
Mechanics and Special Relativity (MAPH10030)
Assignment 3

Issue Date: 03 March 2010
Due Date: 24 March 2010

In question 4, a numerical answer is required, with precision to three significant
figures. Marks will be deducted for more or less precision. You may use
Me = 5.97× 1024 kg. In the other questions, a symbolic answer is fine.

1. When an object is in circular orbit of radius r about the earth (mass Me), the
orbital period is

T =
2πr3/2

√
GMe

,

and the orbital velocity speed is

v =

√
GMe

r
.

Show that when the object is moved into a circular orbit of slightly larger radius
r + ∆r, where ∆r ¿ r, its new period is T + ∆T and its new orbital velocity is
v −∆v, where

∆T =
3π∆r

v
, ∆v =

π∆r

T

[4 points].

Find dT/dr:
dT

dt
= 3

2

2π√
GMe

r1/2 =
3π

v
.

Then integrate again:

∆T =

∫ r+∆r

r

dT = 3π

∫ r+∆r

r

1

v (r)
dr.

Now ∆r/r ¿ 1, and v is a continuous function. So we can take the 1/v (r)
outside the integral because it does not change very much over a small increment
∆r. Hence,

∆T =

∫ r+∆r

r

dT =
3π

v

∫ r+∆r

r

dr =
3π∆r

v
.

Similarly, compute dv/dr:

dv

dr
= −1

2

√
GMer

−3/2 = −π

T
.
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Thus,

−∆v =

∫ r+∆r

r

dv = −π

∫ r+∆r

r

1

T (r)
dr,

where we put a minus sign in front of the ∆v because by our choice, ∆v is
inherently positive. Doing the same trick with the integral,

∆v =
π∆r

T
,

as required.

2. See Fig. 1. A projectile of mass m is fired from the surface of the earth at an
angle α from the vertical. The initial speed v0 is equal to

√
GMe/Re. How high

does the projectile rise? Neglect air resistance and the earth’s rotation [4 points].

First, we use convervation of angular momentum. The initial angular momentum
is

Jinit = Rv0 sin α into the page.

The angular momentum at the maximum point is

Jtop = rmaxv1 into the page,

and the velocity is purely tangent to the earth’s surface at this point. Equating
these quantities gives a formula for v1 in terms of other things:

v1 = Rv0 sin α/rmax.

Next, we use conservation of energy:

1
2
v2

0 −
GMe

R
= 1

2
v2

1 −
GMe

rmax

.

But v2
0 = GMe/R. Hence,

−1
2

GMe

R
= 1

2
v2

1 −
GMe

rmax

,

and

v2
1 =

R sin2 αGMe

r2
max

.

So,

−1
2

GMe

R
= 1

2
R sin2 αGMex

2 −GMex, x = 1/rmax.

Tidying up,
R sin2 αGMex

2 − 2GMex + (GMe/R) = 0,

with solution

x =
GMe ±

√
G2M2

e −G2M2
e sin2 α

R sin2 αGMe

.

2



Mechanics and Special Relativity Orbits

This simplifies further:

x =
1±

√
1− sin2 α

R sin2 α
=

1 + cos α

R sin2 α
.

Finally,

rmax =
R sin2 α

1± cos α
.

But which sign to choose? Note that if α = 0, then the quadratic becomes
degenerate and has solution x = r−1

max = 1/ (2R). We would like our formula to
possess this behaviour: rmax → 2R as α → 0. This suggests taking the MINUS
sign. For, as α → 0, sin2 α ∼ α2, and 1− cos α ∼ α2/2. Thus, the final answer
is

rmax =
R sin2 α

1− cos α
.

3. A satellite of mass m is in circular orbit about the earth. The radius of the orbit
is r0 and the mass of the earth is Me.

(a) Find the total mechanical energy of the satellite [2 points].

We use the ellipse formula:

E = −GMem

2a
,

where a is the semimajor axis. Now a circle is a degerate ellipse, whose
semimajor and semiminor axes are equal. Thus, the energy of the orbit is

E = −GMem

2r0

.

(b) Now suppose that the satellite moves in the extreme upper atmosphere of
the earth where it is retarded by a constant but small friction force f . The
satellite will slowly spiral towards the earth. Since the friction force is weak,
the change in radius will be very slow. Therefore, we assume that at any
instant the satellite is effectively in a circular orbit of average radius r. Find
the approximate change in radius per revolution of the satellite, ∆r [2 points].

