statement is true for a general integer k, with 1 ≤ k < N :

f(x) = f(a) + f ′(a)(x− a) + 1
2
f ′′(a)(x− a)2 + · · ·+ 1

(k − 1)!
f (k−1)(a)(x− a)k−1 +Rk(x), (8.3)

with

Rk(x) =
1

(k − 1)!

∫ x

a

f (k)(t) (x− t)k−1 dt.

Apply integration by parts to the remainder:

Rk(x) =
1

(k − 1)!

∫ x

a

f (k)(t)︸ ︷︷ ︸
=u

(x− t)k−1 dt︸ ︷︷ ︸
=dv

,

=
1

(k − 1)!

[
−1

k
f (k)(t)(x− t)k

∣∣∣∣x
a

+
1

k

∫ x

a

f (k+1)(t)(x− t)k dt

]
,

=
1

k!
f (k)(a)(x− a)k +

1

k!

∫ x

a

f (k+1)(t)(x− t)k dt.

Thus, Equation (8.3) becomes

f(x) = f(a) + f ′(a)(x− a) + 1
2
f ′′(a)(x− a)2 + · · ·+ 1

(k − 1)!
f (k−1)(a)(x− a)k−1

+
1

k!
f (k)(a)(x− a)k +

1

k!

∫ x

a

f (k+1)(t)(x− t)k dt, (8.4)
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which can be written as

f(x) = f(a) + f ′(a)(x− a) + 1
2
f ′′(a)(x− a)2 + · · ·+ 1

(k − 1)!
f (k−1)(a)(x− a)k−1

+
1

k!
f (k)(a)(x− a)k +Rk+1(x), Rk+1(x) =

1

k!

∫ x

a

f (k+1)(t)(x− t)k dt, (8.5)

and thus, the proposition is true for k + 1. We therefore have:

• The proposition is true for k = 1,

• If the proposition is true for k then it is true for k + 1,

and hence, by the principle of mathematical induction, the proposition is true for all k = 1, 2, · · · , N
and thus, Taylor’s remainder theorem is proved.

The only thing stopping us extending the proof to all integers k = 1, 2, · · · is the assumption that

f(x) has only N continuous derivatives. However, from now on we will assume that the function

f(x) has as arbitrarily many continuous derivatives.

8.2 Applications of Taylor’s Theorem

Why is a Taylor series useful? It turns out that the truncations of a Taylor series for f(x) are a

pretty good approximation for f(x). Thus, we can write

f(x) ≈
n∑
k=0

1

k!
f (k)(a)(x− a)k := Tf,a(x)

where the truncation on the right-hand side is called a Taylor polynomial:

Definition 8.1 (Taylor polynomials) The polynomial

Tf,a(x) =
n∑
k=0

1

k!
f (k)(a)(x− a)k,

= f(a) + f ′(a)(x− a) + 1
2
f ′′(a)(x− a)2 + · · ·+ 1

n!
f (n)(a)(x− a)n

is the nth Taylor polynomial of f at a.
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Even better, we have a handle on the error involved in the approximation f(x) ≈ Tf,a(x) – it is

precisely the remainder, and we have

f(x)− Tf,a(x) = Rn+1(x),

Rn+1(x) =
1

n!

∫ x

a

f (n+1)(t)(x− t)n dt,

|Rn+1(x)| =
1

n!

∣∣∣∣∫ x

a

f (n+1)(t)(x− t)n dt

∣∣∣∣ ,
≤ 1

n!
max
t∈[α,β]

|f (n+1)(t)| |x− a|n+1 . (8.6)

The example in the figure on the left shows the

Taylor polynomials centred at x = 0 of degree

n = 1, 3, 5, 7, 9, 11, and 13 and the approxima-

tion they give to sin(x).a It can be seen that the

approximation to sin(x) near x = 0 given by the

Taylor polynomials gets better and better as the

degree of the polynomial is increased.

a“Sintay SVG” by IkamusumeFan - Own work.
Licensed under CC BY-SA 3.0 via Commons -
https://commons.wikimedia.org/wiki/File:Sintay SVG.svg#/media/File:Sintay SVG.svg

We can give this observation some theoretical backbone by looking at Equation (8.6) with a = 0

and

f (n)(0) = ± sin(0) or ± cos(0) =⇒ |f (n)(0)| ≤ 1

to obtain

|Rn(x)| ≤ 1

n!
xn+1

so that in the limit n→∞, Rn(x)→ 0 – in this example, we are guaranteed that the approximation

given by the Taylor polynomials gets better and better (for arbitrary finite x) as the degree of the

polynomials is increased indefinitely.

Example: Estimate ex correct to three significant figures for x = 0.01.

We make various approximations to f(x) = ex for x = 0.01, based on truncations of the Taylor

polynomials of ex centred at zero:

Tn(x) =
n∑
n=0

1

k!
xk.
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n Tn(x) Value

0 1 1

1 1 + x 1.01

2 1 + x+ (x2/2) 1.01005

3 1 + x+ (x2/2) + (x3/6) 1.0100501666666 · · ·
4 1 + (x2/2) + (x3/6) + (x4/24) 1.010050167083334 · · ·

Table 8.1: Approximations of ex by truncations of the Maclaurin series at x = 0.01 (Maclaurin series

= Taylor series centred at a = 0)

Based on Table 8.1,

ex = 1.010, (correct to four significant figures),

and the approximation

ex ≈ 1 + x

is sufficient to capture this function-evaluation to the prescribed level of accuracy.

Note that the remainder is given by the following expressions for the Taylor polynomials Tn(x)

centred at a = 0:

ex − Tn(x) = Rn+1(x), Rn+1(x) =
1

n!

∫ x

0

f (n+1)(t)(x− t)ndt.

We have f(x) = ex, hence

|Rn+1(x)| =
1

n!

∣∣∣∣∫ x

0

et(x− t)ndt

∣∣∣∣ ,
≤ 1

n!

(
max
[0,x]

ex
)
|x|n+1,

≤ 1

n!
max{1, ex}|x|n+1,

→ 0 as n→∞,

and thus the remainder vanishes as n→∞.1 Thus, we can write

ex = lim
n→∞

n∑
k=0

1

k!
xk =

∞∑
k=0

1

k!
xk. (8.7)

This is shown schematically in the figure below. The convergence of infinite series such as the one

1I determine that (1/n!)xn+1 → 0 as n → ∞ for all real values of x by using Stirling’s approdximation of the
factorial n! for large values of n, i.e. n! ∼

√
2πn(n/e)n as n→∞.
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in Equation (8.7) is the next topic for discussion.

8.3 Convergence of Taylor series

Suppose that

• f(x) is C∞ on the interval of interest (α, β),

• The series
∞∑
k=0

1

k!
f (k)(a)(x− a)k

is a convergent power series,

• The remainder Rn(x) tends to zero as n→∞ for all x ∈ (α, β)

then we can take n→∞ in the approximation of f(x) by the Taylor polynomials, and the approxi-

mation becomes exact:

f(x) =
∞∑
k=0

1

k!
f (k)(a)(x− a)k (8.8)
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Definition 8.2 (Taylor series, Maclaurin series) Equation (8.8) is called the Taylor series of

f(x) centred at a. The special case a = 0 is called the Maclaurin series of f(x).

Example: We have already shown that

1

1− x
=
∞∑
n=0

xn, |x| < 1.

Use Taylor’s Theorem to arrive at this result in a different way.

Solution: Let f(x) = (1− x)−1. We have

f ′(x) = (−1)(−1)(1− x)−2,

f ′′(x) = (−2)(−1)(1− x)−3,

f ′′′(x) = (−2)(−1)(−3)(−1)(1− x)−4,

f (n)(x) = n(n− 1) · · · 1(1− x)−n−1,

hence

f(0) = 1,

f ′(x) = 1,

f ′′(x) = 2,

f ′′′(x) = 3× 2× 1.

Guessing the pattern, we have f (n)(0) = n!. We compute the remainder, setting a = 0 in Equa-

tion (8.2):

Rn(x) =
1

(n− 1)!

∫ x

0

n!(1− t)−n−1(x− t)n−1 dt,

= n

∫ x

0

(x− t)n−1

(1− t)n+1
dt,

=
(1− t)−n(x− t)n

x− 1

∣∣∣∣x
0

,

=
xn

1− x
.

Therefore, we need |x| < 1 such that Rn → 0 as n→∞, in which case we can write

1

1− x
=
∞∑
n=0

1

n!
f (n)(0)xn =

∞∑
n=0

xn.
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Each coefficient in the power series is equal to unity and hence the radius of convergence is also

equal to unity. Thus,

|x| < 1 (for convergence),

which is exactly the same interval on which the remainder vanishes.

8.3.1 The mathematician’s nightmare

Sometimes we get sloppy in calculating Taylor series. Indeed, after a while, one can arrive at the

complacent conclusion that a function that is infinitely continuously differentiable will definitely have

a Taylor series. This is mistaken. For, consider the function

f(x) =

e−1/x2 , x 6= 0,

0, x = 0.

All the derivatives of f(x) are zero at zero. Thus, a Maclaurin series of f(x) at x 6= 0 would give

f(x) =
∞∑
n=0

f (n)(0)xn/n! = 0.

Yet f(x) = 0 only at x = 0. This is a contradiction! The only way out of the contradiction is

to conclude that the Taylor series of f(x) centred at zero does not converge to f(x). Thus, just

because a function is infinitely continuously differentiable does not guarantee that the existence of

a ‘proper’ Taylor series – in principle we need to rigorously analyse the remainder as well.

Of course, it is a bit of a pain to analyse the remainder in great depth all of the time, and the above

example is highly exceptional and a bit contrived. Therefore, in the rest of this module – and in

many modules in Applied Mathematics, we shall simply use Taylor’s theorem in a procedural way,

with an expectation of convergence. If our results look dodgy we shall re-examine this approach and

analyse things in proper depth.

Things get better when we move to the complex plane, taking x→ z = x+ iy. There, a function is

complex-differentiable if and only if it has a Taylor-series representation. You will learn about such

functions in MATH 30040 (Functions of One Complex Variable).
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8.4 Big-O notation

Mindful of the discussion above, we consider a smooth function f(x) and assume it can be written

in terms of its Taylor series:

f(x+ h) = f(x) + f ′(x)h+ 1
2
f ′′(x)h2 + · · · .

For small values of h, from our discussion about Taylor polynomials, we know that

f(x+ h) ≈ f(x) + f ′(x)h

is a good approximation to f(x+ h). We also know that the error incurred in this approximation is

Taylor’s remainder R2, with

R2 =

∫ x+h

x

f ′′(t)(x− t) dt,

|R2| ≤ 1
2

sup
(x,x+h)

|f ′′(t)|h2,

and thus the error is proportional to h2.

Definition 8.3 (Big-O notation) Based on the discussion above, we write

f(x+ h) = f(x) + f ′(x)h+O(h2)

to mean that f(x) can be approximated by f(x) + f ′(x)h where the error or leftover term is

proprtional to h2. Similarly,

f(x+ h) = f(x) + f ′(x)h+ 1
2
f ′′(x)h2 + · · ·+ 1

n!
f (n)(x)hn +O(hn+1)

means that f(x + h) can be approximated by a Taylor polynomial of degree n in h, where the

leftover term is proportional to hn+1.

8.5 Taylor’s theorem in several dimensions

We consider here an expression for the first-order terms in Taylor’s expansion in multivariate calculus.

This result is a simple consequence of single-variable version of Taylor’s theorem, together with the

standard rules of partial derivatives. We prove the following theorem:

Theorem 8.2 (Taylor’s theorem in two dimensions) Let f(x, y) be a function of two variables.
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For f(x, y) sufficiently smooth,

f(x+ δx, y + δy) = f(x, y) + fx(x, y)δx+ fy(x, y)δy +O(δx2, δy2, δxδy),

where fx = ∂f/∂x, and fy = ∂f/∂y.

Proof: Call

F (x) := f(x, y + δy), fixed y.

From the single-variable version of Taylor’s theorem,

F (x+ δx) = F (x) + F ′(x)δx+O(δx2);

in other words,

f(x+ δx, y + δy) = f(x, y + δy) + fx(x, y + δy)δx+O(δx2). (8.9)

Now introduce

G0(y) = f(x, y), fixed x,

and

G1(y) = fx(x, y), fixed x.

Hence,

G0(y + δy) = G0(y) +G′0(y)δy +O(δy2) =⇒ f(x, y + δy) = f(x, y) + fy(x, y)δy +O(δy2);

similarly,

G1(y + δy) = G1(y) +G′1(y)δy +O(δy2) =⇒ fx(x, y + δy) = fx(x, y) + ∂yfx(x, y) +O(δy2).

Consider again Eq. (8.9):

f(x+ δx, y + δy) = f(x, y + δy)︸ ︷︷ ︸
=f(x,y)+fy(x,y)δy+O(δy2)

+δx [fx(x, y + δy)]︸ ︷︷ ︸
fx(x,y)+∂yfx(x,y)+O(δy2)

+O(δx2).

Hence,

f(x+ δx, y + δy) = f(x, y) + fx(x, y)δx+ fy(x, y)δy + fxy(x, y)δxδy +O(δx2, δy2).
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The terms that are proportional to δx2, δy2 and δxδy are bundled up into an error term as follows:

f(x+ δx, y + δy) = f(x, y) + fx(x, y)δx+ fy(x, y)δy +O(δx2, δy2, δxδy).

The proof extends readily to higher dimensions. You will encounter the above approximation in

MATH 20060 wherein the following definition will be provided:

Definition 8.4 The quantity fx(x, y)δx + fy(x, y)δy is called the differential of f at the point

(x, y).
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Div, grad, and curl and all that

Overview

We introduce the gradient and curl operators as being distinguished ways of differentiating scalar

and vector fields that carry special physical significance.

9.1 The gradient operator in three dimensions

Definition 9.1 (The gradient operator) Let φ be a function of three variables,

φ :
(
Ω ⊂ R3

)
→ R

(x, y, z) → φ (x, y, z) .

Then the gradient operator acting on φ is a vector with the following form:

gradφ := x̂
∂φ

∂x
+ ŷ

∂φ

∂y
+ ẑ

∂φ

∂z
.

In class, we will write this vector as ∇φ, and call it ‘grad φ’ or ‘nabla φ’.

Example: Compute the gradient of the function φ (x, y, z) = x2 + y2 + z2.

Solution: We know that ∂xφ = 2x, ∂yφ = 2y, and ∂zφ = 2z. Hence,

∇φ = x̂∂xφ+ ŷ∂yφ+ ẑ∂zφ = 2x̂x+ 2ŷy + 2zẑ = 2 (x, y, z) = 2x,

where x is a position vector.

68
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Example: Compute the gradient of the function φ (x, y, z) = 1/
√
x2 + y2 + z2.

Solution: We know that

∂xφ = − x

(x2 + y2 + z2)3/2
,

∂yφ = − y

(x2 + y2 + z2)3/2
,

∂zφ = − z

(x2 + y2 + z2)3/2
.

Hence,

∇φ = x̂

(
− x

(x2 + y2 + z2)3/2

)
+ ŷ

(
− y

(x2 + y2 + z2)3/2

)
ẑ

(
− z

(x2 + y2 + z2)3/2

)

= − (x, y, z)

(x2 + y2 + z2)3/2
= − x

|x|3
.

9.2 The physical meaning of the gradient

In three dimensions, the surface is specified by an equation of the type

φ(x, y, z) = 0.

This is the generic equation for a surface because if φ is sufficiently smooth, it can be inverted in

the neighbourhood of a given point and an expression of the kind z = z(x, y) can be found, which

gives a surface (Fig. 9.1). Suppose that x = (x, y, z) satisfies φ = 0. Then ∇φ evaluated at x is

normal to the surface. To prove this, we take x + δx, a neighbouring point of x that still resides

on the surface. We form the difference

0 = 0− 0,

= φ(x+ δx)− φ(x),

= φ(x+ δx, y + δy, z + δz)− φ(x, y, z),

=
∂φ

∂x
(x, y, z)δx+

∂φ

∂y
(x, y, z)δy +

∂φ

∂z
(x, y, z)δz + H.O.T.,

= ∇φ · δx.

But x and x+ δx are vectors whose tip lies on the surface (Fig. 9.2). Hence, δx is tangent to the

surface, and ∇φ · δx = 0, so ∇φ(x, y, z) is normal to the surface.
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Figure 9.1: A schematic description of a sur-
face described by z = z(x, y).

Figure 9.2: A schematic description of the
normal to a surface, n = ∇φ.

The directional derivative

Suppose we have a scalar field φ(x, y, z) and we want to know how it changes in a given, fixed

direction e. The way to do this is to form the difference

δφ = φ(x+ te)− φ(x),

where t is a parameter that takes all real values. In particular, let t be small. Then we have

δφ = φ(x+ tex, y + teyz, z + tez)− φ(x, y, z),

=
∂φ

∂x
tex +

∂φ

∂y
tey +

∂φ

∂z
tez,

= (∇φ) · et,

= e · ∇φ t.

Hence,
δφ

t
= e · ∇φ.

The Taylor approximation becomes exact when t→ 0:

e · ∇φ = lim
t→0

δφ

t
.
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This is the directional derivative in the direction e:

dφ

de
:= e · ∇φ.

9.3 Vector fields and the divergence operator

Definition 9.2 (Vector Field) A vector field v(x, y, z) in R3 is a map that assigns to each element

of its domain Ω ⊂ R3 a uniquely determined vector, also in R3. In map language,

v :
(
Ω ⊂ R3

)
→ R3,

(x, y, z) → v(x, y, z).

Since v(x, y, z) is a vector, we can write

v(x, y, z) = x̂v1(x, y, z) + ŷv2(x, y, z) + ẑv3(x, y, z)

= = (v1(x, y, z), v2(x, y, z), v3(x, y, z)).

Example: if φ(x, y, z) is a scalar field, then

∇φ = x̂∂xφ+ ŷ∂yφ+ ẑ∂zφ

is a vector field.

Definition 9.3 (Divergence) The divergence of a vector field v(x, y, z) is a scalar computed as

follows:

div v =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
.

Formally, this is like ‘dotting’ ∇ with v, so we write

div v = ∇ · v.

There is one crucial difference between ordinary dot products and the divergence: for ordinary vectors

A ·B = B ·A; for vector fields, ∇ · v is NOT equal to v · ∇.
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9.3.1 Examples

Example: Compute ∇ · v, where v(x, y, z) = x̂x+ ŷy + ẑz.

Solution: If v(x, y, z) = x̂x+ ŷy + ẑz, then

div v =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3.

Example: Consider the vector field

v1 =
∂ψ

∂y
, v2 = −∂ψ

∂x
, v3 = 0.

Show that ∇ · v = 0.

Solution:

div v =
∂

∂x

∂ψ

∂y
+

∂

∂y

(
−∂ψ
∂x

)
+

∂

∂z
0,

=
∂

∂x

∂ψ

∂y
− ∂

∂y

∂ψ

∂x
.

We now use the remarkable fact that the partial derivatives of smooth functions commute,

∂xyψ = ∂yxψ to obtain

div v = 0.

Definition 9.4 A vector field whose divergence is zero is called incompressible.

Example: Consider the vector field

v = x̂∂xφ+ ŷ∂yφ+ ẑ∂zφ,

where φ(x, y, z) is some scalar field. Show that ∇ · v = ∇2φ.

Solution: The divergence of v is

∇ · v = ∂xv1 + ∂yv2 + ∂zv3,

= ∂x∂xφ+ ∂y∂yφ+ ∂z∂zφ,

=
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
.
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This particular operation on the scalar field φ is quite common in physics and is therefore given its

own name: it is called the Laplacian, and given the notation ∇2 (or ∆):

Definition 9.5 The Laplacian of the scalar field φ is given by

∇2φ or ∆φ :=
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
.

