
Mechanics and Special Relativity (ACM10030)
Assignment 2

Issue Date: 28th February 2011
Due Date: 21st March 2011

1. Force and torque One force acting on a machine part is F = (−5.00 N) x̂+
(4.00 N) ŷ. The vector from the origin to the point where the force is applied
is r = (−0.450 m) x̂ + (0.150 m) ŷ.

(a) In a sketch show r, F , and the origin. You must show r and F on
different sets of axes because they have different physical units.

(b) Use the right-hand rule to determine the direction of the torque. Then,
compute the torque from the determinant definition. Make sure that the
direction obtained in both calculations is the same.

See below for the sketch. By the RHR, the direction of the torque is into the page.

Using the determinant rule,

τ =

∣∣∣∣∣∣

x̂ ŷ ẑ
−0.450 0.150 0
−5.00 4.00 0

∣∣∣∣∣∣
,

= ẑ (−0.450× 4.00 + 0.150× 5.00) = −1.05ẑ.

Since the coordinate frame is right-handed, ẑ must point out of the page, hence
τ is into the page.
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2. Angular momentum and torque

(a) Show that if the total linear momentum of a system of particles is zero,
the angular momentum of the system is the same about all origins.

(b) Show that if the total force on a system of particles is zero, the torque
on the system is the same about all origins.

(a) Given:
∑

i pi = 0. Angular momentum:

J =
∑

i

ri × pi.

A new system of axes: r′i = ri + R, where dR/dt = 0 because we are
effecting an instantaneous shift in the axes. Hence, p′i = pi, and

J ′ =
∑

i

r′i × pi,

=
∑

i

(ri + R)× pi,

=
∑

i

(ri × pi + R× pi) ,

= J +

(
R×

∑
i

pi

)
,

= J .

(b) Let Fi be the total force experienced by particle i. This can be decomposed
into interactions and external parts, but that is not needed. Note however,
that

Fi =
∑

i6=j

F interaction
ij + F external

i .

Now,
∑

i Fi = 0 in a particular system of axes, and r′i = ri + R represents
an instantaneous shift in axes. Galilean invariance implies that the forces are
translation-invariant: F ′

i = Fi. Hence,

τ ′ =
∑

i

r′i × F ′
i ,

=
∑

i

(ri + R)× Fi,

=
∑

i

(ri × Fi + R× Fi) ,

= τ +

(
R×

∑
i

Fi

)
,

= τ .
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3. Gravitational forces on extended bodies Recall the law of gravity for point
particles m1 and m2: the force on particle 1 due to particle 2 is given by

F12 = − Gm1m2

|x1 − x2|2
(

x1 − x2

|x1 − x2|
)

. (1)

In class, we stated that the same law holds for spherical bodies at finite sep-
arations, and that the proof of this statement follows by integration. In this
problem we obtain a hint at how this integration might be done by consider-
ing the gravitational force exerted by a continuous line of particles on a point
particle of mass m.

Consider the system shown in Fig. 1(a). A continuous line of particles extends
from x = −a to x = a, at y = 0. A point mass lies at x = 0, y = L.

(a) Show that the force on the particle due to a point-like mass dm (x)
extending from x to x + dx is

dF1,x = − Gm dm (x)

(x2 + L2)3/2
(Lŷ − xx̂) .

(b) Assume a linear mass density dm = ρ dx (ρ = Const.) and thus obtain
the total force F1 on the point mass m. Use a table of integrals if
necessary.

(a) We use the point-mass formula because dm is an infinitesimal mass element.
Let r be a vector from P = (x, 0) to the point M = (0, L). Then,

r =
−−→
OM −−→OP = Lŷ − xx̂.

The gravitational force on m due to dm is directed along −r and the sep-
aration distance in the force formula is r = |r| =

√
L2 + x2. Using the

formula
dF = −Gm dm

r

|r|3 ,

obtain

dF = −Gm dm
Lŷ − xx̂

(x2 + L2)3/2
.

(b) We have,

dF = −Gmρ dx
Lŷ − xx̂

(x2 + L2)3/2

F =

∫ x=a

x=−a

[
−Gmρ

Lŷ − xx̂

(x2 + L2)3/2

]
dx

= −GmρLŷ

∫ a

−a

dx

(x2 + L2)3/2
+ Gmρx̂

∫ a

−a

xdx

(x2 + L2)3/2
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The second integral is zero because it is an odd function integrated over a
symmetric domain. Thus, the force is entirely directed in the y-direction, and
equal to

F = −GmρLŷ

∫ a

−a

dx

(x2 + L2)3/2
,

= −GmρL

L2
ŷ

∫ a/L

−a/L

ds

(1 + s2)3/2
,

= −GmρL

L2
ŷ

∫ a/L

−a/L

∂

∂s

s√
1 + s2

,

= −GmρL

L2
ŷ

2a/L√
1 + (a/L)2

.

