Mechanics and Special Relativity (MAPH10030) Assignment 2

Issue Date: 16 February 2010

Due Date: 23 February 2010

1. Consider a particle that is constrained on top of a semicircle (See Fig. 1). Gravity points downwards. Suppose that the particle starts from rest. At what angle does the particle fall off the semicircle? [4 points]
Hint: Please give the solution in two forms: in terms of the angle ϕ, and the angle θ. The answer in the ϕ-angle is given in the e-book mentioned in Lecture 1 .
Work in the θ coordinates. In the absence of constraints, the EOM is

$$
\begin{aligned}
m\left(\ddot{r}-r \dot{\theta}^{2}\right) & =-\frac{\partial \mathcal{U}}{\partial r} \\
m(r \ddot{\theta}+2 \dot{r} \dot{\theta}) & =-\frac{1}{r} \frac{\partial \mathcal{U}}{\partial \theta}
\end{aligned}
$$

where $\mathcal{U}=m g y=m g r \sin \theta$. Now the motion is constrained, $\dot{r}=0$, so we use the constrained EOM discussed in class

$$
\begin{aligned}
m r \dot{\theta}^{2} & =N_{r}-m g \sin \theta \\
m r \ddot{\theta} & =-m g \cos \theta
\end{aligned}
$$

Reduce the tangential equation to an energy-conservation law:

$$
E=\frac{1}{2} m \dot{\theta}^{2}+m g r \sin \theta=E=E(t=0)=m g r \sin (\pi / 2)=m g r .
$$

Hence,

$$
r \dot{\theta}^{2}=2 g(1-\sin \theta) .
$$

Insert this result into the radial EOM, obtain

$$
N_{r}=-m g \sin \theta+m r \dot{\theta}^{2}=g(2-3 \sin \theta) .
$$

The particle falls off the semicircle when the force constraining it to the surface vanishes, i.e. $N_{r}=0$, or

$$
\frac{2}{3}=\sin \theta \text {. }
$$

It is customary to measure the angle in this problem form the vertical, $\phi=\frac{1}{2} \pi-\theta$, hence $\cos \phi=\sin \theta$, and

$$
\phi=\cos ^{-1} \frac{2}{3} .
$$

Subtract one mark if the answer in decimal form, $\theta=0.73$ Rad or $\theta \approx 0.73$, Rad, as both these answers are wrong.
2. One force acting on a machine part is $\boldsymbol{F}=(-5.00 \mathrm{~N}) \hat{\boldsymbol{x}}+(4.00 \mathrm{~N}) \hat{\boldsymbol{y}}$. The vector from the origin to the point where the force is applied is $\boldsymbol{r}=(-0.450 \mathrm{~m}) \hat{\boldsymbol{x}}+$ $(0.150 \mathrm{~m}) \hat{\boldsymbol{y}}$.

- In a sketch show $\boldsymbol{r}, \boldsymbol{F}$, and the origin [1 point].

See Fig. 1 (b).

- Use the right-hand rule to determine the direction of the torque. Then, compute the torque from the determinant definition. Make sure that the direction obtained in both calculations is the same [3 points].
By the RHR, the direction of the torque is into the page. Using the determinant rule,

$$
\begin{aligned}
\boldsymbol{\tau} & =\left|\begin{array}{ccc}
\hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\
-0.450 & 0.150 & 0 \\
-5.00 & 4.00 & 0
\end{array}\right|, \\
& =\hat{\boldsymbol{z}}(-0.450 \times 4.00+0.150 \times 5.00)=-1.05 \hat{\boldsymbol{z}} .
\end{aligned}
$$