9.4 The physical meaning of the divergence

Consider a fluid that flows in a three-dimensional container. We take a small cuboid of sides of

length ∆x, ∆y and ∆z as a control volume, one of whose vertices lies at (x, y, z). Fluid flows into

and out of the cuboid with velocity v(x, y, z, t) (the t is for time). The amount of mass leaving the

system through the x-direction per unit time is

Mass Out−Mass In

Time
in the x direction = (ρv1) (x+ ∆x, y, z) ∆y∆z − (ρv1) (x, y, z) ∆y∆z,

=
∂

∂x
(ρv1)

∣∣∣∣
(x,y,z)

∆x∆y∆z + H.O.T.,

where ρ(x, y, z, t) is the scalar fluid density (Fig. 9.3). Similarly,

Mass Out−Mass In

Time
in the y direction =

∂

∂y
(ρv2)

∣∣∣∣
(x,y,z)

∆x∆y∆z + H.O.T.,

Mass Out−Mass In

Time
in the z direction =

∂

∂z
(ρv3)

∣∣∣∣
(x,y,z)

∆x∆y∆z + H.O.T.,

Adding them,

Total Mass Out− Total Mass In

Time
=

[
∂

∂x
(ρv1) +

∂

∂y
(ρv3) +

∂

∂z
(ρv3)

]
(x,y,z)

∆x∆y∆z

= ∇ · (ρv)

∣∣∣∣
(x,y,z)

∆x∆y∆z.

Now in this control volume, matter is not created or destroyed, so the change in the mass in the

control volume over time must be balanced by changes in the density over time:

Total Mass Out− Total Mass In

Time
=

Change in mass

Time

= − ∂

∂t
(ρ∆x∆y∆z) .
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Why is there a minus sign here? Well, if Total Mass Out > Total Mass in, then the LHS will be a

positive quantity. At the same time, ∂ρ/∂t will be negative (the box is losing mass). Therefore, in

order for the signs to balance, we need

sign (LHS) = +1 = sign (RHS) = sign [(−1)∂ρ/∂t] .

Finally, we equate these two identical changes and take the constant volume element ∆x∆y∆z

outside the time derivative:
∂ρ

∂t
+∇ · (ρv) = 0.

This result is called the continuity equation and holds whenever some continuum quantity is

conserved (e.g. mass or charge).

Figure 9.3: The physical meaning of the divergence
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9.5 The curl of a vector field

Definition 9.6 Let v(x, y, z) = x̂v1(x, y, z) + ŷv2(x, y, z) + ẑv3(x, y, z) be a vector field. The

curl of v is a new vector field formed as follows

curlv :=

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

v1 v2 v3

∣∣∣∣∣∣∣∣ ,
= x̂ (∂yv3 − ∂zv2) + ŷ (∂zv1 − ∂xv3) + ẑ (∂xv2 − ∂yv1) . (9.1)

Because this expression for the curl is like the ordinary cross product of two vectors, we write

curlv = ∇× v.

There is one crucial difference between ordinary cross products and the curl: for ordinary vectors

A×B = −B ×A; for vector fields, ∇× v is NOT equal to −v ×∇.

9.6 The physical meaning of the curl

Consider the following vector field:

v(x, y, z) = yx̂− xŷ.

Imagine that this represents the velocity of a fluid in a container. We can plot the vector field by

drawing a little arrow at random points (x, y) in two-dimensional space (Fig. 9.4). The arrow should

have length
√
x2 + y2 and point in the direction yx̂ − xŷ. Simply by inspection, we see that the

field is rotating. If we stick a paddle wheel anywhere in the fluid, it will be carried by the flow and

rotate clockwise. Using the right-hand rule, we expect the curl to be into the page. If we are to keep

a right-handed coordinate system, the negative z-direction must point into the page. Moreover, we

can apply the formula

ω =
v

r

for ordinary circular motion, to the vector field v, giving

ω =
|yx̂− xŷ|√
x2 + y2

= 1

Thus, the ‘amount of rotation’ in the vector field is constant (independent of position), and the

sense of rotation is into the page.
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Figure 9.4: The vector field v = yx̂− xŷ.
Figure 9.5: The curl of the vector field v =
yx̂− xŷ.

Now, we calculate the curl:

∇× v = 0x̂+ 0ŷ +

[
∂

∂x
(−x)− ∂

∂y
y

]
ẑ = −2ẑ;

it is indeed in the negative z-direction. It is also a constant! Thus, the curl corresponds to our

intuitive idea about the amount of rotation in a vector field.

Plotting the curl of v is not very interesting (Fig. 9.5). Nevertheless, we see the physical meaning

of curl: it tells us by how much a vector field is rotating, and in what sense.

9.7 Formulas involving div, grad, and curl

Theorem 9.1 Let φ(x, y, z) and ψ(x, y, z) be differentiable scalar fields and let u(x, y, z) and

v(x, y, z) be differentiable vector fields. Then the following identities hold:

1. ∇(φ+ ψ) = ∇φ+∇ψ;

2. ∇ · (u+ v) = ∇ · u+∇ · v;

3. ∇× (u+ v) = ∇× u+∇× v;

4. ∇ · (φu) = (∇φ) · u+ φ(∇ · u);

5. ∇× (φu) = (∇φ)× u+ φ(∇× u);
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6. ∇ · (u× v) = v · (∇× u)− u · (∇× v);

7. ∇× (u× v) = (v · ∇)u− v (∇ · u)− (u · ∇)v + u (∇ · v);

8. ∇ (u · v) = (v · ∇)u+ (u · ∇)v + v × (∇× u) + u× (∇× v);

9. ∇× (∇× u) = ∇ (∇ · u)−∇2u.

Properties 1–3 are obvious; the others are tricky and some of them will appear as exercises. Note

that if λ and µ are a scalars (constant real numbers), then

∇ (λφ+ µψ) = λ∇φ+ µ∇ψ,

and similarly, for vector fields,

∇ · (λu+ µv) = λ∇ · u+ µ∇ · v,

and

∇× (λu+ µv) = λ∇× u+ µ∇× v.

This is the property of linearity. The operations div, grad, and curl thus take vector or scalar fields

and map them linearly to other vector or scalar fields. They are thus called linear operators. In

the next chapter we will gain more proficiency in handling these operators.



Chapter 10

Techniques in vector differentiation

Overview

In this section we gain more familiarity with the vector operators div, grad, and curl by doing a

number of examples.

10.1 Calculations

Example: If u = 2x2x̂ − 3yzŷ + xz2ẑ and φ = 2z − x3y, find u · ∇φ at the point (1,−1, 1)

and u×∇φ at the point (1,−1, 1).

Solution: We have

u = 2x2x̂− 3yzŷ + xz2ẑ,

φ = 2z − x3y,

gradφ = −3x2y x̂− x3 ŷ + 2 ẑ.

At (1,−1, 1),

u = 2x̂+ 3ŷ + ẑ,

gradφ = 3x̂− ŷ + 2ẑ,

u · gradφ = 6− 3 + 2 = 5.

78
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Also,

u× gradφ =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

2 3 1

3 −1 2

∣∣∣∣∣∣∣∣
= 7x̂− ŷ − 11 ẑ.

Example: If ∇φ = 2xyz3x̂+ x2z3ŷ + 3x2yz2ẑ, find φ(x, y, z) if φ(1,−2, 2) = 4.

Solutioni: We have

∂φ

∂x
= 2xyz3,

φ = x2yz3 + f(y, z),

∂φ

∂y
= x2z3,

φ = x2yz3 + g(z, x),

∂φ

∂z
= 3x2yz2,

φ = x2yz3 + h(x, y).

Therefore

f(y, z) = g(z, x) = h(x, y) = c (constant)

and

φ(x, y, z) = x2yz3 + c.

φ(1,−2, 2) = −16 + c = 4, c = 20,

φ(x, y, z) = x2yz3 + 20.

Example: Find the unit outward drawn normal to the surface (x − 1)2 + y2 + (z + 2)2 = 9 at

the point (3, 1,−4).

Solution: Let φ = (x− 1)2 + y2 + (z + 2)2 − 9. Then

gradφ = 2(x− 1) x̂+ 2y ŷ + 2(z + 2) ẑ.

At (3, 1,−4), gradφ = 4x̂+ 2ŷ − 4ẑ.
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Unit outward drawn normal:

n =
gradφ

|gradφ|
=

4x̂+ 2ŷ − 4ẑ√
16 + 4 + 16

=
2x̂+ ŷ − 2ẑ

3
.

Example: Find the equation for the tangent plane and the equation (not just the direction) of

the normal line to the surface z = x2 + y2 at the point (2,−1, 5)

Solution: Let φ = x2 + y2 − z. Then

gradφ = 2xx̂+ 2yŷ − ẑ.

At (2,−1, 5), gradφ = 4x̂− 2ŷ − ẑ.

Normal (not necessarily a unit normal):

n = gradφ = 4x̂− 2ŷ − ẑ.

Let r0 = 2x̂− ŷ + 5ẑ. The tangent plane at r0 is given by

(r − r0) · n = 0,

4(x− 2)− 2(y + 1)− (z − 5) = 0,

4x− 2y − z = 5.

Normal line:

r = r0 + λn,

r − r0 = λn,

(x− 2) x̂+ (y + 1) ŷ + (z − 5) ẑ = λ(4x̂− 2ŷ − ẑ),

x− 2 = 4λ, y + 1 = −2λ, z − 5 = −λ,
x− 2

4
=
y + 1

−2
=
z − 5

−1
(= −λ).
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Show that u = (6xy + z3)x̂ + (3x2 − z)ŷ + (3xz2 − y)ẑ is irrotational (∇× u = 0). Find φ

such that u = ∇φ.

Solution: We have

curlu =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

6xy + z3 3x2 − z 3xz2 − y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1 + 1) x̂− (3z2 − 3z2) ŷ + (6x− 6x) ẑ = 0.

Suppose u = gradφ.

∂φ

∂x
= 6xy + z3,

φ = 3x2y + xz3 + f(y, z),

∂φ

∂y
= 3x2 − z,

φ = 3x2y − yz + g(z, x),

∂φ

∂z
= 3xz2 − y,

φ = xz3 − yz + h(x, y).

Therefore

f(y, z) = −yz + c, g(z, x) = xz3 + c, h(x, y) = 3x2y + c.

and

φ(x, y, z) = 3x2y + xz3 − yz + c.

Caution: In this example, the final answer is of the form φ(x, y, z) = f(y, z) + g(z, x) + h(x, y).

However, this is not true in general, e.g. u = ∇φ, where φ = zexy does not decompose into a sum

like the one in this example.
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10.2 Proofs

Example: Show that ∇× (∇φ) = 0, for any differentiable scalar field φ(x, y, z).

Solution: We have

∇× (∇φ) =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

∂xφ ∂yφ ∂zφ

∣∣∣∣∣∣∣∣
= x̂ (∂x∂yφ− ∂y∂xφ)− ŷ (∂x∂zφ− ∂z∂x) + ẑ (∂x∂yφ− ∂y∂xφ) .

Since the scalar field is smooth, the partial derivatives commute, and this sum is zero. This exercise

shows the implication

u = ∇φ =⇒ ∇× u = 0.

In one of the previous examples we encountered ∇× [(6xy + z3)x̂+ (3x2 − z)ŷ + (3xz2 − y)ẑ] =

0 =⇒ ∃φ = 3x2y + xz3 − yz such that

∇φ =
[
(6xy + z3)x̂+ (3x2 − z)ŷ + (3xz2 − y)ẑ

]
= u.

In fact, the implication always goes both ways:

Theorem 10.1 A vector field u(x, y, z) is irrotational if and only if it can be written as the gradient

of a scalar field,

u(x, y, z) = ∇φ(x, y, z).

We shall prove this statement later in the module using Stokes’s Theorem.

Example: Prove that

∇× (∇× u) = ∇(∇ · u)−∇2u,

for any differentiable vector field u(x, y, z).

curl (curlu) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

∂u3

∂y
− ∂u2

∂z

∂u1

∂z
− ∂u3

∂x

∂u2

∂x
− ∂u1

∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Let B = curl (curlu). Then

B1 =
∂2u2

∂x∂y
− ∂2u1

∂y2
+
∂2u3

∂x∂z
− ∂2u1

∂z2

=
∂

∂x

∂u1

∂x︸︷︷︸
∗∗∗

+
∂u2

∂y
+
∂u3

∂z

−
∂2u1

∂x2︸ ︷︷ ︸
∗∗∗

+
∂2u1

∂y2
+
∂2u1

∂z2


=

∂

∂x
(divu)− grad 2u1.

Similarly

B2 =
∂

∂y
(divu)− grad 2u2 and B3 =

∂

∂z
(divu)− grad 2u3.

Therefore

curl (curlu) = B = B1 x̂+B2 ŷ +B3 ẑ

=

(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
(divu)− grad 2(u1 x̂+ u2 ŷ + u3 ẑ)

= grad (divu)− grad 2u.

10.3 Physical application: fluid flow in two dimensions

In a general three-dimensional setting, a vector field u(x, y, z) (and possibly time) describes the

velocity of a fluid at location x = (x, y, z). The vorticity ω(x, y, z) measures the amount of

rotation in the fluid, and its sense:

ω = ∇× u =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

u1 u2 u3

∣∣∣∣∣∣∣∣
Prove that in a two-dimensional fluid, where

u(x, y, z) = (u1(x, y), u2(x, y), 0)

the vorticity is given by

ω(x, y) = ω(x, y)ẑ, ω(x, y) = ∂xu2 − ∂yu1.
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We have

ω =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

u1(x, y) u2(x, y) 0

∣∣∣∣∣∣∣∣ ,
= x̂ (∂y0− ∂zu2(x, y))− ŷ (∂x0− ∂zu1(x, y)) + ẑ (∂xu2 − ∂yu1)

= ẑ (∂xu2 − ∂yu1) ,

as required. The vorticity has magnitude ω = ∂xu2 − ∂yu1 and points in the z-direction.

Suppose that the two-dimensional fluid is incompressible if ∇ · u = 0, i.e.

∂xu1 + ∂yu2 = 0.

Prove that the necessary and sufficient condition for the fluid to be incompressible is the existence

of a streamfunction ψ(x, y), such that

u1 = ∂yψ, u2 = −∂xψ.

Necessity: Assume that the flow is incompressible, ∂xu1 +∂yu2 = 0. We show that a streamfunction

exists by construction: Let

ψ(x, y) =

∫ y

a

u1 (x, λ) dλ−
∫ x

b

u2(µ, a)dµ,

where a is an arbitrary y-value in the domain of the fluid and λ is a dummy variable of integra-

tion. Similarly, b is an arbitrary x-value and µ is a dummy variable. By construction, and by the

Fundamental Theorem of Calculus,
∂ψ

∂y
= u1 (x, y) .

Now

∂ψ

∂x
=

∂

∂x

∫ y

a

u1 (x, λ) dλ− u2(x, a),

=

∫ y

a

∂u1

∂x
(x, λ) dλ− u2(x, a),

= −
∫ y

a

∂u2

∂λ
(x, λ) dλ− u2(x, a), (By incompressibility)

= − [u2 (x, y)− u2 (x, a)]− u2(x, a),

= −u2(x, y).
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Hence, ψ is a streamfunction because the flow (u1(x, y), u2(x, y)) can be derived from it.

Sufficiency: Assume that the streamfunction exists. Then

u1 =
∂ψ

∂y
, u2 = −∂ψ

∂x
,

and

divu =
∂

∂x

∂ψ

∂y
+

∂

∂y

(
−∂ψ
∂x

)
,

=
∂

∂x

∂ψ

∂y
− ∂

∂y

∂ψ

∂x
.

Using the fact that the partial derivatives of smooth functions commute, ∂xyψ = ∂yxψ, we obtain

divu = 0.

Thus, a two-dimensional flow is incompressible if and only if it has a streamfunction.

Prove that

∇2ψ = −ω.

Hence, demonstrate that in an irrotational fluid, ∇2ψ = 0.

We have

ω = ∂xu2 − ∂yu1,

= ∂x (−∂xψ)− ∂y (+∂yψ) ,

= −
(
∂2
x + ∂2

y

)
ψ,

and ω = −∇2ψ. If the flow is irrotational, its curl is zero, and ω = 0. Hence, in an irrotational flow,

∇2ψ = 0. No streamfunction exists in three-dimensional flows and this simple analysis no longer

holds there.
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Line integrals

Overview

Logically, the next step after differentiating vector and scalar fields is to integrate them. We start with

line integrals. These are the easiest because they are most like ordinary single-variable integration.

11.1 The definition

Formally, we have the following small increment of displacement:

dx = x̂dx+ ŷdy + ẑdz,

which gives rise to the following possible integrals for a scalar field φ(x, y, z) and a vector field

v(x, y, z): ∫
C

φ(x, y, z)dx,∫
C

v(x, y, z) · dx,∫
C

v(x, y, z)× dx,

where C denotes a contour, that is, a curve xC(t) : R → R3. Let us work with the first kind

of integral and introduce the formal definition (generalizing to the other integrals will be left to

exercises and examples).
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Definition 11.1 (Line integrals) Let xC : [t1, t2]→ R3 be some piecewise smooth curve. Then

the line integral
∫
C
φ(x, y, z)dx along the curve C is defined as follows:

∫
C

φ(x, y, z)dx :=

∫ t2

t1

φ (xC(t))
dxC
dt

dt,

= x̂

∫ t2

t1

φ (xC(t))
dxC
dt

dt+ ŷ

∫ t2

t1

φ (xC(t))
dyC
dt

dt+ ẑ

∫ t2

t1

φ (xC(t))
dzC
dt

dt

11.2 Worked examples

Example: Let φ(x, y) = x2 +y2. Compute the

line integral along the curve

C1 : (0, 0)→ (1, 0) , in a straight line,

C2 : (1, 0)→ (1, 1) , in a straight line.

The path (0, 0)→ (1, 0)→ (1, 1).

Solution: Break up the integration into two parts. In the first part, the curve is

xC1(t) = (t, 0) , t ∈ [0, 1] ,
dxC1

dt
= (1, 0) .

Hence, ∫
C1

φ(x, y, z)dx = x̂

∫ 1

0

t2dt+ ŷ

∫ 1

0

0 dt = 1
3
x̂.

In the second part, the curve is

xC2(t) = (1, t) , t ∈ [0, 1] ,
dxC1

dt
= (0, 1) .

Hence, ∫
C2

φ(x, y, z)dx = ŷ

∫ 1

0

(1 + t2) dt = 4
3
ŷ.
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Putting them together,∫
C

φ(x, y, z)dx =

∫
C1

φ(x, y, z)dx+

∫
C2

φ(x, y, z)dx = 1
3
x̂+ 4

3
ŷ.

The most common line integrals in physics are of the form
∫
C
v · dx, as in the following example:

Consider a vector field

v = 3xyx̂− y2ŷ

integrated along the curve C defined by y = 2x2, from the origin (0, 0) to the point (1, 2).

Evaluate
∫
C
v · dx.

Solution: The curve has the parametric form

xC(t) =
(
t, 2t2

)
, t ∈ [0, 1]

dxC
dt

= (1, 4t) .

We compute ∫
C

v · dx =

∫
C

[v1(x, y)dx+ v2(x, y)dy] ,

=

∫
C

v1(xC(t))
dxC
dt

dt+

∫
C

v2(xC(t))
dyC
dt

dt,

=

∫ 1

0

3(t)(2t2)(1) dt+

∫ 1

0

[−(2t2)2](4t) dt,

=

∫ 1

0

6t3 dt−
∫ 1

0

16t5 dt,

= −7
6
.
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In mechanics, there is the notion of force. Suffice to say, force is a vector field in two or three

dimensions, F (x, y), or F (x, y, z). The work done, W , as a particle is moved along a trajectory

xC(t) through the force field F (x) is the line integral of the force field along the trajectory:

W =

∫
C

F (x) · dx.

Example: Consider a force

F = −k (x̂x+ ŷy) .

Compare the work done moving against this force field when going from (1, 1) to (4, 4) along

the following straight-line paths:

(1, 1) → (4, 1)→ (4, 4),

(1, 1) → (1, 4)→ (4, 4),

(1, 1) → (4, 4), along x = y.

Solution: Consider for example the third path. The curve is

xC(t) = (1 + t, 1 + t) , t ∈ [0, 3],
dxC
dt

= (1, 1),

and the integral is ∫
C

F · dx =

∫
C

[F1(x, y)dx+ F2(x, y)dy] ,

=

∫ 3

0

F1(xC(t))
dxC
dt

dt+

∫ 3

0

F2(xC(t))
dyC
dt

dt,

= −2k

∫ 3

0

(1 + t)dt,

= −15k.

The other two cases are left as an exercise but you should get the same answer in all three cases.

