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1. Recall the definition of the dot product for vectors a = (a1, a2, a3) and b =
(b1, b2, b3):

a · b =
3∑

i=1

aibi, |a|2 =
3∑

i=1

a2
i .

(a) Show that a · b = |a||b| cos θ, where θ is the angle between a and b [2
Points].

Since the dot product is rotation-invariant, we can rotate our coordinate sys-
tem such that the vectors x1 and x2 live in the x-y plane. Now refer to Fig. 1.
Using the Law of Cosines,

L2 = |x1|2 + |x2|2 − 2|x1||x2| cos θ.

But

L2 = |−−→P2P1|2 = |x1 − x2|2 = (x1 − x2)
2 = |x1|2 + |x2|2 − 2x1 · x2.

Equating both expressions for L2 gives

x1 · x2 = |x1||x2| cos θ,

as required.

(b) Show that if |a− b| = |a + b|, then a is perpendicular to b [2 Points].

Square both sides.

LHS = |x− y|2 = (x− y)2 = x2 + y2 − 2x · y,

RHS = |x + y|2 = (x + y)2 = x2 + y2 + 2x · y.

Equating (LHS = RHS) gives

4x · y = 0,

hence x · y = 0. According to (Q1(a)), it follows that cos θ = π/2, hence,
the angle between the vectors is π/2, i.e., they are orthogonal.
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2. Refer to Eqs. (1) and (2). A girl throws a water balloon at an angle α above the
horizontal with a speed |v0|. The horizontal component of the balloon’s velocity
u = |v0| cos α is directed towards a car that is approaching the girl with a constant
speed V . If the balloon is to hit the car at the same height at which it leaves
her hand, what is the maximum distance the car can be from the girl when the
balloon is thrown?

The answer, H, involves V , v0, α, and g [4 Points].

We are to consider the foremost tip of the car. We ask the question, at what
time does the balloon hit this tip, assuming that the collision occurs at the launch
height. The initial velocity of the balloon is v0 = (u, v) = v0 (cos α, sin α). We
work in the FOR of the earth with a choice of origin (x0, y0) = 0. Hence,

x = v0 cos α t, y = v0 sin α t− 1
2
gt2.

The coordinate of the car in this frame is

xcar = H − V t,

where the minus sign indicates that the car is approaching the girl, who is fixed to
the FOR of the earth. To find the time of collision, form the following equality:

x = xcar =⇒ v0 cos α t = H − V t =⇒ (v0 cos α + V ) t = H.

Hence,

tcoll =
H

v0 cos α + V
.

Rather unsurprisingly, the collision is hastened by the car’s having a finite velocity
in the girl’s direction.

Now we find H. At the collision time, y = ycar too. This location is at y = 0.
Hence, v0 sin αtc − 1

2
gt2c = 0. Assuming tc 6= 0, obtain

tc =
2v0 sin α

g
.

Now we have two equations for tc. We equate them and solve for H,

tc =
2v0 sin α

g
=

H

v0 cos α + V
,

hence
H = 2v0 sin α (V + v0 cos α) g−1.

3. Consider a particle experiencing the force F = kx, a repulsive spring force.

(a) Write down the equation of motion and the energy [1 Point].

Newton’s equation: mẍ = F = kx. Identify σ =
√

k/m, hence

ẍ− σ2x = 0.
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(b) Reduce the motion to an integral using the energy [1 Point].

Multiply the equation of motion (EOM) by ẋ and integrate w.r.t. time. The
result is

1
2
ẋ2 − 1

2
σ2x2 = ε = E/m,

a constant with units of [Energy][mass]−1. Solve for dx/dt:

(
dx

dt

)2

= σ2x2 + 2ε ≥ 0,

hence ε is required to be nonnegative. Inverting for dt/dx,

dx

dt
=
√

2ε

√
1 +

σ2

2ε
x2,

dt

dx
=

1√
2ε

1√
1 + σ2

2ε
x2

,

t =
1√
2ε

∫ x

0

dx′√
1 + σ2

2ε
x2

.

(c) Solve this integral using any method you know [2 Points].