Since the coordinate frame is right-handed, $\hat{\boldsymbol{z}}$ must point out of the page, hence $\boldsymbol{\tau}$ is into the page.
3. (a) Show that if the total linear momentum of a system of particles is zero, the angular momentum of the system is the same about all origins. [3 points] Given: $\sum_{i} \boldsymbol{p}_{i}=0$. Angular momentum:

$$
\boldsymbol{J}=\sum_{i} \boldsymbol{r}_{i} \times \boldsymbol{p}_{i} .
$$

A new system of axes: $\boldsymbol{r}_{i}^{\prime}=\boldsymbol{r}_{i}+\boldsymbol{R}$, where $d \boldsymbol{R} / d t=0$ because we are effecting an instantaneous shift in the axes. Hence, $\boldsymbol{p}_{i}^{\prime}=\boldsymbol{p}_{i}$, and

$$
\begin{aligned}
\boldsymbol{J}^{\prime} & =\sum_{i} \boldsymbol{r}_{i}^{\prime} \times \boldsymbol{p}_{i}, \\
& =\sum_{i}\left(\boldsymbol{r}_{i}+\boldsymbol{R}\right) \times \boldsymbol{p}_{i}, \\
& =\sum_{i}\left(\boldsymbol{r}_{i} \times \boldsymbol{p}_{i}+\boldsymbol{R} \times \boldsymbol{p}_{i}\right), \\
& =\boldsymbol{J}+\left(\boldsymbol{R} \times \sum_{i} \boldsymbol{p}_{i}\right), \\
& =\boldsymbol{J}
\end{aligned}
$$

(b) Show that if the total force on a system of particles is zero, the torque on the system is the same about all origins [3 points].
Let \boldsymbol{F}_{i} be the total force experienced by particle i. This can be decomposed into interactions and external parts, but that is not needed. Let us note however, that

$$
\boldsymbol{F}_{i}=\sum_{i \neq j} \boldsymbol{F}_{i j}^{\text {interaction }}+\boldsymbol{F}_{i}^{\text {external }}
$$

Now, $\sum_{i} \boldsymbol{F}_{i}=0$ in a particular system of axes, and $\boldsymbol{r}_{i}^{\prime}=\boldsymbol{r}_{i}+\boldsymbol{R}$ represents an instantaneous shift in axes. The forces ought to be translation invariant, hence $\boldsymbol{F}_{i}^{\prime}=\boldsymbol{F}_{i}$. Hence,

$$
\begin{aligned}
\boldsymbol{\tau}^{\prime} & =\sum_{i} \boldsymbol{r}_{i}^{\prime} \times \boldsymbol{F}_{i}^{\prime}, \\
& =\sum_{i}\left(\boldsymbol{r}_{i}+\boldsymbol{R}\right) \times \boldsymbol{F}_{i}, \\
& =\sum_{i}\left(\boldsymbol{r}_{i} \times \boldsymbol{F}_{i}+\boldsymbol{R} \times \boldsymbol{F}_{i}\right), \\
& =\boldsymbol{\tau}+\left(\boldsymbol{R} \times \sum_{i} \boldsymbol{F}_{i}\right), \\
& =\boldsymbol{\tau}
\end{aligned}
$$

4. Recall the law of gravity for point particles m_{1} and m_{2} : the force on particle 1 due to particle 2 is given by

$$
\begin{equation*}
\boldsymbol{F}_{12}=-\frac{G m_{1} m_{2}}{\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right|^{2}}\left(\frac{\boldsymbol{x}_{1}-\boldsymbol{x}_{2}}{\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right|}\right) . \tag{1}
\end{equation*}
$$

In class, we stated that the same law holds for spherical bodies at finite separations, and that the proof of this statement follows by integration. In this problem we obtain a hint at how this integration might be done by considering the gravitational force exerted by a continuous line of particles on a point particle of mass m.
Consider the system shown in Fig. 2. A continuous line of particles extends from $x=-a$ to $x=a$, at $y=0$. A point mass lies at $x=0, y=L$.
(a) Show that the force on the particle due to a point-like mass $d m(x)$ extending from x to $x+\mathrm{d} x$ is

$$
\mathrm{d} \boldsymbol{F}_{1, x}=-\frac{G m \mathrm{~d} m(x)}{\left(x^{2}+L^{2}\right)^{3 / 2}}(L \hat{\boldsymbol{y}}-x \hat{\boldsymbol{x}}) .
$$