Here is why. The force field F = −k(x̂x+ ŷy) can be written as

F = −k (x̂x+ ŷy) = −∇
[
k

2

(
x2 + y2

)]
:= −∇U(x, y).
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Thus, along any path C, ∫
C

F · dx = −
∫
C

∇U · dx,

= −
∫ t2

t1

∇U (xC(t)) · dxC
dt

dt,

∫
C

F · dx = −
∫ t2

t1

d

dt
U (xC(t)) dt,

= − [U(xC(t2))− U(xC(t1))] ,

and the line integral is independent of the path and depends only on the initial and final points.

Recall from previous lectures that a vector field F is irrotational if and only if it can be written in

the form F = −∇U . Thus, we have the following string of statements:

A vector field F is irrotational if and only if

• ∇ × F = 0 if and only if

• F = −∇U if and only if

• The line integral
∫
C
F · dx depends only on the initial and final points of the path

C and is independent of the details of the path between these terminal points.

Consider also a closed path C, for which xC(t2) = xC(t1). For an irrotational vector field u(x)

integrated over such a path,∫
C

u(x) · dx :=

∮
C

u(x) · dx

= −
∫
C

∇U · dx

= − [U(xC(t2))− U(xC(t1))]

= − [U(xC(t2))− U(xC(t2))]

= 0.
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Example: In contrast, consider the force

G = −k (x̂y − ŷx) .

Compute the curl of the force. Show that the work done is path-dependent.

Solution: The curl of the force is

∇×G =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

−ky kx 0

∣∣∣∣∣∣∣∣ = 2kẑ.

Let’s integrate along the paths

C : (1, 1)→ (4, 1)→ (4, 4),

D : (1, 1)→ (1, 4)→ (4, 4).

First path, first component:

xC1(t) = (1 + t, 1) , t ∈ [0, 3],
dxC
dt

= (1, 0),

and

G · dx = G · dxC
dt

dt = Gxdt = −kydt = −kdt.

Integrating gives −3k. First path, second component:

xC2(t) = (4, 1 + t) , t ∈ [0, 3],
dxC
dt

= (0, 1),

and

G · dx = G · dxC
dt

dt = Gydt = +kxdt = 4kdt.

Integrating gives 12k. Adding up gives ∫
C

G · dx = 9k.

Second path, first component:

xD1(t) = (1, 1 + t) , t ∈ [0, 3],
dxC
dt

= (0, 1),
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and

G · dx = G · dxD
dt

dt = Gydt = +kxdt = kdt.

Integrating gives +3k. Second path, second component:

xD2(t) = (1 + t, 4) , t ∈ [0, 3],
dxC
dt

= (1, 0),

and

G · dx = G · dxD
dt

dt = Gxdt = −kydt = −4kdt.

Integrating gives −12k. Adding up gives∫
C

G · dx = −9k.

and the two paths differ.



Chapter 12

Theory of integration

Overview

We review the theory of Riemann integration in one dimension. This enables us to extend integration

theory to higher dimensions. We will then have the theoretical background to be able to do practical

integration calculations in subsequent chapters.

12.1 Riemann integration in one dimension – review – or

crash course?

We introduce the notion of the Riemann integral for a generic continuous function

f : [a, b] → R,

x 7→ f(x),

with the positivity property

f(x) > 0 on [a, b].

We consider the problem of finding the area under the curve y = f(x).

We form a uniform partition of [a, b],

[a, b] = [x0, x1] ∪ [x1, x2] ∪ · · · ∪ [xN−1, xN ], a = x0, b = xN ,

xi = a+ i

(
b− a
N

)
, i = 0, 1, · · · , N.

93
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We form the following upper and lower sums:

Upper : UN :=
N−1∑
i=0

[
sup

x∈[xi,xi+1]

f(x)

]
(xi+1 − xi) ,

Lower : LN :=
N−1∑
i=0

[
inf

x∈[xi,xi+1]
f(x)

]
(xi+1 − xi) .

Definition 12.1 The function f is called Riemann-integrable with Riemann integral I if

lim
N→∞

UN = lim
N→∞

LN := I. (12.1)

See Figure 12.5 for the accompanying sketch.

Figure 12.1: Upper and lower sums for Riemann integration

We have the following important result:

Theorem 12.1 (Riemann integrability for continuous functions) Let f : [a, b] → R be con-

tinuous on [a, b] with the positivity property f(x) > 0. Then f is Riemann integrable.

No proof is provided here – this is not an analysis class, but see Beals (p. 107)
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A further result enables an obvious generalization of Riemann integration to non-positive functions:

Theorem 12.2 Let f : [a, b] → R be continuous on [a, b] with the positivity property f(x) > 0,

and let c ∈ (a, b). Then ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Hence, we have the following definition:

Definition 12.2 Let f : [a, b] → R be continuous on [a, b] with c ∈ (a, b) such that f(x) ≤ 0 on

[a, c] and f(x) ≥ 0 on [c, b]. Then∫ b

a

f(x) dx := −
∫ c

a

[−f(x)] dx+

∫ b

c

f(x) dx. (12.2)

Definition (12.2) is extended in an obvious way to continuous functions with many zeros on a given

interval of integration. Moreover, the Riemann-sum definition (12.1) can be applied to non-positive

functions immediately without the intermediate step in Equation (12.2).

In MATH10350 you will have seen the statement of the Fundamental Theorem of Calculus. This

can be connected to Riemann integration as follows. First, let f(x) be a continuous function on an

interval [a, b]. Form the Riemann integral

F (x) =

∫ x

a

f(x) dx, x ∈ (a, b). (12.3)

Then,

Theorem 12.3 The function F (x) in Equation (12.3) is differentiable with continuous derivative

and moreover,
dF

dx
= f(x), x ∈ (a, b).

This establishes the remarkable – and when you think of it, utterly surprising – connection between

Rieann integration and calculus. This theorem is discussed and proved in Beals (p. 111).

12.2 Multivariable integration – heuristic

We explain and develop the theory of multivariable integration by a heuristic approach. This is a

great word! Wikipedia defines it to mean

A heuristic technique, often called simply a heuristic, is any approach to problem solving,

learning, or discovery that employs a practical methodology not guaranteed to be optimal

or perfect, but sufficient for the immediate goals.
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This is perfect for us - we want a shortcut to the general tehory of multivariable integration, mindful

that a full rigorous theory should be left to the pure mathematicans – and perhaps a module in

Measure Theory such as MATH 40430 (Measure Theory & Integration).

We therefore consider the problem of finding the area of a right-angled triangle (Fig. 12.2). The

Figure 12.2: Right-angled triangle with vertices at (0, 0), (a, 0), and (0, b).

first goal here is to compute from first-principles the area of the triangle using Riemann integration,

using two separate approaches. We shall show that these approaches give the same answer. This is

an illustration of a general principle called Fubini’s theorem, which we state at towards the end of

this chapter.

There are at least two ways of calculating the area of the triangle in Figure 12.2 using Riemann

integration. The first involves a sum over boxes, whereby we break up the triangle into small

boxes and sum over all such boxes. To do this, we fit rows of boxes into the triangle, where each

row is parallel to the x-axis. Each box has sides of length ∆x (See Figure 12.3).

• First row of boxes: N1 boxes fit into the first row, with ∆y = m(N1∆x) + b, hence

N1 =
∆y − b
m∆x

.

• N2 boxes are placed into the second row, with

N2 =
2∆y − b
m∆x

.

• One continues thus until the last row is reached, in which precisely one box fits. This is the



12.2. Multivariable integration – heuristic 97

N th
y row, and Ny∆y = m∆x+ b, hence

Ny =
m∆x+ b

∆y
.

Figure 12.3: The area of a triangle computed as a Riemann sum, where each summand is a small
box.

We sum of the total area of the boxes:

Area = ∆x∆yN1 + ∆x∆yN2 + · · ·+ ∆x∆y,

= ∆x∆y

(
∆y − b
m∆x

)
+ ∆x∆y

(
2∆y − b
m∆x

)
+ · · ·+ ∆x∆y,

= ∆y

(
∆y − b
m

)
+ ∆y

(
2∆y − b

m

)
+ · · ·+ ∆x∆y,

=
∆y2

m

Ny∑
j=1

j − ∆y

m

n∑
j=1

b,

=
∆y2

m
1
2
Ny(Ny + 1)− b∆y

m
Ny,
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Now use the formula for Ny:

Area = 1
2

∆y2

m

(
m∆x+ b

∆y

)(
m∆x+ b

∆y
+ 1

)
− b∆y

m

(
m∆x+ b

∆y

)
,

=
1

2m
(m∆x+ b) (m∆x+ b+ ∆y)− b

m
(m∆x+ b),

∆x,∆y→0
=

b2

2m
− b2

m
,

= − b2

2m
.

Using m = −b/a, this is

Area = 1
2
ab.

Another way of calculating the area of the triangle involves a sum over strips: we break up the

triangle into small vertical strips and sum over all such strips. There are N strips of width ∆x,

hence (N + 1)∆x = 1, and N = (a/∆x)− 1 (Figure 12.4). The height of the jth strip is

yj = mxj + b = m(j∆x) + b.

We sum over the area of each strip as follows:

Area =
N∑
j=1

yj∆x,

=
N∑
j=1

(m∆xj + b)∆x,

= m∆x2

N∑
j=1

j + b∆x
N∑
j=1

(1),

= 1
2
m∆x2N(N + 1) + b∆xN,

= 1
2
m∆x2

( a

∆x

)( a

∆x
− 1
)

+ b∆x
( a

∆x
− 1
)
,

= 1
2
ma (a−∆x) + (a−∆x)b,

∆x→0
= 1

2
ma2 + ab,

= 1
2

(
− b
a

)
a2 + ab,

= 1
2
ab.

Both methods give the same answer. Indeed, we could have computed the area strip-wise by using

strips parallel to the x-axis, rather than perpendicular, and we would still get the same answer. One

can think of this result as being the equivalence of the ‘limit over strips’ and ‘the limit over squares’.
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Figure 12.4: The area of a triangle computed as a Riemann sum, where each summand is a small
strip.

This fact fits into a much more general result called Fubini’s theorem

12.3 Fubini’s theorem for areas

We now consider the problem of Riemann integration in two dimensions for a more general domain.

Let Ω be a region in R2 whose boundary is a piecewise continuous closed curve (Figure 12.5). The

goal here is to compute the area of the region Ω. We start with a sum over boxes: we fit a grid

of small boxes into the region Ω, of sides of length ∆x and ∆y. The ith box has its centre at xi.

Those sections of Ω not covered by the grid become vanishingly small as ∆x and ∆y are reduced

indefinitely. We therefore have

area(Ω) = lim
∆x→0
∆y→0

∑
xi∈Ω

∆x∆y.

We interpret this integral as the double integral over Ω:∫ ∫
Ω

dx dy
def
= lim

∆x→0
∆y→0

∑
xi∈Ω

∆x∆y;
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Figure 12.5: Riemann integration in R2 as a ‘limit over boxes’. Each small box has sides of length
∆x and ∆y.

for sets Ω with piecewise continuous boundaries, the limit can be shown to exist and from Figure 12.5,

it follows that the double integral is equal to the area of the region Ω.

However, the area of Ω can also be computed as a ‘limit over strips’. Consider Figure 12.6. In this

Figure 12.6: Riemann integration in R2 as a ‘limit over strips’. Each small strip has width ∆x.

figure, the region Ω is filled in with narrow strips of width ∆x. The strips are centred at xi, with

i = 1, 2, · · · . Also, for each x-value, the there are two y-boundary points, denoted by y1(x) and
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y2(x). Thus,

area(Ω) = lim
∆x→0

∆x
∑
xi

[y2(xi)− y1(xi)] . (12.4)

But

y2(xi)− y1(xi) =

∫ y2(xi)

y1(xi)

dy.

Define

F (x) :=

∫ y2(x)

y1(x)

dy.

Thus, Equation (12.4) becomes

area(Ω) = lim
∆x→0

∑
xi

∆xF (xi).

But this is an ordinary (one-dimensional) Riemann integral:

area(Ω) =

∫ xu

xl

dxF (x).

One restores the definition of F (x) to obtain

area(Ω) =

∫ xu

xl

dx

[∫ y2(x)

y1(x)

dy

]
.

But

area(Ω) =

∫ ∫
Ω

dx dy,

and we therefore have Fubini’s theorem for areas, in the general case:

∫ ∫
Ω

dx dy =

∫ xu

xl

dx

[∫ y2(x)

y1(x)

dy

]
.

In other words, the difficult and slightly weird double integral on the left-hand side can be converted

into a repeated application of single integrals on the right-hand side, albeit that the limits of

integration on the innermost integral are not necessarily constants.

Finally, there is nothing special about strips parallel to the y-axis, so we have, quite generally,

∫ ∫
Ω

dx dy =

∫ xu

xl

dx

[∫ y2(x)

y1(x)

dy

]
=

∫ yu

yl

dy

[∫ x2(y)

x1(y)

dx

]
. (12.5)

Here, yl and yu refer to the (constant) extent of the domain in the y-direction, and x1(y) and

x2(y) refer to the boundary curves, where the x-coordinates are viewed as parametric functions of
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y. Thus, Fubini’s theorem is sometimes restated as the fact that ‘the order in which the integration

is performed does not matter’.

In Fubini’s theorem, the parametric boundary curves y1(x) and y2(x) (and their inverses) refer to

the upper and lower segments of the boundary in Figure 12.5. Of course, it is possible for certain

ranges of x, that three or more parametric paths are required to describe the boundary (draw this!),

but this does not affect any of the arguments given in this chapter.

12.4 Integration of functions of several variables

Of course, not only do we wish to compute areas, but also n-fold integrals of functions. Focusing

on the two-dimensional case, we wish to define and compute integrals such as

I =

∫ ∫
Ω

dx dy f(x, y),

where f(x, y) is a continuous function and Ω is a set whose boundary is a closed, piecewise continuous

curve. Following on from the previous section, this is naturally defined to be∫ ∫
Ω

dx dy f(x, y)
def
= lim

∆x→0
∆y→0

∑
xi∈Ω

f(xi)∆x∆y; (12.6)

the main purpose of the analytic theory of Riemann integration is to show that this limit exists

for continuous functions and for sets whose boundaries are closed and piecewise continuous; the

existence of this limit is taken as given in this module (this is not an analysis course).

As in the previous section, we note that the sum in Equation (12.6) can be computed in many ways.

We therefore choose to compute the sum in the following way. We identify columns of cells as

those at a fixed x-value (see Figure 12.7). Then,

• Run over all columns, I = 1, 2, · · · .

• When at the Ith column, run over all cells in that column. The cells in this one given column

are given a label J . So, for a fixed I, there are many J-values, with J = 1, 2, · · · , NI . The

number NI depends on the column number: near xl and xu the number NI is relatively small

while closer to the middle of the allowed range of x-values there are relatively many cells in

the columns, and NI is relatively large.
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Figure 12.7: Riemann integration for a function f(x, y) R2 as a ‘limit over strips’. As before, each
small strip has width ∆x.

Thus, we have

I =

∫ ∫
Ω

dx dy f(x, y),

= lim
∆x→0
∆y→0

∑
xi∈Ω

f(xi)∆x∆y,

= lim
∆x→0
∆y→0

∑
I

∆x

NI∑
J=1

∆y f(xI , yJ). (12.7)

If the double limit can be performed sequentially (and it can, but this is beyond the scope of this

module, and is the crux of Fubini’s theorem), then we can re-write Equation (12.7) as

I = lim
∆x→0

∑
I

∆x

[
lim

∆y→0

NI∑
J=1

∆y f(xI , yJ)

]
, (12.8)

and we identify the limit inside the square brackets as

lim
∆y→0

NI∑
J=1

∆y f(xI , yJ) =

∫ y2(xI)

y1(xI)

f(xI , y) dy,

which is an ordinary single integral with respect to y carried out at fixed x = xI . Thus, Equa-

tion (12.8) becomes

I = lim
∆x→0

∑
I

∆x

[∫ y2(xI)

y1(xI)

f(xI , y) dy

]
,
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and the outermost limit (as ∆x→ 0) converts into an ordinary single integral with respect to x:

I =

∫ xu

xl

dx

[∫ y2(x)

y1(x)

f(x, y) dy

]
,

and Fubini’s theorem for the double integral of functions (i.e. not just areas) is recoverd: multiple

integration amounts to repeated applications of ordinary (single-variable) integration. For the sake

of simplifiying notation, we sometimes omit the parametric dependence of the y-limits on x, and

write ∫ xu

xl

dx

[∫ y2(x)

y1(x)

f(x, y) dy

]
≡
∫

Ω

dx

[∫
dy f(x, y)

]
Again, there is nothing special about the column treatment in Figure 12.7: one could just as easily

sum over rows of cells, leading to the following result:

I =

∫ yu

yl

dy

[∫ x2(y)

x1(y)

f(x, y) dx

]
≡
∫

Ω

dy

[∫
dx f(x, y)

]
,

where yl, yu, x1(y) and x2(y) are the same as defined previously after Equation (12.5). Thus, we

have the following general statement of Fubini’s theorem:

Theorem 12.4 (Fubini) Let Ω be a region of R2 with boundary C, where C is a closed, piecewise

differentiable curve. Let f(x, y) be a continuous function on Ω and C. Then∫ ∫
Ω

f(x, y) dx dy =

∫
Ω

[
dx

∫
dy f(x, y)

]
=

∫
Ω

dy

[∫
dx f(x, y)

]
. (12.9)

The result extends to n-fold integrals over finite domains in Rn.

Finally, it would be bold (and indeed erroneous) to claim that we have proved Equation (12.9). In

particular, the claim after Equation (12.7) about the order in which the limits are taken would need

to be shown rigorously with lots epsilons and deltas, or in the much more general context of the

more powerful theory of Lebesgue integration and measure theory.
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The limits of integration are not constants

any more!

Overview

In this section we focus on computing the area and volume of irregular (i.e. non-cuboid) shapes in

two and three dimensions. These involve integrals of the form∫ ∫
Area enclosed by some curve

dx dy,

∫ ∫
Volume enclosed by some surface

dx dydz.

The most novel feature of these problems for the class is the appearance of non-constant limits

of integration. We have already encountered these limits – in theory – in the previous chapter.

We now work out practical strategies to do calculations with such limits.

13.1 Introduction

Imagine an evil genius who is rubbish at elementary maths but a wizard at calculus. She wants to

compute the area of a right-angle triangle. She would proceed as follows.

Vertices at (0, 0), (a, 0), (0, b), where a and b are positive constants. The triangle is thus bounded

by the lines y = 0, x = 0, and y = mx+ b, where m = −b/a. An element of area in the x-y plane

is

dS = dx dy.

Hence,

Area of triangle =

∫
Region bounded by three lines mentioned

dxdy.

105
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Figure 13.1: Integration domain to compute the area of a right-angled triangle.

Now the variable x is allowed to run between 0 and a, while the variable y is allowed to run between

0 and mx+ b. Hence,

Area of triangle =

∫ a

0

dx

∫ mx+b

0

dy,

=

∫ a

0

dxy
∣∣mx+b

0
,

=

∫ a

0

dx (mx+ b) ,

=

∫ a

0

dx
1

2m

d

dx
(mx+ b)2 ,

= 1
2m

(mx+ b)2
∣∣a
0
,

= − 1

2m
b2,

=
1

2
ab.
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13.2 Density integrals

Suppose that the integration domain in Fig. 13.1 instead represents a thin sheet of metal, whose

density varies as

ρ(x, y) = 1 + εy cos(2πx/a) =
Mass

Unit area
.

Compute the mass of the sheet.

We have,

dm = ρ(x, y)dx dy,

m =

∫
Triangle

ρ(x, y)dx dy,

=

∫ a

0

dx

∫ b−(b/a)x

0

dy [1 + εy cos(2πx/a)] ,

=

∫ a

0

dx
[
y + 1

2
y2ε cos(2πx/a)

]y=b−(b/a)x

y=0
,

Hence,

m =

∫ a

0

[b− (b/a)x] dx+ 1
2
ε

∫ a

0

[b− (b/a)x]2 cos(2πx/a)dx,

= 1
2
ab+ 1

2
εb2

∫ a

0

cos (2πx/a) dx− ε(b2/a)

∫ a

0

x cos(2πx/a)dx

+ 1
2
ε(b/a)2

∫ a

0

x2 cos(2πx/a)dx,

= 1
2
ab+ 1

2
εb2I1 + (−εb2/a)I2 +

(
εb2/2a2

)
I3.

