Mechanics and Special Relativity (ACM10030) Assignment 3

Issue Date: 23 March 2010
Due Date: 30 March 2010

1. Refer to Fig. 1. A projectile of mass m is fired from the surface of the earth at an angle α from the vertical. The initial speed v_{0} is equal to $\sqrt{G M_{\mathrm{e}} / R_{\mathrm{e}}}$. How high does the projectile rise? Neglect air resistance and the earth's rotation.
Hint: Do not try to solve for the orbit! Instead, use the conservation laws directly. [8 marks]
2. Consider a particle of mass m in two dimensions, experiencing a central force $\boldsymbol{F}=-k \boldsymbol{r}$, where \boldsymbol{r} is the radius vector of the particle relative to the force centre, and in an inertial frame. There are two ways of solving for the motion of such a system. The first way is as to write down the equations of motion in Cartesian form,

$$
m \ddot{x}+k x=0, \quad m \ddot{y}+k y=0,
$$

and observe that the answer is two uncoupled SHM's, $x=A_{x} \cos \left(\omega t+\varphi_{x}\right)$, $y=A_{y} \cos \left(\omega t+\varphi_{y}\right)$, where A_{x} and A_{y} are constants. This solution pair satisfies the generic conic-section equation

$$
A\left(x / A_{x}\right)^{2}+B\left(x / A_{x}\right)\left(y / A_{y}\right)+C\left(y / A_{y}\right)^{2}+D\left(x / A_{x}\right)+E\left(y / A_{y}\right)+F=0
$$

where

$$
\begin{gathered}
A=C=1, \quad D=E=0 \\
B=-2 \cos \theta, \quad F=-\sin ^{2} \theta, \quad \theta=\varphi_{x}-\varphi_{y} .
\end{gathered}
$$

Hence, $B^{2}-4 A C=4\left(\cos ^{2} \theta-1\right)<0$, and the motion is an ellipse. This is the quick and easy answer. However, the assignment requires that you follow the class notes, and find the answer as follows:
(a) What is the angular momentum \boldsymbol{J} for the particle relative to the force centre? Show that this is conserved.
(b) Write down the equations of motion in two dimensions, in polar coordinates. Hint: $F_{r}=-k r, F_{\theta}=0$.
(c) Reduce the system to a one-equation problem and identify the effective potential. Sketch the result.
Answer: $m \ddot{r}=-\left(d \mathcal{U}_{\text {eff }} / d r\right), \mathcal{U}_{\text {eff }}=\left[J^{2} /\left(2 m r^{2}\right)\right]+\left(k r^{2} / 2\right)$.
(d) Using the class notes as a hint, find the shape of the orbit of the particle. Are the orbits always closed?
Hint: Reduce the orbit problem to the integral

$$
\theta-\theta_{0}=\frac{J}{\sqrt{2 m}} \int^{r} \frac{\mathrm{~d} s}{s^{2} \sqrt{E-\frac{1}{2} \frac{J^{2}}{m s^{2}}-\frac{1}{2} k s^{2}}}
$$

and explain why E is always positive. Then solve for the integral using

$$
\begin{aligned}
& \mathcal{I}=\int \frac{\mathrm{d} s}{s \sqrt{-C s^{4}+B s^{2}-A}}= \underbrace{-\frac{1}{2} \int \frac{\mathrm{~d} u}{\sqrt{-A u^{2}+B u-C}}}_{u=1 / s^{2}}= \\
& \frac{1}{2} \frac{1}{\sqrt{A}} \sin ^{-1}\left[\frac{-2 A u+B}{\sqrt{B^{2}-4 A C}}\right]
\end{aligned}
$$

where A, B, and C are positive constants.
(e) Would a solar system governed by such a force law make sense? [A few sentences should suffice]

Figure 1: Definition sketch for problem 1