Tidying up the formula yields the final answer [full marks if student gets to
here]:

F = −2Gmρa

L2

[
1 +

( a

L

)2
]−1/2

ŷ,

= −GmM

L2

[
1 +

( a

L

)2
]−1/2

ŷ

[Additional comment] For large separations L, the lowest-order contribution
to the force is

F = −GmM

L2
ŷ + O

(
(a/L)2) ,

and the point mass m ‘sees’ the rod as another point mass of mass M .

4. Gravitational self-energy Consider a solid sphere of uniform density ρ, radius
R0, and mass M .

(a) Explain why the gravitational interaction between a mass element dm
and a solid sphere of radius r and constant density ρ – where the mass
element sits on the surface of the sphere – is given by

dU = −Gdm
(

4
3
πr3ρ/r

)
.

(b) By integrating over all such mass elements that sit in a shell of thickness
dr on the surface of the sphere in part (a), show that the gravitational
interaction between the shell and the sphere is

dU = −16
3
π2Gρ2r4 dr.

(c) Do one final integration to show that the gravitational self-energy of the
sphere is

U = −3
5

GM2

R0

.
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(a) For this part, consider an interaction between a point-like mass dm and an
extended spherical body of radius R. The force exerted by the body on
the point-like mass acts through the centre of the sphere. Thus, if r is the
separation of the two objects, the interaction potential is

dU = −Gdm

r
×Mass of extended body

and
Mass of extended body = ρ× Volume = 4

3
πr3ρ,

hence

dU = −Gdm

r

(
4
3
πr3ρ

)
,

as required.

(b) Since the mass dm and the extended body are composed of the same mate-
rial, we have

dm = ρ× Volume of infinitesimal element.

If we integrate over all such elements in a shell of thickness dr, we would
obtain the result

dm = ρ× (Surface area of sphere of radius r)× dr = 4πr2ρdr.

More precisely, we have

dm = ρ× Volume of infinitesimal element,

= ρr2dr sin θ dθ dϕ,

dmr =

∫

Ω

ρr2dr sin θ dθ dϕ,

= ρr2dr

∫ π

0

dθ sin θ

∫ 2π

0

dϕ,

= 4πρr2dr.

where Ω is the sphere of radius 1, θ is the polar angle, and ϕ is the azimuthal
angle of spherical polar coordinates (these steps are not necessary to the
proof).

Thus, we have

dU = −Gdm

r

(
4
3
πr3ρ

)
,

dm = ρ4πr2dr,

=⇒ dU = −4
3
ρGπr2

(
4πr2ρdr

)
,

or
dU = −16

3
π2Gρ2r4dr.
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(c) Integrate the last expression from r = 0 to r = R, the sphere radius. We
have,

U = −16
3
π2Gρ2

∫ r

0

r4dr,

= −16
3
π2Gρ2

(
1
5
R5

)
,

= −3G

5R
16
3.·3π

2R6ρ2,

= −3G

5R

(
4
3
ρπR3

)2
,

= −3G

5R
M2,

as required.

5. Bonus problem: This question is not mandatory, but can be used
to top up the marks on the other questions, for a maximum of five
top-up marks. Consider a particle that is constrained on top of a semicircle
(Fig. 1(b)). Gravity points downwards. Suppose that the particle starts from
rest. At what angle does the particle fall off the semicircle?

Give the solution in two forms: in terms of the angle φ, and the angle θ.

Work in the θ coordinate (standard coords from class notes). In the absence of
constraints, the EOM is

m
(
r̈ − rθ̇2

)
= −∂U

∂r
,

m
(
rθ̈ + 2ṙθ̇

)
= −1

r

∂U
∂θ

,

where U = mgy = mgr sin θ. Now the motion is constrained, ṙ = 0, so we use
the constrained EOM discussed in class

mrθ̇2 = Nr −mg sin θ,

mrθ̈ = −mg cos θ.

Reduce the tangential equation to an energy-conservation law:

E = 1
2
mr2θ̇2 + mgr sin θ = E = E (t = 0) = mgr sin (π/2) = mgr.

Hence,
rθ̇2 = 2g (1− sin θ) .

Insert this result into the radial EOM, obtain

Nr = +mg sin θ−mrθ̇2 = g (3 sin θ − 2).
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The particle falls off the semicircle when the force constraining it to the surface
vanishes, i.e. Nr = 0, or

2
3

= sin θ.

It is customary to measure the angle in this problem form the vertical, φ = 1
2
π−θ,

hence cos φ = sin θ, and
φ = cos−1 2

3
.

[Subtract two marks if the answer in decimal form, θ = 0.73 Rad or θ ≈ 0.73 Rad,
as both these answers are wrong.]

(a) Gravitational interaction between a particle
and a rod.

(b) Sketch for bonus problem.

Figure 1:
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