Now

I1 =

∫ a

0

cos(2πx/a)dx,

=
a

2π
sin(2πx/a)

∣∣∣a
0
,

=
a

2π
(sin(2π)− sin(0)) = 0;

I2 =

∫ a

0

x cos(2πx/a)dx,

=
a2

4π2

∫ 2π

0

s cos(s)ds,

=
a2

4π2
[s sin(s) + cos(s)]2π0 = 0.
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I3 =

∫ a

0

x2 cos(2πx/a)dx,

=
a3

8π3

∫ 2π

0

s2 cos(s)ds,

=
a3

8π3

[
(s2 − 2) sin(s) + 2s cos(s)

]2π
0
,

=
a3

8π3
[2(2π) cos(2π)] ,

=
a3

8π3
4π,

=
a3

2π2
.

Hence,

m = 1
2
ab+

εb2

2a2

a3

2π2
,

= 1
2
ab+

ε

4π2
b2a,

= 1
2
ab
(
1 + 1

2π2 εb
)
.

13.3 Volume integrations

Buoyed by her success, the evil genius of Sec-

tion 13.1 decides to compute the volume of a a

certain pyramid. The pyramid has three edges

that come together at right angles; the edges have

lengths a, b, and c (tetrahedron). We of course

know that the final answer must be abc/6. Here

below is how our friend would proceed.

The three edges come together to form a right angle at the vertex (0, 0, 0). The other extremities

of the three edges are at (a, 0, 0), (0, b, 0), and (0, 0, c). The pyramid is thus bounded by the planes

x = 0, y = 0, z = 0, and by a certain other plane, which our friend must work out.

The points (a, 0, 0), (0, b, 0), and (0, 0, c) live in this fourth bounding plane. Hence, the vectors

v1 = (0, 0, c)− (a, 0, 0) = (−a, 0, c), v2 = (0, b, 0)− (a, 0, 0) = (−a, b, 0)
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are parallel to the plane and have the same base at the point (a, 0, 0). Thus,

n = v2 × v1 = x̂bc+ ŷac+ ẑab = (bc, ac, ab)

is normal to the plane, and the plane is therefore defined by

[x− (a, 0, 0)] · n = 0,

or

z = c− c

a
x− c

b
y.

In summary, the four bounding planes are

x = 0, y = 0, z = 0, z = c− c

a
x− c

b
y.

The volume element is

dV = dx dy dz

Hence,

Volume of pyramid =

∫
Region bounded by four planes

dxdydz.

Now the variable x is allowed to run between 0 and a, while the variable y is allowed to run

between 0 and y = b − x(b/a). This is because, in the x-y plane, the integration reduces to

the triangle integration in Section 13.1. Finally, the variable z is allowed to run between 0 and

z = c− (c/a)x− (c/b)y.
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Thus,

Volume of pyramid =

∫ a

0

dx

∫ b−x(b/a)

0

dy

∫ c−x(c/a)−y(c/b)

0

dz,

=

∫ a

0

dx

∫ b−x(b/a)

0

dy z
∣∣c−x(c/a)−y(c/b)

0
,

=

∫ a

0

dx

∫ b−x(b/a)

0

dy [c− x(c/a)− y(c/b)] ,

=

∫ a

0

dx

∫ b−x(b/a)

0

dy

(
− b

2c

)
∂

∂y
[c− x(c/a)− y(c/b)]2 ,

= − b

2c

∫ a

0

dx

∫ b−x(b/a)

0

dy
∂

∂y
[c− x(c/a)− y(c/b)]2 ,

= − b

2c

∫ a

0

dx [c− x(c/a)− y(c/b)]2
∣∣∣y=b−x(b/a)

y=0
,

= +
b

2c

∫ a

0

dx [c− x(c/a)]2 ,

=
b

2c

∫ a

0

dx
(
− a

3c

) ∂

∂x
[c− x(c/a)]3 ,

= − ab

6c2
[c− x(c/a)]3

∣∣∣a
0
,

= +
ab

6c2
c3,

= 1
6
abc.



Chapter 14

Integrals over surfaces and volumes

Overview

In this section we devise a general method for computing area integrals. It holds for arbitrary shapes.

We also introduce volume integrals. Worked examples are provided in each case.
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14.1 Parametrization of surface integrals

We focus on surface integrals in three dimensions. That is, we are to integrate a vector field

v(x, y, z) over a surface S. The element of surface area actually has an orientation:

dS = n̂ dS,

where n̂ is normal to the surface at location x on the surface. By convention, we choose n̂ to be

the outward-pointing normal. We focus on the most commonly-encountered integral:∫
S

v(x) · dS.

To do line integrals along a curve, we had to intro-

duce a parametrization of the curve. We must

do a similar thing here: We parametrize the sur-

face S as follows:

S = {x ∈ R3|x = xS(s, t), (s, t) ∈ ΩS},

ΩS = Some subset of R2.

Thus, a curve in three dimensions is a one-

parameter set, and a surface is a two-parameter

set. Refer to the figure on the right and consider

the points

xS(s, t), xS(s, t+ dt),

xS(s+ ds, t), xS(s+ ds, t+ dt),

vectors whose tips all lie in the surface S. Form

the differences

xS(s, t+ dt)− xS(s, t) =
∂xS
∂t

dt,

and

xS(s+ ds, t)− xS(s, t) =
∂xS
∂s

ds.

These are small vectors that lie in the surface and form the two lengths of a parallelogram. The
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area described by the four points xS(s, t),...,xS(s+ ds, t+ dt) is thus

dS =
∂xS
∂s
× ∂xS

∂t
ds dt.

If the parameters s and t take values in a set ΩS, then the surface integral
∫
S
v(x) · dS is∫

S

v(x) · dS =

∫ ∫
ΩS

v(xS(s, t)) ·
(
∂xS
∂t
× ∂xS

∂s

)
dt ds

14.2 Worked examples

If v = 2yx̂ − zŷ + x2ẑ and S is the surface of the parabolic cylinder y2 = 8x in the first

(positive) octant bounded by the planes y = 4 and z = 6, evaluate

∫
S

v · dS.

Solution: Let us compute the surface in parametric form. The parametric form of the curve is

yS(s, t) = s,

zS(s, t) = t,

xS(s, t) = s2/8.

where 0 ≤ s ≤ 4 and 0 ≤ t ≤ 6. Hence,

xS(s, t) = (s2/8, s, t).

∂xS
∂s

= (s/4, 1, 0),
∂xS
∂t

= (0, 0, 1)

and

dS =

(
∂xS
∂s
× ∂xS

∂t

)
ds dt =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

s/4 1 0

0 0 1

∣∣∣∣∣∣∣∣ dsdt = [x̂− ŷ(s/4)] ds dt

Hence

v · dS =
(
2yx̂− zŷ + x2ẑ

)
· (x̂− ŷ(s/4)) ds dt = (2y + zs/4) ds dt.

But y = s and z = t, hence

v · dS = (2s+ ts/4) ds dt.
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We let 0 ≤ s ≤ 4 and 0 ≤ t ≤ 6 and integrate. We make use of the following remarkable fact:∫ s2

s1

ds

∫ t2

t1

dt φ(s, t) =

∫ t2

t1

dt

∫ s2

s1

ds φ(s, t),

that is, the order of integration can be reversed, for suitable functions φ. Such a reversal cannot

be done if, in the first integral, the limits t1 and t2 depend on s. Here, however, the limits are

constants.∫ s=4

s=0

∫ t=6

t=0

(2s+ ts/4) ds dt =

∫ s=4

s=0

∫ t=6

t=0

2sds dt+ 1
4

∫ s=4

s=0

∫ t=6

t=0

tsds dt,

=

∫ t=6

t=0

(∫ s=4

s=0

2sds

)
dt+ 1

4

(∫ s=4

s=0

sds

)(∫ t=6

t=0

tdt

)
,

= 16× 6 +
(

1
4
× 1

4
× 16× 36

)
,

= 132.

One particularly easy case involves surface integrals over cuboids. Let us consider such an example

now:

Example: If v = xx̂+ 2yŷ + 3zẑ and S is the unit cube with a vertex at (0, 0, 0) and situated

in the positive octant, compute
∫
S
v · dS.

Solution: Refer to Figure 14.1. We divide the area S into its six faces, Fxp, Fxm, Fyp, Fym,

Fzp, Fzm. Consider the face Fxp. This is the face contained entirely in a y − z plane, with unit

normal +x̂, and such that x = 1. Consider also Fxm. Again, this face is contained entirely in a

y − z plane, with unit normal −x̂, and with x = 0. Along Fxp,

dS = dy dzx̂,

and

v · S = xdS = xdy dz = dy dz, x = 1.

Along Fxm, dS = −dydzx̂ and v ·dS = −xdS = −xdy dz = 0, since x = 0 on this face. Hence,∫
Fxm

+

∫
Fxp

v · dS =

∫ 1

0

dy

∫ 1

0

1 dz = 1.

Similarly, ∫
Fym

+

∫
Fyp

v · dS =

∫ 1

0

dx

∫ 1

0

2 dz = 2,
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Figure 14.1: Integration over a cuboid.

and ∫
Fzm

+

∫
Fzp

v · dS =

∫ 1

0

dz

∫ 1

0

3 dx = 3,

Putting it all together,∫
S

v · dS =

[∫
Fxm

+

∫
Fxp

+

∫
Fym

+

∫
Fyp

+

∫
Fzm

+

∫
Fzp

]
v · dS = 6.

14.3 Volume integrals

Volume integrals are much simpler than the other two, since the volume element dx dy dz is a scalar.

For a scalar field φ(x, y, z), the volume integral∫
Ω

φ(x, y, z) dx dy dz

is the ordinary triple integral over the domain Ω ⊂ R3. For a vector field v(x, y, z), the associated

volume integral can be broken up into three scalar integrals:∫
Ω

v(x, y, z) dx dy dz = x̂

∫
Ω

v1(x, y, z) dx dy dz+ŷ

∫
Ω

v2(x, y, z) dx dy dz+ẑ

∫
Ω

v3(x, y, z) dx dy dz,

since the unit vectors x̂ etc. are constants and can be taken outside the integrals.
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Example: If v = (2x2 − 3z)x̂ − 2xyŷ − 4xẑ,

evaluate ∫
Ω

∇ · v dx dy dz,

where Ω is the closed region bounded by the planes

x = 0, y = 0, z = 0 and 2x+ 2y + z = 4.

Solution: Notice that

∇ · v = 4x− 2x = 2x.

To find out where the plane 2x+2y+z = 4 intersects the x and y axes, let z = 0. Then 2x+2y = 4,

and the plane intersects the x-axis when y=0, i.e. x = 2. Referring to the figure, in order for all

values in the domain Ω to be included in the integration,

• x must vary between 0 and 2;

• y must vary between 0 and y = 2− x;

• z must vary between 0 and z = 4− 2x− 2y.
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Hence, ∫
V

div v dx dy dz = 2

∫ 2

0

dx

∫ 2−x

0

dy

∫ 4−2x−2y

0

dz x

= 2

∫ 2

0

dx x

∫ 2−x

0

dyz
∣∣∣4−2x−2y

0
,

= 2

∫ 2

0

dx x

∫ 2−x

0

dy(4− 2x− 2y),

= 2

∫ 2

0

dx x

∫ 2−x

0

dy(4− 2x)− 4

∫ 2

0

dx x

∫ 2−x

0

dy y,

= 2

∫ 2

0

dx x(4− 2x)y
∣∣∣2−x
0
− 2

∫ 2

0

dx xy2
∣∣∣2−x
0

,

= 2

∫ 2

0

dx x
[
2 (2− x) (2− x)− (2− x)2] ,

= 2

∫ 2

0

dx x (2− x)2 ,

= 2

∫ 2

0

dx
(
4x− 4x2 + x3

)
,

= 2
(
2x2 − 4

3
x3 + 1

4
x4
)2

0
= 8/3.

Pedantic note Sometimes, instead of the notation dx dy dz for the volume element, we will write

dV , but we mean the same thing. The notation V will sometimes be used to denote a volume or

domain in R3. Thus, it is not unusual to write∫
V

φ(x) dV

to denote the integration of the scalar field φ(x) over the domain V ⊂ R3.
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Integrals over surfaces and volumes –

further worked examples

Overview

We provide several worked examples of surface and volume integrals.

15.1 Line integral

Example: If v = 2yx̂ − zŷ + xẑ, evaluate
∫
C
v × dx along the curve x = cos(t), y = sin(t),

z = 2 cos(t) from t = 0 to t = π/2.

Solution: We have,

x(t) = (cos(t), sin(t), 2 cos(t)) ,
dx

dt
= (− sin(t), cos(t),−2 sin(t)) ,

and

I :=

∫
C

v × dx =

∫ t2

t1

v × dx

dt
dt.

Now

v = (2y,−z, x) = (2 sin(t),−2 cos(t), cos(t)) ,

118



15.1. Line integral 119

hence

v × dx

dt
=

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

2 sin(t) −2 cos(t) cos(t)

− sin(t) cos(t) −2 sin(t)

∣∣∣∣∣∣∣∣
= x̂

[
4 sin(t) cos(t)− cos2(t)

]
+ ŷ

[
4 sin2(t)− sin(t) cos(t)

]
,

hence

I = x̂

∫ π/2

0

[
4 sin(t) cos(t)− cos2(t)

]
dt+ ŷ

∫ π/2

0

[
4 sin2(t)− sin(t) cos(t)

]
dt,

= x̂I1 + ŷI2.

We will need the following trigonometric identities:

cos2 θ = 1
2

(1 + cos 2θ) ,

sin2 θ = 1
2

(1 + sin 2θ) ,

sin θ cos θ = 1
2

sin 2θ.

Hence,

I1 =

∫ π/2

0

[
4 sin(t) cos(t)− cos2(t)

]
dt,

=

∫ π/2

0

[
2 sin(2t)− 1

2
(1 + cos(2t))

]
dt,

= − cos(2t)
∣∣∣π/2
0
− 1

2
t
∣∣∣π/2
0
− 1

2
sin(2t)

∣∣∣π/2
0
,

= 2− 1
4
π.

Similarly, I2 = π − 1/2, hence

I = x̂
(
2− 1

4
π
)

+ ŷ
(
π − 1

2

)
.
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15.2 Straightforward area integral

Example: Consider the region D defined as

follows and shown in the accompanying figure:

D = {(x, y) ∈ R2 : x ≥ 0, y ≤ 1, y ≥ x2}

Compute ∫ ∫
D

(x+ 2y) dx dy.

Solution: Clearly, x ranges freely between x = 0 and x = 1, and for a given x, y ranges between

y = x2 (lower) and y = 1 (upper). Thus, the double integral can be re-expressed as a repeated

application of single integrals – with non-constant limits of integration, as follows:∫ ∫
D

(2x+ y) dx dy
Fubini
=

∫ 1

0

dx

∫ y=1

y=x2
(x+ 2y)dy,

=

∫ 1

0

dx

∫ y=1

y=x2
x dy + 2

∫ 1

0

dx

∫ y=1

y=x2
y dy,

=

∫ 1

0

x dx

∫ y=1

y=x2
dy + 2

∫ 1

0

dx

∫ y=1

y=x2
y dy,

=

∫ 1

0

dx x(y)y=1
y=x2 + 2

∫ 1

0

dx
(

1
2
y2
)y=1

y=x2
,

=

∫ 1

0

dx x(1− x2) +

∫ 1

0

(
1− x4

)
dx,

=

∫ 1

0

(
x− x3 − x4 + 1

)
,

= 1
2
x
∣∣1
0
− 1

4
x3
∣∣1
0
− 1

5

∣∣1
0

+ x
∣∣1
0
,

= 1
2
− 1

4
− 1

5
+ 1,

= 10
20
− 5

20
− 4

20
+ 20

20
,

= 21
20
.
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15.3 Straightforward volume integral

Example: Compute the average value of the function f(x, y) = xy over the volume

V = {(x, y, z)|x ≤ 2 ≤ 4, y ≤ 3 ≤ 9, 0 ≤ z ≤ 2 + 3x+ 4y}.

Solution: The average value is

avg(f) =
1

V

∫
V

f(x, y, z) dx dy dz,

where V is used here both to denote the region of integration and its volume. We compute the

numerator:

Num =

∫
V

f(x, y, z) dx dy dz,

Fubini
=

∫ 4

2

dx

∫ 9

3

dy

∫ 2+3x+4y

0

xy dz,

=

∫ 4

2

dx

∫ 9

3

dy xy(2 + 3x+ 4y),

= 2

∫ 4

2

dx

∫ 9

3

dy xy + 3

∫ 4

2

dx

∫ 9

3

dy x2y + 4

∫ 4

2

dx

∫ 9

3

dy xy2.

Carrying on, this is

Num = 2

∫ 4

2

x dx

∫ 9

3

y dy + 3

∫ 4

2

x2 dx

∫ 9

3

y dy + 4

∫ 4

2

x dx

∫ 9

3

y2 dy,

= 2
(

1
2
x2
)4

2

(
1
2
y2
)9

3
+ 3

(
1
3
x3
)4

2

(
1
2
y2
)9

3
+ 4

(
1
2
x2
)4

2

(
1
3
y3
)9

3
,

= 1
2
(42 − 22)(92 − 32) + 1

2
(2)(92 − 32) + 2

3
(42 − 22)(93 − 33),

= 1
2
12× 72 + 1

2
56× 72 + 2

3
12× (729− 27),

= 6× 72 + 28× 72 + 8× 702,

= 8064.
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We compute the denominator:

Den =

∫
V

dx dy dz,

Fubini
=

∫ 4

2

dx

∫ 9

3

dy

∫ 2+3x+4y

0

dz,

=

∫ 4

2

dx

∫ 9

3

dy (2 + 3x+ 4y),

= 2

∫ 4

2

dx

∫ 9

3

dy + 3

∫ 4

2

dx

∫ 9

3

dy x+ 4

∫ 4

2

dx

∫ 9

3

dy y

= 2

∫ 4

2

dx

∫ 9

3

dy + 3

∫ 4

2

x dx

∫ 9

3

dy + 4

∫ 4

2

dx

∫ 9

3

y dy,

= 2(x)4
2(y)9

3 + 3(1
2
x2)4

2(y)9
3 + 4(x)4

2(1
2
y2)9

3,

= 2(4− 2)(9− 3) + 3
2
(42 − 22)(9− 3) + 2(4− 2)(92 − 32),

= 2× 2× 6 + 3
2
12× 6 + 2× 2× 72,

= 2× 2× 6 + 12× 9 + 2× 2× 72,

= 420.

The answer is

avg(f) =
Num

Den
= 8064

420
= 96

5
.

15.4 Area integral by parametrization

Example: Find the surface area of the plane x + 2y + 2z = 12 cut off by x = 0, y = 0, and

x2 + y2 = 16.

Solution: See Figure 15.1. Parametrise the surface:

x = s,

y = t,

z =
12− s− 2t

2
.

Hence,

x =
(
s, t, 6− 1

2
s− t

)
,

∂x

∂s
=

(
1, 0,−1

2

)
,

∂x

∂t
= (0, 1,−1).
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Area element (vector):

dS =
∂x

∂s
× ∂x

∂t
dsdt,

=
(

1
2
, 1, 1

)
dsdt.

Area element (scalar):

dS =

∣∣∣∣∂x∂s × ∂x

∂t

∣∣∣∣ dsdt,
=

√
2 + 1

4
dsdt.

The parameters run between { 0 ≤ s

0 ≤ t

}
and s2 + t2 ≤ 16.

In the s − t plane, this is a quarter-circle of radius 4, centred at 0. We let s run between 0 and 4

and let t run between 0 and
√

16− s2. Thus,

S =
√

2 + 1
4

∫ 4

0

ds

∫ √16−s2

0

dt,

=
√

2 + 1
4

∫ 4

0

ds
√

16− s2,

=
√

2 + 1
4
× 1

4
× Area of a circle of radius 4,

= 3
2
× 1

4
× 16π,

= 6π.
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Figure 15.1:



Chapter 16

Stokes’s and Gauss’s Theorems

Overview

In ordinary calculus, recall the rule of integration by parts:∫ b

a

u dv = (uv) |ba −
∫ b

a

v du.

That is, a difficult integral u dv can be split up into an easier integral v du and a ‘boundary term’

u(b)v(b)− u(a)v(a). In this section we do something similar for vector integrals.