We use the power equation derived in class:

dE

dt
= f · v,

where f is the frictional force and v is the velocity. Now friction opposes
motion, so f = −f (v/|v|), and f · v = −fv. Find dE/dt:

dE

dt
= − d

dt
(GMem/2r) =

GMem

2r2

dr

dt
= −fv.

Hence,
GMem

2r2

dr

dt
= −fv.
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But dr/dt = (dr/dθ) θ̇, and

GMem

2r2

dr

dθ
= −f

(
v/θ̇

)
.

But the motion such that it is always circular, and v = vθ = rθ̇. Hence,

GMem

2r2

dr

dθ
= −fr.

Thus,
dr

dθ
= −fr

(
2r2

GMem

)
= − 2fr3

GMem
.

Integrating over a revolution gives ∆r:

∆r = − 2f

GMem

∫ 2π

0

r (θ)3 dθ.

But the radius varies very slowly with θ, because dr/θ ∝ f . Therefore, we
take the integrand out from under the integral sign, and

∆r = − 2r3f

GMem
× 2π = − 4πr3f

GMem
.

Not surprisingly, the change in radius is negative, and the satellite spirals
towards the earth.

(c) Find the approximate change in the kinetic energy of the satellite per revo-
lution, ∆K [2 points].

We use the energy partition

−GMem

2r
= K − GMem

r
,

hence

K =
GMem

r
> 0.

Thus,
dK

dθ
= −GMem

2r2

dr

dθ
.

But dr/dθ = −2fr3/ (GMem), and

dK

dθ
=

GMem

2r2

2fr3

(GMem)
.

Effecting the cancellations, this is

dK

dθ
= fr,

and the kinetic energy INCREASES, albeit slowly (because dK/dr ∝ f).
Integrating over a revolution and taking r (θ) outside the integrand gives

∆K = 2πfr.
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4. A space vehicle is in circular orbit around the earth. The mass of the vehicle is
3, 000 kg and the radius of the orbit is 2Re = 12, 800 km. It is desired to transfer
the vehicle to a circular orbit or radius 4Re.

(a) What is the minimum energy expenditure required for the transfer?

Since a circular orbit minimizes the effective potetnial, the minimum energy
required for the transfer is associated with a transfer to a second circular
orbit. Now

E1 = −GMem

4Re

,

and

E2 = −GMem

8Re

and the minimum energy is

∆E = E2 − E1 = −GMem

8Re

+
GMem

4Re

=
GMem

8Re

.

We also need a numerical answer to three significant figures. Now

GMem/Re = 1.8666e + 11

hence ∆E = 2.33e + 10 J.

(b) An efficient way to accomplish the transfer is to use a semi-elliptical orbit
(known as a Hohmann transfer orbit), shown in the figure. What velocity
changes are required at the points of intersection, points A and B in Fig. 2
[3 points].

The first transfer point involves a transition from an circular to an elliptic
orbit, of semimajor axis 2a = 6Re.

E1 = −GMem

4Re

= 1
2
mv2

1 −
GMem

2Re

,

E1t = −GMem

6Re

= 1
2
mv2

1t −
GMem

2Re

,

Solving for the velocities, obtain

v1 =

√
GMe

2Re

, v1t =

√
2GMe

3Re

.

Hence,

∆v1 = v1t − v1 =
√

GMe/Re

(√
2/3−

√
1/2

)
.

Now √
GMe/Re = 7.8879e + 03,

hence
∆v1 = 863 m/s.
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The second transfer point involves a transition from elliptic orbit of semimajor
axis 2a = 6Re, to a circular orbit, of radius 4Re.

E2t = −GMem

6Re

= 1
2
mv2

2t −
GMem

4Re

,

E2 = −GMem

8Re

= 1
2
mv2

2 −
GMem

4Re

,

Solving for the velocities, obtain

v2t =

√
GMe

6Re

, v2 =

√
GMe

4Re

.

Hence,

∆v2 = v2 − v2t =
√

GMe/Re

(√
1/4−

√
1/6

)
.

Now √
GMe/Re = 7.8879e + 03,

hence
∆v2 = 724 m/s.

Figure 1: Problem 1
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Figure 2: Problem 3
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