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In these questions, you may use the following conversion factor relating the electron-volt
to Joules: 1 eV = 1.60217646× 10−19 Joules, where the Joule is the SI unit of energy,
J = kg m2/s2. Furthermore, you may use the fact that the rest energy of an electron is
mec

2 = 0.511 MeV.

1. Satellite motion, Galilean physics A satellite of mass m is in circular orbit
about the earth. The radius of the orbit is r0 and the mass of the earth is Me.

(a) Find the total mechanical energy of the satellite.

(b) Now suppose that the satellite moves in the extreme upper atmosphere
of the earth where it is retarded by a constant but small friction force f .
The satellite will slowly spiral towards the earth. Since the friction force
is weak, the change in radius will be very slow. Therefore, we assume
that at any instant the satellite is effectively in circular orbit of average
radius r. Find the approximate change in radius per revolution of the
satellite, ∆r.

(c) Find the approximate change in the kinetic energy of the satellite per
revolution, ∆K.

(a) We use the ellipse formula:

E = −GMem

2a
,

where a is the semimajor axis. Now a circle is a degerate ellipse, whose
semimajor and semiminor axes are equal. Thus, the energy of the orbit is

E = −GMem

2r0

.

(b) We use the power equation:

dE

dt
= f · v,
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where f is the frictional force and v is the velocity. Now friction opposes
motion, so f = −f (v/|v|), and f · v = −fv. Find dE/dt:

dE

dt
= − d

dt
(GMem/2r) =

GMem

2r2

dr

dt
= −fv.

Hence,
GMem

2r2

dr

dt
= −fv.

But dr/dt = (dr/dθ) θ̇, and

GMem

2r2

dr

dθ
= −f

(
v/θ̇

)
.

But the motion such that it is always circular, and v = vθ = rθ̇. Hence,

GMem

2r2

dr

dθ
= −fr.

Thus,
dr

dθ
= −fr

(
2r2

GMem

)
= − 2fr3

GMem
.

Integrating over a revolution gives ∆r:

∆r = − 2f

GMem

∫ 2π

0

r (θ)3 dθ.

But the radius varies very slowly with θ, because dr/θ ∝ f . Therefore, we
take the integrand out from under the integral sign, and

∆r = − 2r3f

GMem
× 2π = − 4πr3f

GMem
.

Not surprisingly, the change in radius is negative, and the satellite spirals
towards the earth.

(c) Start with the energy partition

−GMem

2r
= K − GMem

r
,

hence

K =
GMem

r
> 0.

Thus,
dK

dθ
= −GMem

2r2

dr

dθ
.

But dr/dθ = −2fr3/ (GMem), and

dK

dθ
=

GMem

2r2

2fr3

(GMem)
.
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Effecting the cancellations, this is

dK

dθ
= fr,

and the kinetic energy INCREASES, albeit slowly (because dK/dr ∝ f).
Integrating over a revolution and taking r (θ) outside the integrand gives

∆K = 2πfr.

2. The Lorentz transformations

(a) An observer in frame S ′ is moving to the right at speed V = 0.600c away
from a stationary observer in frame S. The observer in S ′ measures the
speed v′ of a particle moving to the right away from her. What speed v
does the observer in S measure the particle if v′ = 0.900c?

(b) A pursuit spacecraft from the planet Tatooine is attempting to catch up
with a Trade Federation cruiser. As measured by an observer on Tatooine,
the cruiser is travelling away from the planet with a speed 0.600c. The
pursuit ship is travelling at a speed 0.800c relative to Tatooine, in the
same direction as the cruiser. What is the speed of the cruiser relative
to the pursuit ship?

(c) Two particles are created in a high-energy accelerator and move off in
opposite directions: one to the left, and one to the right. The speed
of one particle as measured in the lab is 0.650c and the speed of each
particle relative to the other is 0.950c. What is the speed of the second
particle, as measured in the lab?

(a) The LT formula is

v′ =
v − V

1− vV
c2

,

where v is the velocity of the object in frame S, v′ is the velocity of the object
in frame S ′, and V is the velocity of frame S ′. w.r.t. frame S. Inverting this
formula gives

v =
v′ + V

1 + v′V
c2

.

For us, v′ = 0.900c and V = 0.600c, the speed of the frame. Hence,

v =
0.6 + 0.9

1 + 0.6× 0.9
= 0.974c.

(b) In this problem, let the planet corresponds to frame S, and let the pursuit
ship correspond to frame S ′. Frame S ′ has a velocity V = 0.800c, and finally,
the cruiser corresponds to the third object, with velocity v = 0.600c. We
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must compute v′, the velocity of the cruiser in the frame of the pursuit ship.
Using

v′ =
v − V

1− vV
c2

,

this is

v′ =
0.6− 0.8

1− 0.6× 0.8
= −0.385c,

and this is negative, meaning the pursuit ship will catch the cruiser.

(c) In this problem, let the speed of the particle B w.r.t. the lab be v = 0.650c
towards the right. Let the speed of particle A be V (with an implied sign).
This is also the velocity of frame S ′ w.r.t. frame S, the lab frame. We are
given v′ = 0.960c and we must find V . We take the standard LT formula for
v′ and invert for V :

V =
v − v′

1− vv′
c2

.