16.1 Gauss’s Theorem (or the Divergence Theorem)

Theorem 16.1 Let V be a region in space bounded by a closed surface S, and let v(x) be a vector

field with continuous first derivatives. Then∫
V

∇ · v dV =

∫
S

v · dS, (16.1)

where dS is outward-pointing surface-area element associated with the surface S.

Proof: First, consider a box of sides of length ∆x, ∆y, and ∆z, with one vertex positioned at

(x, y, z) (Figure 16.1). As in previous exercises, label the faces Fxp, Fxm, Fyp, Fym, Fzp, and

Fzm. We compute ∑
all faces

v ·∆S,

where ∆S is the area element on each face. For example, in the x-direction, we have a positive

125
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Figure 16.1: Area integration over a box, as applied to Gauss’s theorem.

contribution from Fxp and a negative one from Fxm, to give

−v1(x, y, z)∆y∆z + v1(x+ ∆x, y, z)∆y∆z.

We immediately write down the other contributions: From Fyp and Fym, we have

−v2(x, y, z)∆x∆z + v2(x, y + ∆y, z)∆x∆z,

and from Fzp and Fzm, we have

−v3(x, y, z)∆x∆y + v2(x, y, z + ∆z)∆x∆y.

Summing over all six contributions (i.e. over all six faces), we have

∑
all faces

v ·∆S =

v1(x+ ∆x, y, z)∆y∆z − v1(x, y, z)∆y∆z + v2(x, y + ∆y, z)∆x∆z − v2(x, y, z)∆x∆z+

v3(x, y, z + ∆z)∆x∆y − v3(x, y, z)∆x∆y.

We apply Taylor’s theorem to these increments, and omit terms that are O(∆x2,∆y2,∆z2). This
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becomes rigorous in the limit when the box volume go to zero. In this way, we obtain

∑
all faces

v · dS = ∇ · v dV.

Here, we have replaced the ∆’s by d’s, to indicate the passage to the limiting case as ∆x, ∆y, and

∆z → 0.

For the second and final step, consider an arbitrary shape of volume V in three dimensions. We

break this volume up into many infinitesimally small boxes. By the previous result, we have

∑
all boxes

∇ · v dV =
∑

all boxes

( ∑
all faces

v · dS

)
. (16.2)

Consider, however, the two neighbouring boxes

shown in the right. Call them A and B These

will share a common face, F , with normal vec-

tor n̂ and area dS. Box A gives a contribution

n̂ · v(F )dS, say, to the sum (16.2), while box B

must give a contribution −n̂ · v(F )dS. The only

place where such a cancellation cannot occur is on

exterior faces. Thus,

∑
all boxes

∇ · v dV =
∑

all exterior faces

v · dS.

But the box volumes are infinitesimally small, so

this sum converts into an integral:∫
V

∇ · v dV =

∫
S

v · dS.

16.1.1 Green’s theorem

A frequently used corollary of Gauss’s theorem is a relation called Green’s theorem. If φ and ψ

are two scalar fields, then we have the identities

∇ · (φ∇ψ) = φ∇ · ∇ψ +∇φ · ∇ψ,

∇ · (ψ∇φ) = ψ∇ · ∇φ+∇ψ · ∇φ.
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Subtracting these equations gives

∇ · (φ∇ψ − ψ∇φ) = φ∇ · ∇ψ − ψ∇ · ∇φ,

= φ∇2ψ − ψ∇2φ.

We integrate over a volume V whose boundary is a closed set S. Applying Gauss’s theorem gives∫
V

(
φ∇2ψ − ψ∇2φ

)
dV =

∫
V

[∇ · (φ∇ψ − ψ∇φ)] dV,

=

∫
S

(φ∇ψ − ψ∇φ) · dS.

Thus, we arrive at the following result:

Theorem 16.2 (Green’s theorem)∫
V

(
φ∇2ψ − ψ∇2φ

)
dV =

∫
S

(φ∇ψ − ψ∇φ) · dS,

where V is a region of R3 whose boundary is the closed set S.

16.1.2 Other forms of Gauss’s theorem

Although the form
∫
V
∇ · vdV =

∫
S
v · dS is the most common statement of Gauss’s theorem,

there are other forms. For example, let

v(x) = v(x)a,

where a is a constant vector. We have∫
V

∇ · v dV =

∫
V

∇ · (a v) dV = a ·
∫
V

(∇v) dV.

However, applying Gauss’s theorem gives∫
V

∇ · v dV =

∫
S

va · dS = a ·
∫
S

v dS.

Equating both sides,

a ·
∫
V

∇v dV = a ·
∫
S

v dS,

or

a ·
[∫

V

∇v dV −
∫
S

v dS

]
= 0.

Since this holds for arbitrary vector fields of the form v = v(x)a, it must be true that [· · · ] = 0, or
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Theorem 16.3 (Alternative version of Gauss’s theorem, 1)∫
V

∇v dV =

∫
S

v dS.

Similarly, letting v(x) = a× u(x), where a is a constant vector, gives

Theorem 16.4 (Alternative version of Gauss’s theorem, 2)∫
V

∇× u dV =

∫
S

dS × u.

16.1.3 Worked examples

Example: Evaluate by using Gauss’s theorem
∫
S
v · dS, where

v = 8xzx̂+ 2y2ŷ + 3yzẑ

and S is the surface of the unit cube in the positive octant, one of whose vertices lies at (0, 0, 0).

We compute: ∫
S

v · dS =

∫
V

dV ∇ · v,

=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz (8z + 4y + 3y) ,

= 1 · 1 ·
∫ 1

0

8z dz + 1 · 1 ·
∫ 1

0

7y dy,

= 4 + 7
2

= 15
2
.

Example: A fluid is confined in a container of volume V with closed boundary S. The velocity

of the fluid is v(x, t). The velocity satisfies the so-called no-throughflow condition

v · n̂ = 0, on S,

where n̂ is the outward-pointing normal to the surface. Now suppose that a pollutant is intro-

duced to the fluid, of concentration C(x, t). The pollutant must satisfy the equation

∂C

∂t
+∇ · (vC) = 0.
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Prove that the total amount of pollutant,

P (t) =

∫
V

C(x, t) dV,

stays the same over time (hence P is in fact independent of time).

Proof: We have

dP

dt
=

d

dt

∫
V

C(x, t) dV,

=

∫
V

∂C(x, t)

∂t
dV,

= −
∫
V

∇ · (vC) dV,

= −
∫
S

C(x ∈ S, t)v(x ∈ S, t) · dS.

But

n̂ · v|x∈S = 0,

hence
dP

dt
= 0,

and the amount of pollutant P is constant (‘conserved’).
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16.2 Stokes’s Theorem

Theorem 16.5 Let S be an open, two-sided surface bounded by a closed, non-intersecting curve

C, and let v(x) be a vector field with continuous derivatives. Then,

∮
C

v · dx =

∫
S

(∇× v) · dS, (16.3)

where C is treated in the positive direction: an observer walking along the boundary of S, with his

head pointing in the direction of the positive normal to S, has the surface on his left.

For the (S,C) pair to which the theorem refers, see Figure 16.2.

Figure 16.2: Stokes theorem: S is a surface; C is its boundary. The boundary can be given a definite

orientation so the curve is called two-sided.
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Proof: First, consider a rectangle in the x-y plane

of sides of length ∆x and ∆y, with one vertex

positioned at (x, y) – see the figure on the right.

Label the edges Exp, Exm, Eyp, and Eym. We

compute ∑
all edges

v ·∆x,

where ∆x is the line element on each edge, and

we compute in an anticlockwise sense.

For example, in the x-direction, along Exp we have dx = x̂dx and along Exm we have dx = −x̂dx.

Adding up these contributions to v ·∆x gives

[v1(x, y, z)− v1(x, y + ∆y, z)] ∆x.

Similarly, the contributions along Eyp and Eym give

[v2(x+ ∆x, y, z)− v2(x, y, z)] ∆y.

Summing over these four contributions (i.e. summing over the four edges), we have

∑
all edges

v ·∆x = [v1(x, y)− v1(x, y + ∆y)] ∆x+ [v2(x+ ∆x, y)− v2(x, y)] ∆y

We apply Taylor’s theorem to these increments and omit terms that are O(∆x2,∆y2). This proce-

dure is rigorous in the limit as the rectangle area goes to zero. We obtain

∑
all edges

v ·∆x = [v1(x, y)− v1(x, y + ∆y)] ∆x+ [v2(x+ ∆x, y)− v2(x, y)] ∆y

=

(
∂v2

∂x
− ∂v1

∂y

)
(x,y)

∆x∆y.

We take the limit as ∆x and ∆y → 0, using ∆x→ dx and ∆y → dy to denote this process. The

corresponding infinitesimal patch of surface area is dS = ẑ dx dy pointing out of the page, hence

∑
all edges

v · dx = (∇× v) · dS. (16.4)

As the final result involves only dot products and cross products, Equation (16.4) is independent of

the Cartesian coordinate frame used in the derivation. Thus, Equation (16.4) is valid for an arbitrary

patch of surface area in any plane.

For the second and final step, consider a surface S with boundary C. We break this surface up
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into many infinitesimally small rectangles. Each rectangle is a patch of surface area that lies in an

arbitrary plane. The previous result (Equation (16.4)) is applied to all such patches, such that

∑
all rectangles

(∇× v) · dS =
∑

all rectangles

( ∑
all edges

v · dx

)
. (16.5)

Consider, however, two neighbouring rectangles –

see the accompanying figure. Call them A and

B These will share a common edge, E, with line

element dx. Rectangle A gives a contribution a,

say, to the sum (16.2), while rectangle B must

give a contribution −a. The only place where such

a cancellation cannot occur is on exterior edges.

Thus,

∑
all rectangles

(∇× v) · dS =
∑

all exterior edges

v · dx.

But the rectangle areas are infinitesimally small,

so this sum converts into an integral:∫
S

(∇× v) · dS =

∮
C

v · dx.

Example: Given a vector v = −x̂y+ ŷx, using Stokes’s theorem, show that the integral around

a continuous closed curve in the xy plane

1
2

∮
v · dx = 1

2

∮
(x dy − y dx) = S,

the area enclosed by the curve.

Proof:

1
2

∮
C

v · dx = 1
2

∫
S

[∇× (−x̂y + ŷx)] · dS,

= 1
2

∫
S

(2ẑ) · dS,

= 1
2

∫
S

(2ẑ) · (dx dy ẑ) ,

=

∫
S

dx dy = S.
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16.2.1 Green’s theorem in the plane

The previous example hints at the following result: let S be a patch of area entirely contained in

the xy plane, with boundary C, and let v = (v1(x, y), v2(x, y), 0) be a smooth vector field. Then,∫
S

(∇× v) · dS =

∫
S

(∇× v) · (dx dy ẑ) ,

=

∫
S

(
∂v2

∂x
− ∂v1

∂y

)
dx dy.

But by Stokes’s theorem, ∫
S

(∇× v) · dS =

∫
C

v · dx,

=

∫
C

(v1dx+ v2dy) .

Putting these equations together, we have Green’s theorem in the plane:

Theorem 16.6 ∫
S

(
∂v2

∂x
− ∂v1

∂y

)
dx dy =

∫
C

(v1dx+ v2dy) .

16.3 Potential theory

A vector field v is irrotational if and only if

• ∇ × v = 0 if and only if

• v = −∇U if and only if

• The line integral
∫
C
v · dx depends only on the initial and final points of the path C and is

independent of the details of the path between these terminal points.

Proving that v = −∇U =⇒ ∇× v = 0 was trivial and we have done this already. Until now, we

have been unable to prove the converse, namely that ∇× v =⇒ v = −∇U . Let us do so now.

Consider an open subset Ω ∈ R3 that is simply connected, i.e. contains no ‘holes’. Let us take

an arbitrary closed, smooth curve C in Ω. Because Ω is simply connected, it is possible to find a

surface S that lies entirely in Ω, such that (S,C) have the properties mentioned in Stokes’s theorem.

Suppose now that ∇× v = 0 for all points x ∈ Ω. Now, by Stokes’s theorem,

0 =

∫
S

(∇× v) · dS,

=

∮
C

v · dx.
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This last result is true for all closed, piecewise smooth contours in the domain Ω. The only

way for this relationship to be satisfied for all contours is if v = −∇U , for some function U(x),

since then, ∮
C

v · dx = −
∮
C

(∇U) · dx,

= − [U(a)− U(a)] ,

= 0,

for some reference point a on the contour C. Thus, we have proved that a vector field v is irrotational

if and only if v = −∇U .

Simple-connectedness

Simple-connectedness will not be an issue in this module, as we usually work with vector fields

defined on the whole of R3. On the other hand, it is not hard to find a domain Ω that is not simply

connected. For example, consider a portion of the xy plane with a hole (Figure 16.3). The closed

Figure 16.3: The set Ω is not simply connected.

curve C surrounds a region S; however, S is not contained entirely in Ω. We have knowledge of

∇×v only in Ω; we are unable to say anything about ∇×v in certain parts of the region S, and are

therefore unable to apply the arguments of Stokes’s theorem to this particular (S,C) pair. Again, it

is not hard to find examples of such domains: imagine the domain of the vector field for flow over

an aerofoil: such a domain is obviously not simply connected.

A more precise definition of simple-connectedness than the vague condition that ‘the set should

contain no holes’ is the following: for any two closed paths C0 : [0, 1] → Ω, C1 : [0, 1] → Ω based

at x0, i.e.

xC0(0) = xC1(0) = x0,

there exists a continuous map

H : [0, 1]× [0, 1]→ Ω,
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such that

H(t, 0) = xC0(t), 0 ≤ t ≤ 1,

H(t, 1) = xC1(t), 0 ≤ t ≤ 1,

H(0, s) = H(1, s) = x0, 0 ≤ s ≤ 0.

Such a map is called a homotopy and C0 and C1 are called homotopy equivalent. One can think of

this map as a ‘continuous deformation of one loop into another’. Because a point is, trivially, a loop,

in a simply-connected set, a loop can be continuously deformed into a point. Note in the example

Figure 16.3, the loop C cannot be continuously deformed into a point without leaving the set Ω.

This is a more relational - or topological way - of describing the ‘hole’ in the set in Figure 16.3.

16.3.1 Worked examples

Example: In thermodynamics, the energy of a system of gas particles is expressed in differential

form:

A(x, y)dx+B(x, y)dy,

where

• A is the temperature;

• B is minus the pressure;

• x has the interpretation of entropy;

• y has the interpretation of container volume.

The temperature and the pressure are known to satisfy the following relation:

∂A

∂y
=
∂B

∂x
.

Prove that for any closed path C in xy-space (i.e. in entropy/volume-space),∮
C

[A(x, y)dx+B(x, y)dy] = 0.

Proof: We may regard

v(x, y) = (A(x, y), B(x, y))
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as a vector field, and we may take

dS = dx dyẑ

as an area element, pointing out of the xy-plane. Now let S be the patch of area in xy space

enclosed by the curve C. We have∫
S

(∇× v) · dS =

∫
S

(
∂vy
∂x
− ∂vx

∂y

)
dx dy,

=

∫
S

[
∂B

∂x
− ∂A

∂y

]
dx dy,

=

∫
S

(
∂A

∂y
− ∂A

∂y

)
dx dy,

= 0.

But by Stokes’s theorem,

0 =

∫
S

(∇× v) · dS,

=

∫
C

v · dx,

=

∫
C

[Adx+Bdy] ,

as required. Because A(x, y)dx+B(x, y)dy integrates to zero when the integral is a closed contour,

there exists a potential E(x, y), such that

dE = A(x, y)dx+B(x, y)dy.

The function E is called the thermodynamic energy. The integral of dE around a closed path is

identically zero, and the energy is path-independent.
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In general, the differential form

A(x, y)dx+B(x, y)dy

is exact if and only if

• There is a function φ(x, y), such that

A(x, y)dx+B(x, y)dy =
∂φ

∂x
dx+

∂φ

∂y
dy := dφ,

if and only if

• The following relation holds:

∂A(x, y)

∂y
=
∂B(x, y)

∂x

Example: In mechanics, particles experience a force field F (x). The force is called conservative

if a potential function exists:

F = −∇U .

Thus, a force is conservative if and only if ∇× F = 0.

Show that the three-dimensional gravitational force

F = − αr
|r|3

is a conservative force, where α is a positive constant.

Solution: We compute ∇× F by application of the following chain rule:

∇× (φu) = φ∇× u+∇φ× u,

and we take φ = r−3 and u = r:

∇× F = −α
{

1

r3
(∇× r) +

[
∇
(
r−3
)]
× r
}
,

Now

∇× r = ∇×
(

1
2
∇r2

)
= 0.

Also,

∇r−3 = −3r

r5
,
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Hence,

∇× F = −α
[

1

r3
∇× r −

(
∇r−3

)
× r
]
,

= −α
[
0−

(
3r

r5

)
× r
]
,

= 0.

Thus, both contributions to ∇× F are zero, so ∇× F = 0, and gravity is conservative.

See if you can show that

U = −α
r

is a suitable potential, F = −∇ (−αr−1).

Example: Show that the force

F = α(x2x̂+ yŷ)

is a conservative force and construct its potential.

Solution: We have

∇× F = α

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

x2 y 0

∣∣∣∣∣∣∣∣ = αẑ
(
∂xy − ∂yx2

)
= 0.

Next, we take

Fx = αx2 = −∂xU .

Ordinary integration gives

U(x, y) = −1
3
αx3 + f(y),

where f(y) is a function to be determined. But we also have

Fy = αy = −∂yU ,

which gives

U(x, y) = −1
2
αy2 + g(x).

Putting these results together, we have

U(x, y) = −α
(

1
3
x3 + 1

2
y2
)

+ Const.,

and the constant is immaterial because only gradients of the potential are important.
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Example: Recall that the vorticity ω(x) measures the amount of swirl in a fluid velocity field

v(x), ω = ∇× v. Show that all irrotational flows

ω = 0,

are potential flows,

v = ∇φ.

Show that the potential for an incompressible irrotational flow satisfies Laplace’s equation:

∇ · v = 0 and ω = 0 =⇒ ∇2φ = 0.

Solution: If the flow is irrotational, then ∇× v = 0, which implies, by Stokes’s theorem,

v = ∇φ,

(note the sign), for some velocity potential φ. We are to assume that the flow is incompressible:

0 = ∇ · v = ∇ · ∇φ = ∇2φ.

Thus, an incompressible, irrotational flow satisfies

∇2φ = 0.

The study of the equation ∇2φ = 0 is called harmonic analysis.



Chapter 17

Curvilinear coordinate systems

Overview and introduction

So far we have restricted ourselves to Cartesian coordinate systems. A Cartesian coordinate system

offers a unique advantage in that the distinguished directions x̂, ŷ, and ẑ all point in constant

directions. However, many physical problems are not well suited to solution in Cartesian coordinates.

For instance, in the atmosphere, fluid flow takes place on a sphere, and latitude and longitude are

more appropriate labels for position in space. Such a problem naturally leads to the use of spherical

polar coordinates. In fact, the coordinate system we use should be chosen to fit the problem in

hand, and to exploit any type of symmetry or constraint therein. Then, hopefully, the problem will

be more amenable to solution than if we had stubbornly persisted with the Cartesian framework.

Unfortunately, there is a high price to pay for this freedom of choice (for coordinate systems). In an

arbitrary coordinate system, the distinguished directions are no longer constant, and the operators

div, grad, and curl become very cumbersome. Nevertheless, we must be willing to pay the ultimate

price for this freedom, and derive expressions for div, grad, and curl in orthogonal curvilinear

coordinate systems.

141



142 Chapter 17. Curvilinear coordinate systems

17.1 Coordinate transformations

In three dimensions, three variables are necessary and sufficient to specify the location of a particle.

We have used the Cartesian triple (x, y, z), where the equations x = Const., y = Const., and

z = Const. describe three mutually perpendicular families of planes. Suppose now we superimpose

on these planes a second family of surfaces. These surfaces need not be planes; nor need they be

parallel. In the Cartesian framework, a point is specified by the intersection of the three planes; in

the new framework, the same point is specified by the intersection of three surfaces. In the new

framework, let the new surfaces be described by

q1 = Const., q2 = Const., q3 = Const..