We use the point-mass formula because $\mathrm{d} m$ is an infinitesimal mass element. Let \boldsymbol{r} be a vector from $P=(x, 0)$ to the point $M=(0, L)$. Then,

$$
\boldsymbol{r}=\overrightarrow{O M}-\overrightarrow{O P}=L \hat{\boldsymbol{y}}-x \hat{\boldsymbol{x}}
$$

The gravitational force on m due to $\mathrm{d} m$ is directed along $-\boldsymbol{r}$ and the separation distance in the force formula is $r=|\boldsymbol{r}|=\sqrt{L^{2}+x^{2}}$. Using the formula

$$
\mathrm{d} \boldsymbol{F}=-G m \mathrm{~d} m \frac{\boldsymbol{r}}{|\boldsymbol{r}|^{3}},
$$

obtain

$$
\mathrm{d} \boldsymbol{F}=-G m \mathrm{~d} m \frac{L \hat{\boldsymbol{y}}-x \hat{\boldsymbol{x}}}{\left(x^{2}+L^{2}\right)^{3 / 2}} .
$$

(b) Assume a linear mass density $\mathrm{d} m=\rho \mathrm{d} x$ and thus obtain the total force \boldsymbol{F}_{1} on the point mass m. You might have to use your favour table of integrals to do this.

$$
\begin{aligned}
\mathrm{d} \boldsymbol{F} & =-G m \rho \mathrm{~d} x \frac{L \hat{\boldsymbol{y}}-x \hat{\boldsymbol{x}}}{\left(x^{2}+L^{2}\right)^{3 / 2}} \\
\boldsymbol{F} & =\int_{x=-a}^{x=a}\left[-G m \rho \frac{L \hat{\boldsymbol{y}}-x \hat{\boldsymbol{x}}}{\left(x^{2}+L^{2}\right)^{3 / 2}}\right] \mathrm{d} x \\
& =-G m \rho L \hat{\boldsymbol{y}} \int_{-a}^{a} \frac{\mathrm{~d} x}{\left(x^{2}+L^{2}\right)^{3 / 2}}+G m \rho \hat{\boldsymbol{x}} \int_{-a}^{a} \frac{x \mathrm{~d} x}{\left(x^{2}+L^{2}\right)^{3 / 2}}
\end{aligned}
$$

The second integral is zero because it is an odd function integrated over a symmetric domain. Thus, the force is entirely directed in the y-direction, and equal to

$$
\begin{aligned}
\boldsymbol{F} & =-G m \rho L \hat{\boldsymbol{y}} \int_{-a}^{a} \frac{\mathrm{~d} x}{\left(x^{2}+L^{2}\right)^{3 / 2}}, \\
& =-\frac{G m \rho L}{L^{2}} \hat{\boldsymbol{y}} \int_{-a / L}^{a / L} \frac{\mathrm{~d} s}{\left(1+s^{2}\right)^{3 / 2}}, \\
& =-\frac{G m \rho L}{L^{2}} \hat{\boldsymbol{y}} \int_{-a / L}^{a / L} \frac{\partial}{\partial s} \frac{s}{\sqrt{1+s^{2}}} \\
& =-\frac{G m \rho L}{L^{2}} \hat{\boldsymbol{y}} \frac{2 a / L}{\sqrt{1+(a / L)^{2}}} .
\end{aligned}
$$

Tidying up the formula yields the final answer [full marks if student gets to here]:

$$
\begin{aligned}
\boldsymbol{F} & =-\frac{2 G m \rho a}{L^{2}}\left[1+\left(\frac{a}{L}\right)^{2}\right]^{-2} \hat{y}, \\
& =-\frac{G m M}{L^{2}}\left[1+\left(\frac{a}{L}\right)^{2}\right]^{-2} \hat{y}
\end{aligned}
$$