Hence,

V =
0.65− 0.95

1− 0.65× 0.95
= −0.784c

and particle A travels to the left in the lab, as expected.

3. Energy

(a) What is the speed of a particle if its kinetic energy is 1.0% larger than
mv2/2? Hint: Use the Binomial Theorem.

(b) The kinetic energy of a certain electron is 0.520-MeV. To create x-rays
(high-energy photons), the electron travels down a tube and hits a target.
When it arrives at the target, what is its kinetic energy in eV? What is
its total energy? What is its speed? What is the speed of the electron,
computed (incorrectly) from Newtonian mechanics?

(a) In this problem, the particle is just barely relativistic, and this suggests using
the binomial expansion. We introduce the parameter β := v/c. The KE is

[(
1− β2

)−1/2 − 1
]
mc2 = 1

2
m (1 + δ) v2,

The binomial theorem with x = −β2 and n = −1/2 gives

(
1− β2

)−1/2
= 1 + 1

2
β2 + 3

8
β4 + 5

16
β6 + · · · .

where δ = 0.03. Taking only up to the fourth power gives
(
1 + 1

2
β2 + 3

8
β4

)− 1 = 1
2
β2 + 1

2
δβ2.

Effecting the cancellations gives

β =
√

4δ/3.
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Plugging in δ = 0.01 gives β = 0.1155, or β = 0.1 correct to one SF.

We must check that we have not lost any precision in truncating the binomial
expansion. So, let’s go to the next order in the expansion:

(
1 + 1

2
β2 + 3

8
β4 + 5

16
β6

)− 1 = 1
2
β2 + 1

2
δβ2.

Effecting cancellations gives

5
16

β4 + 3
8
β2 − 1

2
δ = 0.

Hence,

β2 =
−3

8
±

√
32

82 + 4δ 5
16

1
2

2 5
16

= 0.0132

or β = 0.1148, and β = 0.1, correct to one SF. Hence, for accuracy to
only one SF, we are correct to truncate after the β4 term in the binomial
expansion.

(b) Re-scaling the energy gives K = 5.20× 105 eV.

The rest energy is mc2 = 5.11× 105 eV, so the total energy is

E = (5.20 + 5.11)× 105 eV = 10.31× 105 eV.

Now E = γmc2, so

γ =
E

mc2
=

10.31

5.11
:= ρ.

Inverting gives

v = c

√
1− 1

ρ2
= c

√
1−

(
5.11

10.31

)2

= 0.8685c = 2.61× 108 m/s.

Computing INCORRECTLY with the NR formula gives

1
2
mv2 = 0.520 MeV,

or
1
2

mv2

mc2
= 1

2

v2

c2
=

0.520

0.511
,

hence
v = c

√
2× 5.20/5.11 = 1.43c.

4. Scattering experiments

(a) A photon with energy E is emitted by an atom with mass m, which recoils
in the opposite direction. Assuming that the motion of the atom can be
treated nonrelativistically, compute the recoil speed of the atom. From
this result, show that the recoil speed is much smaller than c whenever
E is much smaller than the rest energy mc2 of the atom.
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(b) Two pions π+ and π− collide and produce a neutral kaon. If the event
is a head-on collision in which the pions have velocities v0 and −v0/2
in the laboratory frame, what is the mass of the kaon in terms of the
velocity v0 and the pion mass mπ? Find a numerical result (with mπ still
undetermined) if v0 = 0.95c.

(a) Using NR conservation of momentum,

mv = pphoton =
E

c
.

Hence,

v =
E

mc
.

This is the final answer. Re-arranging the balance law gives

v

c
=

E

mc2
.

Hence, the NR assumption for the recoil is correct when E ¿ mc2.

(b) The energy balance gives

mπc2
[
γ (v0) + γ

(
1
2
v0

)]
= γ (v) mKc2,

where v is the Kaon velocity. Cancellation yields

mπ

[
γ (v0) + γ

(
1
2
v0

)]
= mKγ (v) . (1)

It remains to compute γ (v). Conservation of momentum yields

mπ

[
γ (v0)− 1

2
γ

(
1
2
v0

)]
v0 = mKγ (v) v.

Divide out by v:

mπ

[
γ (v0)− 1

2
γ

(
1
2
v0

)]
v0

v
= mKγ (v) . (2)

Equate Eqs. (1)–(2):

mπ

[
γ (v0)− 1

2
γ

(
1
2
v0

)]
v0

v
= mπ

[
γ (v0) + γ

(
1
2
v0

)]
.

Hence,

v = v0

γ (v0)− 1
2
γ

(
1
2
v0

)

γ (v0) + γ
(

1
2
v0

)

The final answer requires plugging in this form of v into the equation

mK =
mπ

[
γ (v0) + γ

(
1
2
v0

)]

γ (v)
.
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Numerical values: Let v0 = 0.95c to obtain

γ (v0)− 1
2
γ

(
1
2
v0

)

γ (v0) + γ
(

1
2
v0

) = 0.6071,

and
γ (v0) + γ

(
1
2
v0

)
= 4.3389.

Hence,
v = 0.95× 0.6071c = 0.5768c,

γ (v) = 1.2241

and finally,

mK =
mπ [γ (v0) + γ (v0/2)]

γ (v)
= mπ

(
4.3389

1.2241

)
≈ 3.54mπ.
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