Because the point in question can be described adequately in both frameworks, as the point of

intersection of three surfaces, we may write

x = x(q1, q2, q3), y = y(q1, q2, q3), z = z(q1, q2, q3),

and

q1 = q1(x, y, z), q2 = q2(x, y, z), q3 = q3(x, y, z),

where each function written here is assumed smooth. That is, there is a smooth, invertible map

connecting the two coordinate systems. This map is called a coordinate transformation.

Example: Consider spherical polar

coordinates as shown in the figure.

Identify the three intersecting sur-

faces that make up the coordinate

system.

The point P can either be labelled by the Cartesian triple (x, y, z), or by its radial distance R from

the origin, together with two angles: the azimuthal angle and the polar angle. The azimuthal

angle ϕ is the angle between the x-axis and the projection of the radius vector x ≡ r ≡
−→
OP on to



17.2. The line element, tangent vectors, scale factors 143

the x-y plane. The polar angle θ is the angle between the z-direction and the radius vector. Here

are the surfaces generated by these new coordinates:

• The surface R = Const. is a sphere of radius R centred at O (q1),

• The surface θ = Const. is a cone whose tip lies at the origin O (q2),

• The surface ϕ = Const. is a plane parallel to the z-axis, given by y = x tanϕ (q3).

The point P is given by the intersection of these surfaces, or by the intersection of the planes

x = Const., y = Const., and z = Const. (See the figure below.)

These two coordinate systems are related through

x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ,

with inverse transformation

r =
√
x2 + y2 + z2,

θ = cos−1 (z/r) ,

ϕ = tan−1 (y/x) .

Note: Particular care must be taken with the inverse

tan−1(y/x). Where necessary, we must add or subtract

2π to the answer to obtain an angle ϕ ∈ [0, 2π).

Surfaces generated by spherical polar

coodinates.a

aFrom http://en.wikipedia.org/
wiki/Spherical coordinates, 16th August 2010.

17.2 The line element, tangent vectors, scale factors

Recall, in a Cartesian frame, that a small increment of length ds is given by

ds2 = dx2 + dy2 + dz2.

The quantity ds is called the line element. Let us take a coordinate transformation

x = x(q1, q2, q3), y = y(q1, q2, q3), z = z(q1, q2, q3),

and

q1 = q1(x, y, z), q2 = q2(x, y, z), q3 = q3(x, y, z),
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and compute the line element in terms of the qi’s. This is possible because the line element exists

independent of its description in Cartesian coordinates. We have,

dx =
∂x

∂q1

dq1 +
∂x

∂q2

dq2 +
∂x

∂q3

dq3,

and similarly for dy and dz. Thus, in vector notation,

dx =
∂x

∂q1

dq1 +
∂x

∂q2

dq2 +
∂x

∂q3

dq3

Substitution of these differentials into the definition of the line element gives

ds2 = dx · dx =

(
∂x

∂q1

dq1 +
∂x

∂q2

dq2 +
∂x

∂q3

dq3

)
·
(
∂x

∂q1

dq1 +
∂x

∂q2

dq2 +
∂x

∂q3

dq3

)
=

(
∂x

∂q1

· ∂x
∂q1

)
dq2

1 +

(
∂x

∂q2

· ∂x
∂q2

)
dq2

2 +

(
∂x

∂q3

· ∂x
∂q3

)
dq2

3

+

(
∂x

∂q1

· ∂x
∂q2

)
dq1 dq2 +

(
∂x

∂q1

· ∂x
∂q3

)
dq1 dq3 +

(
∂x

∂q2

· ∂x
∂q3

)
dq2 dq3

+

(
∂x

∂q2

· ∂x
∂q1

)
dq2 dq1 +

(
∂x

∂q3

· ∂x
∂q1

)
dq3 dq1 +

(
∂x

∂q3

· ∂x
∂q2

)
dq3 dq2.

Definition 17.1 (Metric tensor) In more compact form, this is written as

ds2 = g11dq2
1 + g22dq2

2 + g33dq2
3

+ g12dq1 dq2 + g13dq1 dq3 + g23dq2 dq3

+ g21dq2 dq1 + g31dq3 dq1 + g32dq3 dq2.

and

gij =
∂x

∂qi
· ∂x
∂qj

=
∂x

∂qi

∂x

∂qj
+
∂y

∂qi

∂y

∂qj
+
∂z

∂qi

∂z

∂qj

is called the metric tensor.

Hence,

ds2 =
∑
ij

gij dqi dqj. (17.1)

The expression we have derived for the line element is clearly very complicated. Therefore, we

restrict ourselves to orthogonal coordinate systems:

Definition 17.2 A coordinate system is orthogonal if gij is a diagonal matrix.
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The reason for this nomenclature is clear: the vector

∂x

∂qi
(17.2)

is normal to the surface qi = Constant. Thus, the coordinate surfaces are mutually perpendicular

if (
∂x

∂qi

)
·
(
∂x

∂qj

)
= 0, i 6= j,

in which case the metric tensor is diagonal. In this context, we actually call the vectors (17.2) the

tangent vectors of the coordinate system, because ∂x/∂q1 is tangent to the surfaces q2 = Constant

and q3 = Constant etc. Restricting to such coordinate systems, the line element becomes

ds2 = g11dq2
1 + g22dq2

2 + g33dq2
3,

or

ds2 = h2
1dq2

1 + h2
2dq2

2 + h2
3dq2

3,

where

hi =
√
gii, no sum over i

are the scale factors of the orthogonal coordinate system. Moreover, we have three mutually

orthogonal vectors ∂x/∂qi, which we may take to form a basis. Indeed, we take unit vectors

q̂i =
∂x

∂qi

/∣∣∣∣∂x∂qi
∣∣∣∣ =

1

hi

∂x

∂qi
,

and thus any vector A can be written as

A = q̂1A1 + q̂2A2 + q̂3A3,

where

Ai = A · q̂i

is the component of the vector A in the q̂i direction (and NOT in any particular Cartesian direction).

Example: Consider spherical polar coordinates again, where

x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ,
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with inverse transformation

r =
√
x2 + y2 + z2,

θ = cos−1 (z/r) ,

ϕ = tan−1 (y/x) .

Show that this is an orthogonal coordinate system and compute the metric tensor.

Let take the position vector

x = x̂x+ ŷy + ẑz,

and compute the tangent vectors:

∂x

∂r
= x̂

∂x

∂r
+ ŷ

∂x

∂r
+ ẑ

∂x

∂r
,

= x̂
∂

∂r
(r sin θ cosϕ) + x̂

∂

∂r
(r sin θ sinϕ) + x̂

∂

∂r
(r cos θ) ,

= x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ.

∂x

∂θ
= x̂

∂x

∂θ
+ ŷ

∂x

∂θ
+ ẑ

∂x

∂θ
,

= x̂
∂

∂θ
(r sin θ cosϕ) + ŷ

∂

∂θ
(r sin θ sinϕ) + ẑ

∂

∂θ
(r cos θ) ,

= r [x̂ cos θ cosϕ+ ŷ cos θ sinϕ− ẑ sin θ] .

∂x

∂ϕ
= x̂

∂x

∂ϕ
+ ŷ

∂y

∂ϕ
+ ẑ

∂z

∂ϕ
,

= x̂
∂

∂ϕ
(r sin θ cosϕ) + ŷ

∂

∂ϕ
(r sin θ sinϕ) + ẑ

∂

∂ϕ
(r cos θ) ,

= r [−x̂ sin θ sinϕ+ ŷ sin θ cosϕ] .

Now compute(
∂x

∂r

)
·
(
∂x

∂θ

)
= r (x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ) · (x̂ cos θ cosϕ+ ŷ cos θ sinϕ− ẑ sin θ) ,

= r
[
sin θ cos θ cos2 ϕ+ sin θ cos θ sin2 ϕ− sin θ cos θ

]
= 0.

(
∂x

∂r

)
·
(
∂x

∂ϕ

)
= r (x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ) · (−x̂ sin θ sinϕ+ ŷ sin θ cosϕ) ,

= r
[
− sin2 θ sinϕ cosϕ+ sin2 θ sinϕ cosϕ

]
= 0.
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(
∂x

∂ϕ

)
·
(
∂x

∂θ

)
= r2 (−x̂ sin θ sinϕ+ ŷ sin θ cosϕ) · (x̂ cos θ cosϕ+ ŷ cos θ sinϕ− ẑ sin θ) ,

= r2 [− sin θ cos θ sinϕ cosϕ+ sin θ cos θ sinϕ cosϕ] = 0,

and the coordinate system is orthogonal. Now we compute the scale factors:

h2
r =

(
∂x

∂r

)
·
(
∂x

∂r

)
,

= (x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ) · (x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ) ,

= 1.

h2
θ =

(
∂x

∂θ

)
·
(
∂x

∂θ

)
,

= r2 (x̂ cos θ cosϕ+ ŷ cos θ sinϕ− ẑ sin θ) · (x̂ cos θ cosϕ+ ŷ cos θ sinϕ− ẑ sin θ) ,

= r2

h2
ϕ =

(
∂x

∂ϕ

)
·
(
∂x

∂ϕ

)
,

= r2 (−x̂ sin θ sinϕ+ ŷ sin θ cosϕ) · (−x̂ sin θ sinϕ+ ŷ sin θ cosϕ) ,

= r2 sin2 θ.

Thus, spherical polar coordinates are orthogonal, the line element is

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2,

and the unit vectors are

r̂ = x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ,

θ̂ = x̂ cos θ cosϕ+ ŷ cos θ sinϕ− ẑ sin θ.

ϕ̂ = −x̂ sinϕ+ ŷ cosϕ.

These unit vectors point in the directions of increasing r, ϕ, and θ, respectively (Figure 17.1).
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Figure 17.1: The unit vectors for spherical polar coordinates

Note that the unit vectors, although of constant magnitude, vary in direction as the point P is

varied. They are not constant vectors, and do not go to zero when differentiated. It is for this

reason that developing expressions for div, grad, and curl in curvilinear coordinates is complicated.

It is to this issue that we now turn.

17.3 Grad, div, and curl in curvilinear coordinate systems

To avoid confusion, in this section we use the notation ψ for scalar fields. The use of ϕ to label a

function is avoided because it is conventional to use this symbol for the azimuthal coordinate in the

spherical polar system.

17.3.1 The gradient

Because q̂i form an orthogonal basis, any vector (such as ∇ψ) can be written as

∇ψ =
3∑
i=1

q̂i [(∇ψ) · q̂i] .
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Now consider (∇ψ) · q̂i. This is nothing other than the directional derivative of ψ in the qi-direction:

(∇ψ) · q̂i = lim
t→0

[
ψ(x+ tq̂i)− ψ(x)

t

]
.

For definiteness we focus on (∇ψ) · q̂1 and we identify the fixed point x = x(q1, q2, q3). Then, the

point x+ tq̂1 is identified with the neighbouring point x(q1 + δq1, q2 + δq2, q3 + δq3). Thus,

x+ tq̂1 = x(q1 + δq1, q2 + δq2, q3 + δq3),

= x(q1, q2, q3) +

(
∂x

∂q1

)
(q1,q2,q3)

δq1 +

(
∂x

∂q2

)
(q1,q2,q3)

δq2 +

(
∂x

∂q3

)
(q1,q2,q3)

δq3,

= x+ h1q̂1δq1 + h2q̂2δq2 + h3q̂3δq3,

hence

tq̂1 = h1q̂1δq1 + h2q̂2δq2 + h3q̂3δq3.

Thus, δq2 = δq3 = 0, and t = h1δq1. Hence,

(∇ψ) · q̂1 = lim
t→0

[
ψ(x+ tq̂i)− ψ(x)

t

]
,

= lim
t→0

[
ψ(q1 + δq1, q2, q3)− ψ(q1, q2, q3)

t

]
,

= lim
δq1→0

[
ψ(q1 + δq1, q2, q3)− ψ(q1, q2, q3)

h1δq1

]
,

=
1

h1

∂ψ

∂q1

,

and similarly for the other directions i = 2, 3:

(∇ψ) · q̂i =
1

hi

∂ψ

∂qi
, i = 1, 2, 3.

Hence,

∇ψ =
3∑
i=1

q̂i
hi

∂ψ

∂qi
,

repeated as follows as a theorem:

Theorem 17.1 (The gradient operator in orthogonal curvilinear coordinates)

∇ψ(q1, q2, q3) =
q̂1

h1

∂ψ

∂q1

+
q̂2

h2

∂ψ

∂q2

+
q̂3

h3

∂ψ

∂q3

. (17.3)
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Figure 17.2: The volume element in curvilinear coordinates: this sketch forms a basis for deriving
div and grad in curvilinear coordinates.

17.3.2 The divergence

Recall Gauss’s theorem: In three dimensions, given a vector field v(x) and a volume V with bounding

surface S, ∫
V

∇ · v dV =

∫
S

v · dS.

Here, we view Gauss’s theorem as a definition of divergence:

∇ · v = lim∫
V dV→0

∫
V
v · dS∫
V

dV
. (17.4)

Thus,

∇ · v(q1, q2, q3) = lim∫
V dV→0

∫
V
v · dS∫
V

dV
, dV = h1h2h3 dq1 dq2 dq3.

Refer to Figure 17.2: we compute the area integrals associated with a small parallelepiped formed

by the intersection of 6 surfaces,

q1 = Constant, q1 + dq1 = Constant, etc.
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On the face labelled Fq1p in Figure 17.2, we have

dS =

[
∂x

∂q2

× ∂x

∂q3

]
(q1+dq1,q2,q3)

dq2dq3,

= [h2h3 (q̂2 × q̂3) dq2dq3](q1+dq1,q2,q3) ,

= q̂1h2h3dq2dq3

∣∣
(q1+dq1,q2,q3)

.

Hence,

v · dS
∣∣∣∣
Fq1p

= (v1h2h3)(q1 + dq1, q2, q3)dq2dq3.

Similarly, on the face labelled Fq1m, we have

dS = −q̂1h2h3dq2dq3

∣∣
(q1,q2,q3)

.

Hence,

v · dS
∣∣∣∣
Fq1m

= −(v1h2h3)(q1, q2, q3)dq2dq3.

Adding these contributions gives

[(v1h2h3)(q1 + dq1, q2, q3)− (v1h2h3)(q1, q2, q3)] dq2 dq3 =
∂

∂q1

(v1h2h3) dq1 dq2 dq3.

Adding up the other contributions gives

v · dS =

[
∂

∂q1

(v1h2h3) +
∂

∂q2

(v2h3h1) +
∂

∂q3

(v3h1h2)

]
dq1 dq2 dq3

Applying the definition of the divergence (17.4) gives

v · dS =

[
∂

∂q1

(v1h2h3) +
∂

∂q2

(v2h3h1) +
∂

∂q3

(v3h1h2)

]
dq1 dq2 dq3,

divergence
= (∇ · v) dV.

We need to find an expression for the volume dV of the region shown in Figure 17.2. Geometrically,

dV is the volume of a parallelepiped spanned by the infinitesimal tangent vectors (∂x/∂qi)dqi, with

i = 1, 2, 3, hence

dV =
∂x

∂q1

·
(
∂x

∂q2

× ∂x

∂q3

)
dq1 dq2 dq3,

= h1q̂1 · (h2q̂1 × h3q̂2) dq1 dq2 dq3,

= h1h2h3 dq1 dq2 dq3,
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hence

v · dS divergence
= (∇ · v) dV = (∇ · v)h1h2h3 dq1 dq2 dq3.

Thus,

Theorem 17.2 (The divergence operator in orthogonal curvilinear coordinates)

∇ · v =
1

h1h2h3

[
∂

∂q1

(v1h2h3) +
∂

∂q2

(v2h3h1) +
∂

∂q3

(v3h1h2)

]
. (17.5)

17.3.3 The curl

This is the last operator to compute. Let us take Stokes’s theorem for an areal patch S with

boundary C, and integrate a vector field v in the usual manner:∫
S

∇× v · dS =

∮
C

v · dx.

In particular, let S be a patch of area on the surface

q1 = Constant,

as shown in Figure 17.3. Thus,

dS = q̂1h2h3dq2dq3.

We compute the line integral around boundary of this areal patch in a sense given by the right-hand

rule:∮
C

v · dx = [v · (q̂2h2dq2)] (q1, q2, q3)︸ ︷︷ ︸
Contribution from edge E1

+ [v · (q̂3h3dq3)] (q1, q2 + dq2, q3)︸ ︷︷ ︸
E2

− [v · (q̂2h2dq2)] (q1, q2 + dq2, q3 + dq3)︸ ︷︷ ︸
E3

− [v · (q̂3h3dq3)] (q1, q2, q3 + dq3)︸ ︷︷ ︸
E4

Tidy up a little bit:∮
C

v · dx = [v2h2] (q1, q2, q3)dq2 + [v3h3] (q1, q2 + dq2, q3)dq3

− [v2h2] (q1, q2 + dq2, q3 + dq3)dq2 − [v3h3] (q1, q2, q3 + dq3)dq3.
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Figure 17.3: The area element in curvilinear coordinates: this sketch forms a basis for deriving the
curl operator in curvilinear coordinates.

Pair up terms ready for a Taylor expansion:∮
C

v · dx = [v2h2] (q1, q2, q3)dq2 − [v2h2] (q1, q2 + dq2, q3 + dq3)dq2

+ [v3h3] (q1, q2 + dq2, q3)dq3 − [v3h3] (q1, q2, q3 + dq3)dq3.

Expand: ∮
C

v · dx = −
[
∂

∂q3

(v2h2)

]
dq2dq3 +

[
∂

∂q2

(v3h3)

]
dq2dq3.

Note that we have neglected the term

−
[
∂

∂q2

(v2h2)

]
dq2dq2

from the first Taylor expansion because it is second order in the small quantity dq2. Next, we

consider ∫
S

(∇× v) · dS =

∫
S

(∇× v) · q̂1h2h3dq2dq3,

= (∇× v) · q̂1h2h3dq2dq3, (17.6)
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since the areal patch is infinitesimal. But by Stokes’s theorem,∫
S

(∇× v) · dS =

∮
C

v · dx,

= −
[
∂

∂q3

(v2h2)

]
dq2dq3 +

[
∂

∂q2

(v3h3)

]
dq2dq3. (17.7)

Equate Equations (17.6) and (17.7)

(∇× v) · q̂1h2h3dq2dq3 = −
[
∂

∂q3

(v2h2)

]
dq2dq3 +

[
∂

∂q2

(v3h3)

]
dq2dq3

But

(∇× v) · q̂1 = (∇× v)1 ,

the component of the curl in the first (q̂1) direction. Hence,

(∇× v)1 =
1

h2h3

[
∂

∂q2

(v3h3)− ∂

∂q3

(v2h2)

]
By construction, (q̂1, q̂2, q̂3) form a right-handed system. Thus, we may obtain the other components

of the curl through cyclic permutations:

(∇× v)2 =
1

h3h1

[
∂

∂q3

(v1h1)− ∂

∂q1

(v3h3)

]
,

(∇× v)3 =
1

h1h2

[
∂

∂q1

(v2h2)− ∂

∂q2

(v1h1)

]
.

This result may be summarized succinctly in determinant form:

Theorem 17.3 (The curl operator in orthogonal curvilinear coordinates)

∇× v =
1

h1h2h3

∣∣∣∣∣∣∣∣
q̂1h1 q̂2h2 q̂3h3

∂
∂q1

∂
∂q2

∂
∂q3

h1v1 h2v2 h3v3

∣∣∣∣∣∣∣∣ , (17.8)

where v = v1q̂1 + v2q̂2 + v3q̂3 is the vector field v(q1, q2, q3) written in curvilinear coordinates.
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17.4 Some applications of our results

Example: Compute the Laplacian ∇2ψ of a scalar field ψ(x) (a) in general, curvilinear coordi-

nates (q1, q2, q3); (b) in spherical polar coordinates.

Let v = ∇ψ. Using the definition of the gradient,

vi =
1

hi

∂ψ

∂qi
,

(no sum), and

v =
3∑
i=1

q̂ivi.