First, we transform to dimensionless variables: s = σx/
√

2ε. The integral is
thus

t =
1

σ

∫ σx/
√

2ε

x0

ds√
1 + s2

.

Looking this integral up in the tables,

t =
1

σ

[
sinh−1 σx√

2ε
− sinh−1 σx0√

2ε

]
.

Define a constant of integration Ã,

Ã = sinh−1 σx0√
2ε

.

Hence,

σt = sinh−1 σx√
2ε
− Ã ⇐⇒ x =

√
2ε

σ
sinh

(
σt + Ã

)
.

Defining a further constant of integration

B̃ =

√
2ε

σ
,

the solution is
x = B̃ sinh

(
σt + B̃

)
.

Using sinh s = (es − e−s) /2, this is

x = 1
2
B̃eÃeσt − 1

2
B̃e−Ãe−σt.
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Defining further constants of integration A = B̃eÃ/2 and B = −B̃e−Ã/2,
this is

x = Aeσt + Be−σt,

and A and B can be fixed by the initial conditions on x and ẋ.

4. A particle with mass m moves in one dimension with the celebrated Lennard–Jones
potential

U (x) = 4ε

[(x0

x

)12

−
(x0

x

)6
]

.

where ε and x0 are positive constants.

(a) Construct a timescale based on the energy ε, the lengthscale x0, and the mass
m. Hence, write down the non-dimensional equation of motion [2 points].

Dimensions of energy: ML2/T2. Hence, a timescale T0 is ε = mx2
0/T

2, or
T0 =

√
(mx2

0) /ε.

Equation of motion:

m
d2x

dt2
= −dU

dx
.

Dividing and multiplying by the fundamental scales makes no difference to
the equation:

mx0

T 2
0

d2 (x/x0)

d (t/T0)
2 = − ε

x0

d (U/ε)

d (x/x0)
.

Introduce non-dimensional length s = x/x0, non-dimensional time τ = t/T0,
and nondimensional potential U = U/ε. Hence,

d2s

dτ 2
= − ε

mx2
0

T 2
0

dU
ds

.

But, by our choice of T0,

d2s

dτ 2
= −dU

ds
, U = 4

(
s−12 − s−6

)
.

(b) From this, identify the non-dimensional potential function, U (s). Evaluate
any maxima, minima, and zeros of the function. Then plot it [2 points].

We have found
U = 4

(
s−12 − s−6

)
.

It has a zero at s = 1. It has a minimum at U ′ (s) = 0, i.e. − (12/s13) +
(6/s7) = 0, i.e. s = 21/6. It’s a minimum because

U ′′ (s) = 4× [(
12. · 13/s14

)− (
6 · 7/s8

)]
> 0

at s = 21/6. We also know the asymptotic behaviour of the function:

U ∼ +∞, as s → 0+,

U ∼ −0, as s →∞.

Now we can draw it (Fig. 2).
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(c) What is the non-dimensional period of small oscillations around the stable
minimum? What is the corresponding dimensional value? [2 points]

From class notes, the period of small oscillations around the well minimum
is ω =

√U ′′ (xeq) /m. But T = 2π/ω, hence T = 2π
√

m/U ′′ (xeq).

Now U ′′ (21/6
)

= 4× 18/21/3

In our case, the non-dimensional period is

T

T0

= 2π

√
1

(72/21/3)
= 2π

21/6

√
72

.

hence

T = 2π
21/6

√
72

T0 = 2π
21/6

√
72

√
mx2

0/ε.

(d) If the particle starts from rest at non-dimensional distance s = x/x0 = 1,
what is its ultimate fate? [2 points]

The energy is conserved and equal to E = U (s = 1) = 0. Hence, the turning
points are at s = 1 and s = ∞. The motion is therefore unbound: a particle
starting from rest at s = 1 tends to infinity.

Recall the equations of motion for trajectory motion in a uniform gravitational field
g:

x = x0 + ut, (1)

y = y0 + vt− 1
2
gt2. (2)

where (x0, y0) is the initial location of the particle relative to a given inertial frame
and (u, v) is the initial velocity. Neglect air resistance.

Figure 1: Dot-product calculation
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Figure 2: Lennard-Jones potential
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