[Additional comment] For large separations L, the lowest-order contribution to the force is

$$
\boldsymbol{F}=-\frac{G m M}{L^{2}} \hat{y}+O\left((a / L)^{2}\right)
$$

and the point mass m 'sees' the rod as another point mass of mass M.
(c) How would the force distribution change if $\mathrm{d} m=\rho_{0}[1+\varepsilon(x / L)] \mathrm{d} x$?

Now, the force integral is

$$
\boldsymbol{F}=-G m \rho_{0} L \hat{\boldsymbol{y}} \int_{-a}^{a} \frac{[1+\varepsilon(x / L)] \mathrm{d} x}{\left(x^{2}+L^{2}\right)^{3 / 2}}+G m \rho_{0} \hat{\boldsymbol{x}} \int_{-a}^{a} \frac{[1+\varepsilon(x / L)] x \mathrm{~d} x}{\left(x^{2}+L^{2}\right)^{3 / 2}}
$$

Identify the odd integrals and set them to zero:

$$
\boldsymbol{F}=-G m \rho_{0} L \hat{\boldsymbol{y}} \int_{-a}^{a} \frac{\mathrm{~d} x}{\left(x^{2}+L^{2}\right)^{3 / 2}}+G m \rho_{0} \hat{\boldsymbol{x}} \int_{-a}^{a} \frac{\varepsilon(x / L) x \mathrm{~d} x}{\left(x^{2}+L^{2}\right)^{3 / 2}}
$$

We have seen the integral for the y-direction before. To do it, let $\rho \rightarrow \rho_{0}$ in part (b). Now there is a contribution to the force in the x-direction too:

$$
\begin{aligned}
\text { Contribution in the x-direction } & =G m \rho_{0} \int_{-a}^{a} \frac{\varepsilon(x / L) x \mathrm{~d} x}{\left(x^{2}+L^{2}\right)^{3 / 2}} \\
& =\frac{G m \rho_{0}}{L} \int_{-a / L}^{a / L} \frac{s^{2} \mathrm{~d} s}{\left(1+s^{2}\right)^{3 / 2}}, \\
& =\frac{G m \rho_{0}}{L}\left[\sinh ^{-1} s-\frac{s}{\sqrt{1+s^{2}}}\right]_{-a / L}^{a / L}
\end{aligned}
$$

This is

$$
\frac{G m \rho}{L}\left[2 \sinh ^{-1}(a / L)-\frac{2(a / L)}{\sqrt{1+(a / L)^{2}}}\right]
$$

Therefore, the force is

$$
\boldsymbol{F}=-\hat{\boldsymbol{y}} \frac{G M m}{L^{2}}\left[1+\left(\frac{a}{L}\right)^{2}\right]^{-2}+\hat{\boldsymbol{x}} \frac{G M m}{L^{2}}\left[\frac{L}{a} \sinh ^{-1}(a / L)-\left[1+\left(\frac{a}{L}\right)^{2}\right]^{-2}\right] .
$$

[Full marks if the student gets this far.] (Note that $M=2 a \rho_{0}$ as before.) [Additional comment] A plot of the function

$$
f(\Delta)=\frac{1}{\Delta} \sinh ^{-1} \Delta-\left[1+\Delta^{2}\right]^{-2} .
$$

shows that it is always positive (Fig. 2 (b)), and thus, the x-component of gravity is always in the positive x-direction. This makes sense: the most massive part of the rod is in the positive half-line, and these positive contributions to the total force dominate over contributions negative contributions from the negative half-line. Note, however, that there is an optimal a / L value that maximizes this force.

Figure 1: Sketches for problems 1 and 2

Figure 2: Problem 4