Next, using the definition of divergence,

∇ · v =
1

h1h2h3

[
∂

∂q1

(v1h2h3) +
∂

∂q2

(v2h3h1) +
∂

∂q3

(v3h1h2)

]
,

we obtain

∇ · (∇ψ) =
1

h1h2h3

{
∂

∂q1

[(
1

h1

∂ψ

∂q1

)
h2h3

]
+ Cyclic permutations

}
But ∇2ψ = ∇ · (∇ψ). We therefore have the following theorem:

Theorem 17.4 (The laplace operator in orthogonal curvilinear coordinates)

∇2ψ =
1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂ψ

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂ψ

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂ψ

∂q3

)]
. (17.9)

For the spherical-polar case, let q1 → r, q2 → θ, and q3 → ϕ. Then,

q̂1 = r̂, q̂2 = θ̂, q̂3 = ϕ̂,

and

h1 = 1, h2 = r, h3 = r sin θ.

Substituting these relations into Eq. (17.9), we obtain

∇2ψ (r, θ, ϕ) =
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
.
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Example: Using spherical polar coordinates, show that the central force

F = α|r|nr, n 6= −2.

is conservative. Show also that

U = − α

n+ 2
|r|n+2

is a potential, F = −∇U .

We use the assignments made in the last exercise and compute

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣∣
q̂1h1 q̂2h2 q̂3h3

∂
∂q1

∂
∂q2

∂
∂q3

h1v1 h2v2 h3v3

∣∣∣∣∣∣∣∣ ,

=
1

r2 sin θ

∣∣∣∣∣∣∣∣
r̂ θ̂r ϕ̂r sin θ
∂
∂r

∂
∂θ

∂
∂ϕ

Fr rFθ r sin θFϕ,

∣∣∣∣∣∣∣∣ ,

Note that the force can be written as

F = α|r|n|r|r̂,

so

Fr = αrn+1, Fϕ = 0, Fϑ = 0.

Thus, a central force only has a radial component, when expressed in spherical polar coordinates.

The curl is then

∇× F =
1

r2 sin θ

∣∣∣∣∣∣∣∣
r̂ θ̂r ϕ̂r sin θ
∂
∂r

∂
∂θ

∂
∂ϕ

Fr(r) 0 0

∣∣∣∣∣∣∣∣ ,
=

1

r2 sin θ

[
r̂ (∂θ0− ∂ϕ0)− θ̂r (∂r0− ∂ϕFr(r)) + ϕ̂r sin θ (∂r0− ∂θFr(r))

]
,

= 0.
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Next, we compute −∇U . For spherical polar coordinates,

∇ψ =
q̂1

h1

∂ψ

∂q1

+
q̂2

h2

∂ψ

∂q2

+
q̂3

h3

∂ψ

∂q3

,

= r̂
∂ψ

∂r
+
θ̂

r

∂ψ

∂θ
+

ϕ̂

r sin θ

∂ψ

∂ϕ
.

But U is radially symmetric, U = U(r), so

−∇U = −r̂∂U
∂r

= −r̂U ′(r),

= −r̂ d
dr

(
− α

n+ 2
rn+2

)
,

= +r̂αrn+1,

= αrnr, r = rr̂,

= F .

Note in particular, that if

F =
α

|r|3
r,

then n = −3 and

U =
α

r
.

When α = −Gm1m2 this is the gravitational force.



Chapter 18

Special Curvilinear coordinate systems

Overview

In this section we study two special coordinate systems that commonly occur in fluid flow, electro-

magnetism, and quantum mechanics. Because of their importance to your later courses, this is a

particularly important chapter.

18.1 Spherical polar coordinates

We have already encountered this system, but let us recall it briefly. The coordinate system is

shown in Fig. 18.1. The point P is labelled by its radial distance r from the origin, together with

two angles: the azimuthal angle ϕ, and the angle θ between the z-direction and the radius vector

r extending from the origin O to the point P . The Cartesian coordinate system (x, y, z) and the

spherical polar coordinate system are related through

x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ,

with inverse transformation

r =
√
x2 + y2 + z2,

θ = cos−1 (z/r) ,

ϕ = tan−1 (y/x) .

158
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Figure 18.1: Spherical polar coordinates

Recall, we made the identification q1 → r, q2 → θ, and q3 → ϕ, and we wrote

r ≡ x = x̂x+ ŷy + ẑz,

= x̂r sin θ cosϕ+ ŷr sin θ sinϕ+ ẑr cos θ.

From this we computed the vectors

r̂ =
∂x

∂r

/∣∣∣∣∂x∂r
∣∣∣∣, θ̂ =

∂x

∂θ

/∣∣∣∣∂x∂θ
∣∣∣∣, ϕ̂ =

∂x

∂ϕ

/∣∣∣∣∂x∂ϕ
∣∣∣∣.

These were found to be

r̂ = x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ,

θ̂ = x̂ cos θ cosϕ+ ŷ cos θ sinϕ− ẑ sin θ,

ϕ̂ = −x̂ sinϕ+ ŷ cosϕ.

and are mutually orthogonal:

r̂ · ϕ̂ = r̂ · θ̂ = ϕ̂ · θ̂ = 0;
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Also,

r̂ × θ̂ = ϕ̂ + Cyclic permutations.

Note that it also follows that

x ≡ r = rr̂.

We also computed the scale factors

hr =

∣∣∣∣∂x∂r
∣∣∣∣ , hθ =

∣∣∣∣∂x∂θ
∣∣∣∣ , hϕ =

∣∣∣∣∂x∂ϕ
∣∣∣∣ ,

which we found to be equal to

hr = 1, hθ = r, hϕ = r sin θ.

Once we know the scale factors and the unit vectors, we may compute grad, div, curl, and the

Laplacian in the spherical polar system. We recall again the identifications q̂1 = r̂, q̂2 = θ̂, and

q̂3 = ϕ̂, along with

q1 = r, q2 = θ, q3 = ϕ.

Thus,

• The gradient

General case:

∇ψ(q1, q2, q3) =
q̂1

h1

∂ψ

∂q1

+
q̂2

h2

∂ψ

∂q2

+
q̂3

h3

∂ψ

∂q3

; (18.1)

Spherical polar coordinates:

∇ψ(r, θ, ϕ) = r̂
∂ψ

∂r
+
θ̂

r

∂ψ

∂θ
+

ϕ̂

r sin θ

∂ψ

∂ϕ
. (18.2)

• The divergence

General case:

∇ · v =
1

h1h2h3

[
∂

∂q1

(v1h2h3) +
∂

∂q2

(v2h3h1) +
∂

∂q3

(v3h1h2)

]
; (18.3)

Spherical polar coordinates:

∇ · v(r, θ, ϕ) =
1

r2 sin θ

[
sin θ

∂

∂r

(
r2vr

)
+ r

∂

∂θ
(sin θvθ) + r

∂vϕ
∂ϕ

]
(18.4)
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• The curl

General case:

(∇× v)(q1, q2, q3) =
1

h1h2h3

∣∣∣∣∣∣∣∣
q̂1h1 q̂2h2 q̂3h3

∂
∂q1

∂
∂q2

∂
∂q3

h1v1 h2v2 h3v3

∣∣∣∣∣∣∣∣ ; (18.5)

Spherical polar coordinates:

(∇× v)(r, θ, ϕ) =
1

r2 sin θ

∣∣∣∣∣∣∣∣
r̂ θ̂r ϕ̂r sin θ
∂
∂r

∂
∂θ

∂
∂φ

vr rvθ r sin θvϕ,

∣∣∣∣∣∣∣∣ (18.6)

• The Laplacian

General case:

∇2ψ(q1, q2, q3) =
1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂ψ

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂ψ

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂ψ

∂q3

)]
.

(18.7)

Spherical polar coordinates:

∇2ψ (r, θ, ϕ) =
1

r2 sin θ

[
sin θ

∂

∂r

(
r2∂ψ

∂r

)
+

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin θ

∂2ψ

∂ϕ2

]
. (18.8)
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18.2 Cylindrical coordinates

Consider cylindrical polar coordinates as shown

in the figure. The point P can either be labelled

by the Cartesian triple (x, y, z), or by the following

quantities:

• The distance z between the point P and its

projection on to the xy-plane;

• The distance ρ from the origin O to the pro-

jection of P on to the xy-plane;

• The angle ϕ that the projection makes with

the x-axis;

Note that ϕ is the same as the azimuthal angle

in the spherical polar system; otherwise these two

systems are different.

The surfaces generated by these new coordinates

are two planes and a cylinder:

• The plane z = Const.;

• The plane y = x tanϕ (i.e. the plane ϕ =

Const.);

• The cylinder ρ2 = x2 + y2 = Const.;

see the accompanying figure.

The Cartesian and the cylindrical coordinate systems are related through

x = ρ cosϕ,

y = ρ sinϕ,

z = z,
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with inverse transformation

ρ =
√
x2 + y2,

ϕ = tan−1 (y/x) ,

z = z.

Thus, we have

r ≡ x = x̂x+ ŷy + ẑz,

= x̂ρ cosϕ+ ŷρ sinϕ+ ẑz.

Let’s compute the tangent vectors:

ρ̂ =
∂x

∂ρ

/∣∣∣∣∂x∂ρ
∣∣∣∣, ϕ̂ =

∂x

∂ϕ

/∣∣∣∣∂x∂ϕ
∣∣∣∣, ẑ =

∂x

∂z

/∣∣∣∣∂x∂z
∣∣∣∣.

First,
∂x

∂ρ
= x̂ cosϕ+ ŷ sinϕ,

and this has unit length, hence

ρ̂ = x̂ cosϕ+ ŷ sinϕ.

Next,
∂x

∂ϕ
= −x̂ρ sinϕ+ ŷρ cosϕ,

which has length ρ, hence

ϕ̂ = −x̂ sinϕ+ ŷ cosϕ.

Finally, the third tangent vector must simply be ẑ. We assemble these results:

ρ̂ = x̂ cosϕ+ ŷ sinϕ,

ϕ̂ = −x̂ sinϕ+ ŷ cosϕ,

ẑ = ẑ.

These are quite clearly mutually orthogonal:

ρ̂ · ϕ̂ = r̂ · θ̂ = ϕ̂ · θ̂ = 0.
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We must also compute the scale factors:

hρ =

∣∣∣∣∂x∂ρ
∣∣∣∣ = |x̂ cosϕ+ ŷ sinϕ| = 1,

hϕ =

∣∣∣∣∂x∂ϕ
∣∣∣∣ = | − x̂ρ sinϕ+ ŷρ cosϕ| = ρ,

and

hz = 1.

For convenience, let us assemble these results also:

hρ = 1,

hϕ = ρ,

hz = 1.

The line element in this coordinate system is thus

ds2 = dρ2 + ρ2dϕ2 + dz2.

Now, we make the identifications q̂1 = ρ̂, q̂2 = ϕ̂, and q̂3 = ẑ, along with

q1 = ρ, q2 = ϕ, q3 = z.

Thus,

• The gradient

General case:

∇ψ(q1, q2, q3) =
q̂1

h1

∂ψ

∂q1

+
q̂2

h2

∂ψ

∂q2

+
q̂3

h3

∂ψ

∂q3

;

Cylindrical polar coordinates:

∇ψ(ρ, ϕ, z) = ρ̂
∂ψ

∂ρ
+
ϕ̂

ρ

∂ψ

∂ϕ
+ ẑ

∂ψ

∂z
. (18.9)

• The divergence
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General case:

∇ · v =
1

h1h2h3

[
∂

∂q1

(v1h2h3) +
∂

∂q2

(v2h3h1) +
∂

∂q3

(v3h1h2)

]
;

Cylindrical polar coordinates:

∇ · v(ρ, ϕ, z) =
1

ρ

∂

∂ρ
(ρvρ) +

1

ρ

∂vϕ
∂ϕ

+
∂vz
∂z

. (18.10)

• The curl

General case:

(∇× v)(q1, q2, q3) =
1

h1h2h3

∣∣∣∣∣∣∣∣
q̂1h1 q̂2h2 q̂3h3

∂
∂q1

∂
∂q2

∂
∂q3

h1v1 h2v2 h3v3

∣∣∣∣∣∣∣∣ ;
Cylindrical polar coordinates:

(∇× v)(ρ, ϕ, z) =
1

ρ

∣∣∣∣∣∣∣∣
ρ̂ ϕ̂ρ ẑ
∂
∂ρ

∂
∂ϕ

∂
∂z

vρ ρvϕ vz,

∣∣∣∣∣∣∣∣ (18.11)

• The Laplacian

General case:

∇2ψ(q1, q2, q3) =
1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂ψ

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂ψ

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂ψ

∂q3

)]
.

Cylindrical polar coordinates:

∇2ψ (ρ, ϕ, z) =
1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1

ρ2

∂2ψ

∂ϕ2
+
∂2ψ

∂z2
, (18.12)

and NOTE THE EXPONENT in the ∂ρ derivative: it is 1 (in the spherical polar coordinate

case the corresponding radial exponent is 2).
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18.3 Physical applications

18.3.1 Laplace’s equation in cylindrical polar coordinates

Example: Solve Laplace’s equation ∇2ψ = 0, in cylindrical coordinates, for ψ = ψ(ρ).

For this particular function,

∂ϕψ = ∂zψ = 0,

hence,

0 = ∇2ψ =
1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
= 0.

This means that the (·) = Const. := k, hence,

ρ
∂ψ

∂ρ
= k,

or
dψ

dρ
=
k

ρ
.

Separating the variables gives

dψ = k
dρ

ρ
;

integration gives the final answer:

ψ(ρ) = ψ0 + k log(ρ), ρ 6= 0.

and there are two constants of integration because the equation is second-order.

18.3.2 Pipe flow

For the flow of an incompressible viscous fluid, the Navier–Stokes equations lead to

−∇× (v × (∇× v)) = ν∇2 (∇× v) , (18.13)

where v(x) is the fluid velocity and ν is the constant kinematic viscosity. For axial flow in a

cylindrical pipe we take the velocity v to be

v = ẑv(ρ). (18.14)
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Show that the left-hand side of Equation (18.13) is identically zero when the velocity has the

form (18.14). Hence, v = ẑv(ρ) must satisfy

∇2 (∇× v) = 0.

Let’s focus on the left-hand side first. With v = ẑv(ρ), we compute

∇× v =
1

ρ

∣∣∣∣∣∣∣∣
ρ̂ ρϕ̂ ẑ

∂ρ ∂ϕ ∂z

0 0 v(ρ)

∣∣∣∣∣∣∣∣ = −ϕ̂∂v
∂ρ
.

Now we take

v × (∇× v) =

∣∣∣∣∣∣∣∣
ρ̂ ϕ̂ ẑ

0 0 v(ρ)

0 −∂v
∂ρ

0

∣∣∣∣∣∣∣∣ = +ρ̂v(ρ)
∂v

∂ρ
,

and this determinant expansion is legitimate because (ρ̂, ϕ̂, ẑ) form a right-handed orthonormal

triad. Finally, we take the curl of this expression:

∇× (v × (∇× v)) =
1

ρ

∣∣∣∣∣∣∣∣
ρ̂ ρϕ̂ ẑ

∂ρ ∂ϕ ∂z

v(ρ)∂v
∂ρ

0 0

∣∣∣∣∣∣∣∣ = 0.

Thus, for v = ẑv(ρ), the LHS of the fluid equation is identically zero, and we are forced to consider

∇2 (∇× v) = 0, (18.15)

Show that Equation (18.15) leads to the ordinary differential equation

1

ρ

d

dρ

(
ρ
d2v

dρ2

)
− 1

ρ2

dv

dρ
= 0,

with solution

v = v0 + a2ρ
2,

where v0 and a2 are constants.
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Solution – start with Equation (18.15). Use ∇× v = −ϕ̂(∂v/∂ρ) to rewrite Equation (18.15) as

∇2 (−ϕ̂v′(ρ)) = 0.

Some care is required here because ϕ̂ is non-constant and cannot be taken outside the differential

operator. However, we can cross both sizes with ẑ and take the constant vector ẑ inside the

operator:

0 = ∇2 (ϕ̂× ẑv′(ρ)) .

But (ρ̂, ϕ̂, ẑ) are a right-handed orthonormal triad, so ϕ̂× ẑ = ρ̂, and we solve

0 = ∇2 (ρ̂v′(ρ)) =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
(ρ̂v′(ρ))

)
+

1

ρ2

∂2

∂ϕ2
(ρ̂v′(ρ)) +

∂2

∂z2
(ρ̂v′(ρ)) . (18.16)

Let’s consider

ρ̂ = x̂ cosϕ+ ŷ sinϕ.

Evidently,
∂ρ̂

∂ρ
=
∂ρ̂

∂z
= 0,

and
∂ρ̂

∂ϕ
= −x̂ sinϕ+ ŷ cosϕ,

∂2ρ̂

∂ϕ2
= −x̂ cosϕ− ŷ sinϕ = −ρ̂.

Substitute these expressions back into Eq. (18.16):

0 =
ρ̂

ρ

∂

∂ρ

(
ρ
∂v′(ρ)

∂ρ

)
+
v′(ρ)

ρ2

∂2ρ̂

∂ϕ2
+ 0,

=
ρ̂

ρ

∂

∂ρ

(
ρ
∂v′(ρ)

∂ρ

)
− ρ̂v

′(ρ)

ρ2
.

Hence,
1

ρ

∂

∂ρ

(
ρ
∂v′(ρ)

∂ρ

)
=
v′(ρ)

ρ2
,

as required.

Substitution of the trial solution v = v0 + a2ρ
2 into the LHS gives

1

ρ

∂

∂ρ
(ρ2a2) =

2a2

ρ
.

Substitution into the RHS gives
v′(ρ)

ρ2
=

2a2ρ
2

ρ2
=

2a2

ρ
.

Hence, L.H.S. = R.H.S., and

v = v0 + a2ρ
2 (18.17)
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is a solution.

Carrying on from the previous parts, show that the boundary condition

v = 0, on ρ = R, the pipe wall

leads to the final form

v(ρ) = v0

(
1− ρ2

R2

)
.

Start with Equation (18.17). Note that if v(R) = 0, then

v0 + a2R
2 = 0 =⇒ a2 = − v0

R2
,

hence

v = v0

(
1− ρ2

R2

)
.

This is the celebrated Poiseuille flow, observed in flows in blood vessels.



Chapter 19

Special integrals involving curvilinear

coordinate systems

A mathematician is someone to whom∫ ∞
−∞

e−x
2

dx =
√
π

is as obvious as 1 + 1 = 2.

William Thomson, 1st Baron Kelvin of Largs.1

Overview

In this section we carry out some special integrations in various spatial dimensions. These require

clever substitutions involving curvilinear coordinates.

19.1 The gamma integral

Consider the integral

Γ(n+ 1) =

∫ ∞
0

tne−tdt, n ∈ {0, 1, 2, · · · }.

If n = 0, the integration is easy:

Γ(1) =

∫ ∞
0

e−tdt = −e−t
∣∣∞
0

= 1.

1William Thomson, b. 1824 Belfast, d. 1907 Largs, Scotland. Kelvin was born in Belfast but moved to Scotland
as a child. There is a very impressive statue of Kelvin in the Belfast botanical gardens.

170
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Otherwise, we do integration by parts:

Γ(n+ 1) =

∫ ∞
0

tn︸︷︷︸
u

e−tdt︸ ︷︷ ︸
dv

,

= −tne−t
∣∣∞
0
− n

∫ ∞
0

(
−e−t

)︸ ︷︷ ︸
v

tn−1dt︸ ︷︷ ︸
du

,

= n

∫ ∞
0

tn−1e−tdt,

= nΓ(n− 1).

Now, we repeat this integration by parts until we are left with one integral evaluation, Γ(1):

Γ(n+ 1) = n(n− 1) . . . 2.Γ(1) = n(n− 1) . . . 2.1 = n!

Thus, for n ∈ {0, 1, 2, · · · },

n! = Γ(n+ 1) :=

∫ ∞
0

tne−tdt.

Note, however, that the integral

Γ(x+ 1) =

∫ ∞
0

txe−tdt

is valid for all x ≥ 0, and that

Γ(x+ 1) = xΓ(x) x > 0.

This gives a generalization of the factorial function to positive real numbers:

x! := Γ(x+ 1).

Note: Let t = u2 in Γ(x+ 1) =
∫∞

0
txe−tdt. Then,

dt = 2udu.

The integral, re-expressed in the u-variable, also ranges from 0 to +∞:

Γ(x+ 1) = 2

∫ ∞
0

u2x+1e−u
2

du,

which is an alternative expression for the Gamma function. Setting x = 0 gives

1 = Γ(1) = 2

∫ ∞
0

ue−u
2

du
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19.2 The exponential integral

In this section we compute the integral

I :=

∫ ∞
−∞

e−x
2

dx.

