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2 Chapter 1. Introduction to Mathematical Modelling
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Figure 1.1: Flowchart showing the modelling process
1.1.1 Example

We look at a very basic example of how the modelling process in Figure 1.1 works. This is a bit of
a silly, simplistic example, and it is important to note that the case studies and examples considered

in the remainder of these lecture notes are much more detailed, realistic, and complex.

In any case, for the present purposes, consider the population of a fictitious country, Doriath. Let
—_—

P(t) be the number of people present at time ¢. We look at an exponential-growth model:
ol .5

P(t) = P(0)e", (1.2)

where P(0) is the population at time ¢ = 0 and k is an unknown constant. Thus, to arrive back at
the real-world solution, we need some data to determine k. For a problem involving time-evolution,
this will be information about the past. For example, suppose we have the following data for the
past fifty years (starting from ¢t = 0). We overlay a curve of the kind (1.2) on the data (Figure 1.2)
and choose a k-value that best fits the data. The result is k = 0.021. The result is not a perfect
fit — it never will be. There will be small fluctuations in the population size for reasons unknown to

this crude model. Nevertheless, the fit is good.

Suppose now we use the k-value to make a prediction for what the population will be in twenty
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’ t (years) ‘ P “ t (years) | P ‘
0 1000 30 1848
5 1110 25 2155
10 1239 40 2315
15 1372 25 2584
20 1540 50 2770
25 1727

Table 1.1: Population of Doriath over fifty years.

In{®)

) 6.907735
5 111§ 7.022178
ic 1234 7.121864
15 1370 7.224274
20 1544 7.339552
25 172 7.45386
30 184§ 7.521826
35 2155\ 7.675733
3| 7.747037
4] 7.857107
7.926483

@ Sariasl

——Linazr(Sarias2)

Figure 1.2: Estimating the k-value from the data in Table 1.1.

years' time (¢ = 70):

P(t = 70) = 1000e”9%*™ = 4300 to two significant figures

R

(our k-value has two significant figures, so we are only allowed to keep two here).

e If, in twenty years' time, the population is close to P = 4300, then our model is validated,

and we gain confidence in it (broken red line does not need to be followed in Figure 1.1).

e If, however, in twenty years' time, the population prediction is wildly different from P = 4300,

then we need to revisit the model assumptions in Figure 1.1.

In any event, this example shows a typical (but not essential) property of a mathematical model:

Often, a mathematical model contains free parameters that need to be estimated from
data before predictions can be made.
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2.1. The Malthus model 7

Hence, the final form for the solution of the model (2.3) is
P(t) = P(0)e*. (2.4)

Remarks:

The model gives a way of predicting future populations, once the initial population P(0) is

known.

However, it contains an unknown parameter, k.

In practice, to determine k, we would find a historic time series of the population and fit a

curve of the type (2.4) to the data. This would give us an estimate of .

We would then use that estimated value of k to predict future values of the population.

2.1.1 Model validation
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Figure 2.1: Census data and the Malthus model

The list of assumptions for the Malthus model does appear long. However, each one can be justified
in detail. The things ruled out appear to be one-off events (epidemics and mass migration), and the
model can therefore be expected to hold over long periods of time. The carrying capacity of the
environment is large, so that again, resource limitations should not affect the population. Even the
last point, concerning the sameness of the individuals in the population is not so unreasonable: there
may be many atypical individuals in a society, but it is to be expected that there will be a sufficient
mass of ‘normal’ individuals behaving in more-or-less the same way that the outliers can be ignored.

Therefore, let us investigate a few human populations to see if they follow the model (2.4).



8 Chapter 2. A Word of Warning

To validate the model (2.4) we are going to form the auxiliary quantity
y = log(P),

such that, within the model,
y = kt + log[P(0)].

If a population follows the model, its y-value, plotted against time, will be a straight line. It seems
as though at least some populations do follow the Malthus model (Primary source: U.S. Census
Bureau) — see Figure 2.1. However, let us look at China's population over the same period (Fig. 2.2).

If the population were Malthusian, the ‘line of best fit" would coincide with the actual data points.

14.2 . : : -

-
AN

=
w
(e)]

log[P (in thousands)]
)
o

0 13.4
—o—Actual
G —Line of "best fit"
13.2 : : : ' '
0 10 20 30 40 50

t [(t=0)=1950]

Figure 2.2: Census data for China and the Malthus model

However, the population deviates in a clear and systematic way from a straight line. The population

here is not Malthusian.

It is salutary to try to discover where we have gone wrong in Figure 2.2. The dip in the first ten
years of the graph could be due to the famine (1958-1961), while the dip in the latter years of the
graph could be due to the one-child policy.

e The dip in the early years could be due to an increased death rate — larger a-value;

e The dip in the latter years could be due to a decreased birth rate — smaller S-value.

Both trends conspire to make k a function of time, such that the correct model would be

dP

- =kOP,  P(t) = P0)ek".
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