First, let us derive the area element in two-dimensional polar coordinates.

In two dimensions, the spherical polar coordinates are as follows:

x = r cosϕ, y = r sinϕ,

where r =
√
x2 + y2 is the distance from the origin to the point P (x, y) and ϕ = tan−1(y/x) is

the angle between the x-axis and the radius vector r =
−→
OP . Based on the identity

r ≡ x = r cosϕx̂+ r sinϕŷ,

we compute the tangent vectors:

∂x

∂r
= cosϕx̂+ sinϕŷ = r̂,

since | cosϕx̂+ sinϕŷ|2 = cos2 ϕ+ sin2 ϕ = 1,

∂x

∂ϕ
= −r sinϕx̂+ r cosϕŷ, ϕ̂ = − sinϕx̂+ cosϕŷ,

since | − r sinϕx̂+ r cosϕŷ|2 = r2. The scale factors are thus

hr =

∣∣∣∣∂x∂r
∣∣∣∣ = 1, hϕ =

∣∣∣∣∂x∂ϕ
∣∣∣∣ = r.

Hence, the line element is

ds2 = dr2 + r2dϕ2.

and an infinitesimal patch of area is

dS = hrhϕdrdϕ = rdrdϕ.

But dS = dxdy, hence

dxdy = rdrdϕ.
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Now we compute I. First, take

I2 =

(∫ ∞
−∞

e−x
2

dx

)(∫ ∞
−∞

e−x
2

dx

)
,

=

(∫ ∞
−∞

e−x
2

dx

)(∫ ∞
−∞

e−y
2

dy

)
,

since x is a ‘dummy variable’ of integration. Re-write this as

I2 =

∫ ∞
−∞

∫ ∞
−∞

dxdy e−(x2+y2).

Now introduce polar coordinates. To enumerate all points (x, y) in the plane, the angle ϕ must go

between 0 and 2π, and the radius vector r must go from 0 to ∞. Thus,

I2 =

∫ ∞
−∞

∫ ∞
−∞

dxdy e−(x2+y2),

=

∫ 2π

0

∫ ∞
0

rdrdϕ e−r
2

,

=

∫ 2π

0

dϕ

∫ ∞
0

rdr e−r
2

,

= 2π

∫ ∞
0

rdr e−r
2

,

= 2π

∫ ∞
0

(
−1

2

) d
dr

e−r
2

dr,

= π
[
−e−r

2
]∞

0
,

= π.

Hence I2 = π, and

I =

∫ ∞
−∞

e−x
2

dx =
√
π.

One final note: Recall

Γ(x+ 1) =

∫ ∞
0

txe−tdt,

= 2

∫ ∞
0

u2x+1e−u
2

du.

Take the second form with x = −1/2:

Γ
(

1
2

)
= 2

∫ ∞
0

u0e−u
2

du =

∫ ∞
−∞

e−u
2

du =
√
π.
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Thus, for half-integers n+ 1
2
, where n ∈ {0, 1, 2, · · · },

(
n+ 1

2

)
! =

(
n+ 1

2

) (
n− 1

2

) (
n− 3

2

)
· · · 1

2
Γ
(

1
2

)
,

or (
n+ 1

2

)
! =

(
n+ 1

2

) (
n− 1

2

) (
n− 3

2

)
· · · 1

2

√
π.

19.3 The volume of an n-ball

In n dimensions, the ball centred at 0 of radius r is a subset of Rn such that

x2
1 + x2

2 + · · ·x2
n ≤ r2.

We would like to find the volume of this ball:

Vn(r) =

∫
· · ·
∫
x21+···+x2n≤r2

dx1 · · · dxn.

In analogy with polar coordinates in two-dimensional space, let us write the volume element as

dx1 · · · dxn = rn−1drdΩn,

where dΩn is a differential involving angles ϕ1, · · · , ϕn−1 that are unspecified polar coordinates on

the sphere in Rn. It is not necessary to know what these angles are, suffice to say that

dΩn = f (ϕ1, · · · , ϕn−1) dϕ1 · · · dϕn−1,

where f(· · · ) is some function. The differential dΩn is the element of solid angle in n dimensions,

and its integral over all possible values of ϕ1, · · · , ϕn−1 gives the surface area of the unit sphere

in n dimensions, Sn(1). Thus,

Vn(r) =

∫
· · ·
∫
x21+···+x2n≤r2

dx1 · · · dxn,

=

∫
dΩn

∫ r

0

rn−1dr,

=
Sn(1)rn

n
.

This gives a relationship between surface area and volume in n dimensions.
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Now, consider the integral∫ ∞
−∞

e−x
2

dnx =

∫ ∞
−∞
· · ·
∫ ∞
−∞

e−x
2
1−···x2ndx1 · · · dxn,

=

∫ ∞
−∞

e−x
2
1dx1 · · ·

∫ ∞
−∞

e−x
2
ndxn,

= In,

= πn/2. (∗)

But we can write
∫∞
−∞ e−x

2
dnx in general spherical polar coordinates as∫ ∞
−∞

e−x
2

dnx =

∫
dΩn

∫ ∞
0

rn−1e−r
2

dr,

= 1
2
Sn(1)Γ(n/2). (∗∗)

Equating (*) and (**) gives

Sn(1) =
2πn/2

Γ(n/2)
,

hence,

Vn(r) =
2πn/2

nΓ(n/2)
rn.

Check: n = 2 gives V2(r) = πr2, n = 3 gives

2π
√
π

31
2

√
π
r3 = 4

3
πr3.

19.4 The Jacobian

Recall, in two dimensions, in spherical polar coordinates,

dS = dx dy = r dr dϕ =

∣∣∣∣∣ ∂x
∂r

∂x
∂ϕ

∂y
∂r

∂y
∂ϕ

∣∣∣∣∣ dr dϕ.

The determinant

J :=

∣∣∣∣∣ ∂x
∂r

∂x
∂ϕ

∂y
∂r

∂y
∂ϕ

∣∣∣∣∣
is called the Jacobian of the coordinate transformation (x, y)→ (r, ϕ). In general, in n dimensions,

given a coordinate transformation

q1 = q1(x1, · · ·xn), · · · , qn = qn(x1, · · ·xn),
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the volume element has the form

dVn = dx1 · · · dxn =

∣∣∣∣∣∣∣∣
∂x1
∂q1

· · · ∂x1
∂qn

...
...

∂xn
∂q1

· · · ∂xn
∂qn

∣∣∣∣∣∣∣∣ dq1 · · · dqn,

and

J =

∣∣∣∣∣∣∣∣
∂x1
∂q1

· · · ∂x1
∂qn

...
...

∂xn
∂q1

· · · ∂xn
∂qn

∣∣∣∣∣∣∣∣
is the Jacobian. For orthogonal coordinate systems, this always reduces to

J =

∣∣∣∣∣∣∣∣
∂x1
∂q1

· · · ∂x1
∂qn

...
...

∂xn
∂q1

· · · ∂xn
∂qn

∣∣∣∣∣∣∣∣ = hq1 · · ·hqn .

We prove these facts now.

Proof: Form the tangent vectors

t1 =
∂x

∂q1

, · · · , tn =
∂x

∂qn
,

where

q̂i = ti/|ti|.

Recall, in two dimensions,

dV2 = |t1 × t2| dq1 dq2,

in three dimensions,

dV3 = |t1 · (t2 × t3) | dq1 dq2 dq3.

In both cases, we have the formula

dVn =

∣∣∣∣∣∣∣∣
| · · · |
t1 · · · tn

| · · · |

∣∣∣∣∣∣∣∣ dq1 · · · dqn, n = 2, 3,

where the ith column of this determinant is the column vector ti. Now there is nothing special about



19.4. The Jacobian 177

dimensions n = 2 or n = 3, so this formula must hold in an arbitrary spatial dimension:

dVn =

∣∣∣∣∣∣∣∣
| | |
t1 | tn
| | |

∣∣∣∣∣∣∣∣ dq1 · · · dqn, n ∈ {1, 2, · · · }.

In other words,

dVn = dx1 · · · dxn =

∣∣∣∣∣∣∣∣
∂x1
∂q1

· · · ∂x1
∂qn

...
...

...
∂xn
∂q1

· · · ∂xn
∂qn

∣∣∣∣∣∣∣∣ dq1 · · · dqn.

For orthogonal curvilinear coordinates,

dVn =

∣∣∣∣∣∣∣∣
| | |
t1 | tn
| | |

∣∣∣∣∣∣∣∣ dq1 · · · dqn,

=

∣∣∣∣∣∣∣∣
| | |
q̂1 | q̂n
| | |

∣∣∣∣∣∣∣∣h1 · · ·hn dq1 · · · dqn,

=

∣∣∣∣∣∣∣∣P

| | |
q̂1 | q̂n
| | |

P T

∣∣∣∣∣∣∣∣h1 · · ·hn dq1 · · · dqn,

where P is an orthogonal matrix |PP T | = 1 that rotates the matrix
| | |
q̂1 | q̂n
| | |


into the identity matrix,

P


| | |
q̂1 | q̂n
| | |

P T = In.

Thus,

dVn = h1 · · ·hn dq1 · · · dqn,

as required.
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In conclusion, for orthogonal coordinates,

J =

∣∣∣∣∣∣∣∣
∂x1
∂q1

· · · ∂x1
∂qn

...
...

∂xn
∂q1

· · · ∂xn
∂qn

∣∣∣∣∣∣∣∣ = h1 · · ·hn.

19.5 The ball in R4

In this section we construct coordinates for the ball in R4 and compute its volume from this con-

struction. Our approach for developing coordinates is based on an analogy with three dimensional

space.

Recall the construction of a ball in R3. Topologically, we take two identical discs (balls in R2) and

let them sit one on top of the other. We glue the boundary edges of these two balls together. We

then ‘inflate’ the glued-together object so that the two discs are pushed in opposite directions into

the third dimension. In terms of coordinates, this construction is summarized by the augmentation

of the two-dimensional coordinate system

x = r cosϕ,

y = r sinϕ, 0 ≤ ϕ < 2π, r =
√
x2 + y2,

to the following form:

z = r cos θ,

x = sin θ r cosϕ,

y = sin θ r sinϕ,

where

0 ≤ ϕ < 2π, 0 ≤ θ < π, r =
√
x2 + y2 + z2.

We now repeat the same steps: A ball in four dimensions is constructed from two identical three-balls.

We sit these balls one on top of the other and glue their boundaries together (these boundaries are

actually spheres). We then ‘inflate’ this object so that the two ball-interiors are pushed in opposite
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directions into the fourth dimension. In coordinate terms, we have

w = r cosψ,

z = sinψ r cos θ,

y = sinψ r sin θ sinϕ,

x = sinψ r sin θ cosϕ,

where

0 ≤ ϕ < 2π, 0 ≤ θ < π, 0 ≤ ψ < π, r =
√
x2 + y2 + z2 + w2.

For notational convenience, we re-write this system as

x1 = r cosψ,

x2 = r sinψ cos θ,

x3 = r sinψ sin θ sinϕ,

x4 = r sinψ sin θ cosϕ.

Now a general vector x in R4 is written as

x = ê1x1 + ê2x2 + ê3x3 + ê4x4,

where

ê1 = (1, 0, 0, 0) ,

ê2 = (0, 1, 0, 0) ,

ê3 = (0, 0, 1, 0) ,

ê4 = (0, 0, 0, 1) .

Hence,

x = ê1r cosψ + ê2r sinψ cos θ + ê3r sinψ sin θ cosϕ+ ê4r sinψ sin θ sinϕ.

Now, we can compute tangent vectors.

Clearly,

r̂ =
∂x

∂r
= ê1 cosψ + ê2 sinψ cos θ + ê3 sinψ sin θ cosϕ+ ê4 sinψ sin θ sinϕ.
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is the radial tangent vector with unit norm. Next,

∂x

∂ψ
= −ê1r sinψ + ê2r cosψ cos θ + ê3r cosψ sin θ cosϕ+ ê4r cosψ sin θ sinϕ.

with norm r, hence

ψ̂ = −ê1 sinψ + ê2 cosψ cos θ + ê3 cosψ sin θ cosϕ+ ê4 cosψ sin θ sinϕ.

Again,
∂x

∂θ
= ê10 + r sinψ [−ê2 sin θ + ê3 cos θ cosϕ+ ê4 cos θ sinϕ] ,

with norm r sinψ, hence

θ̂ = −ê2 sin θ + ê3 cos θ cosϕ+ ê4 cos θ sinϕ.

Finally,
∂x

∂ϕ
= ê10 + ê20 + r sinψ sin θ [−ê3 sinϕ+ ê4 cosϕ] ,

with norm r sinψ sin θ, hence

ϕ̂ = −ê3 sinϕ+ ê4 cosϕ.

Let’s assemble these results.

• Tangent vectors:

r̂ = ê1 cosψ + ê2 sinψ cos θ + ê3 sinψ sin θ cosϕ+ ê4 sinψ sin θ sinϕ,

ψ̂ = −ê1 sinψ + ê2 cosψ cos θ + ê3 cosψ sin θ cosϕ+ ê4 cosψ sin θ sinϕ,

θ̂ = −ê2 sin θ + ê3 cos θ cosϕ+ ê4 cos θ sinϕ,

ϕ̂ = −ê3 sinϕ+ ê4 cosϕ.

• Scale factors:

hr = 1,

hψ = r,

hθ = r sinψ,

hϕ = r sinψ sin θ.

It is straightforward to check that these vectors are orthogonal: there are (4− 1)! = 6 relations to
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check. For example,

r̂ · ψ̂ = [ê1 cosψ + ê2 sinψ cos θ + ê3 sinψ sin θ cosϕ+ ê4 sinψ sin θ sinϕ]

· [−ê1 sinψ + ê2 cosψ cos θ + ê3 cosψ sin θ cosϕ+ ê4 cosψ sin θ sinϕ] ,

= − cosψ sinψ + sinψ cosψ
[
cos2 θ + sin2 θ

(
cos2 ϕ+ sin2 ϕ

)]
,

= − cosψ sinψ + sinψ cosψ = 0.

Now let’s compute the volume of the four-ball:

V4 =

∫ R

0

dr

∫ π

0

dψ

∫ π

0

dθ

∫ 2π

0

dϕhrhψhθhϕ,

=

∫ R

0

dr

∫ π

0

dψ

∫ π

0

dθ

∫ 2π

0

dϕ r3 sinψ sin2 θ,

=

(∫ R

0

r3dr

)(∫ π

0

dψ sin2 ψ

)(∫ π

0

dθ sin θ

)(∫ 2π

0

dϕ

)
,

=

(
1

4
r4

)[
1
2

(ψ − sinψ cosψ)π0
]

(− cos π + cos 0) 2π,

= 1
2
π2r4.

Check against the general formula:

Vn =
2πn/2

nΓ(n/2)
r4,

=
2π2

4Γ(2)
r4, n = 4,

=
2π2

4 · 1!
r4,

= 1
2
π2r4.

19.6 One more integral

The last integral in this chapter is the following one:

I(x) =

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz
eik·x

1 + k2
, k = (kx, ky, kz).

First, let us re-write this in a more suggestive form:

I(x) =

∫
d3k

eik·x

1 + k2
,

where the range is implicit and is equal to the whole of R3.



182 Chapter 19. Special integrals involving curvilinear coordinate systems

To do this integral, we go over to polar coordinates in k:

kz = k cos θ,

ky = k sin θ sinϕ,

kx = k sin θ cosϕ, k =
√
k2
x + k2

y + k2
z .

As usual,

d3k = k2 sin θ dkdθdϕ.

Hence,

I =

∫ ∞
0

k2dk

∫ π

0

sin θdθ

∫ 2π

0

dϕ
eik·x

1 + k2
.

We choose a coordinate system in x-space such that x aligns with the kz-axis. Then,

k · x = k|x| cos θ,

and

I(x) =

∫ ∞
0

k2dk

∫ π

0

sin θdθ

∫ 2π

0

dϕ
eik|x| cos θ

1 + k2
,

= 2π

∫ ∞
0

k2

1 + k2
dk

∫ π

0

sin θdθ eik|x| cos θ

Now we use a neat trick:

sin θeikx cos θ = − 1

ikx

d

dθ
eikx cos θ.

Hence,

I(x) = 2π

∫ ∞
0

k2

1 + k2
dk

∫ π

0

sin θdθ eik|x| cos θ,

= 2π

∫ ∞
0

dk
k2

1 + k2

i

kx

∫ π

0

dθ
d

dθ
eikx cos θ,

= 2π

∫ ∞
0

dk
k2

1 + k2

i

kx

[
e−ikx − eikx

]
,

=
4π

x

∫ ∞
0

dk
k sin(kx)

1 + k2
,

=
2π

x

∫ ∞
−∞

dk
k sin(kx)

1 + k2
.

In another course, you will hopefully be exposed to complex-variable theory, which determines this

integral through Cauchy’s residue theorem:
∫∞
−∞ dk · · · = πe−x, hence

I(x) =
2π

x

(
2π

e−x

2

)
= 2π2 e−x

x
,
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and the final answer is a function of the scalar x = |x|.

This completes the chapter about special integrals.



Chapter 20

Fin

Vector calculus was invented by mathematical physicists to formulate Electromagnetism.1 It is

thus the mathematical basis of Electromagnetism, and it also provides the mathematical key to

understanding fluid mechanics, quantum mechanics, heat and mass transfer, and partial differential

equations. When combined with geometry, such that differential laws can be formulated in non-

flat spaces, one has the mathemtical tools at hand to study Relativity and Quantum Field Theory.

It is thus indispensable in mathematical physics. I hope this module has succeeded in creating a

foundation for you to study these topics in more detail in later years.

1Vector analysis, a text-book for the use of students of mathematics and physics, founded upon the lectures of J.
Willard Gibbs, E. B. Wilson and J. W. Gibbs (1902)
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Appendix A

The ratio test – proof

One way to test if a power series converges is the ratio test:

Theorem A.1 (Ratio Test) Let

b0 + b1 + b2 + · · ·

be an infinite series. Form the ratio

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ .
Then

• If ρ < 1 the series is convergent.

• If ρ > 1 the series is divergent.

• If ρ = 1 the ratio test is inconclusive.

Proof: The limit

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣
means that there exists a positive integer N such that∣∣∣∣bn+1

bn

∣∣∣∣ < ρ

for all n > N . Hence,

|bn+1| < |bn|ρ ∀n > N.
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Telescope this result:

|bN+2| < |bN+1|ρ,

|bN+3| < |bN+2|ρ < |bN+1|ρ2,

|bN+4| < |bN+3|ρ < |bN+1|ρ3,
...

...

|bN+j| < |bN+1|ρj−1, j = 2, 3 · · · ,

|bN+j| ≤ |bN+1|ρj−1, j = 1, 2, 3 · · · ,

Now, split the infinite series b0 + b1 + · · · into two:

b0 + b1 + b2 + · · · =
N∑
n=0

bi +
∞∑

n=N+1

bi.

By repeated application of the triangle inequality |x + y| ≤ |x|+ |y| for all real numbers x, y, and

z, we have

|b0 + b1 + b2 + · · · | =

∣∣∣∣∣
N∑
j=0

bj

∣∣∣∣∣+

∣∣∣∣∣
∞∑

j=N+1

bj

∣∣∣∣∣ ,
≤

∣∣∣∣∣
N∑
j=0

bj

∣∣∣∣∣+
∞∑

j=N+1

|bj| ,

=

∣∣∣∣∣
N∑
j=0

bj

∣∣∣∣∣+
∞∑

j=N+1

|bj| ,

=

∣∣∣∣∣
N∑
j=0

bj

∣∣∣∣∣+
∞∑

j=1,2,3,···

|bN+j| ,

≤

∣∣∣∣∣
N∑
j=0

bj

∣∣∣∣∣+
∞∑

j=1,2,3,···

|bN+1| ρj−1.

We can now use our knowledge of geometric progressions to add up the infinite series here:

• For ρ < 1 we obtain

|b0 + b1 + · · · | <

∣∣∣∣∣
N∑
j=0

bj

∣∣∣∣∣+
|bN+1|
1− ρ

<∞.

• For ρ > 1 we obtain

|b0 + b1 + · · · | =∞.
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• For ρ = 1 we cannot sum the geometric series and the test is inconclusive.


