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TBC

Format of the Project

The main project in Epidemiological Modelling in STAT 40510 will be made up of several
tasks.

� Follow the online lectures independently, attend weekly office hours in Weeks 5-7.
� Over the same time period, complete (in a group) Tasks 1 and 2 to test your
knowledge of what you have learned.

� Again over the same time period, you will be assigned your most challenging
task, Task 3. You should begin to do background reading to understand what is
required here.

� In Week 8, you should present your work to date, the presentation should consist
of:

– The theoretical concepts you have learned in Tasks 1–2;
– How you will apply these in Task 3.

� The final report (due towards the end of the trimester) will be based entirely on
Task 3.
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In the class notes, we used nonlinear least squares to fit an SIR model to some data.
This was done in a rather crude way, we simply wrote down a good cost function (found
by trial and error):

J(β, γ, toffset) =
N∑
i=0

[log(Imodel(ti) + ϵ)− log(Idata(ti) + ϵ)]2 ,

where I(ti) is the number of infectious people on day ti, with the subscripts denoting the
value of I(ti) in the model and the data, respectively. We then computed the optimal
model parameters as:

(β∗, γ∗, t∗offset) = arg min
β≥0,
γ≥0,

toffset≤0

J(β, γ, toffset).

A better way to fit model parameters to the data is to use the maximum likelihood
function. The aim of this project is to learn about this approach, by applying an SEIR
model to a dataset for influenza.

1 The dataset

We look at the outbreak of Influenza in Cumberland (USA) in 1918. The population is
N = 5234. The number of cases counted per week is recorded and given in Table 1.
We fit an SEIR model to the data as follows. We have:

dS

dt
= − β

N
SI, (1a)

dE

dt
=

β

N
SI − aE, (1b)

dI

dt
= aE − γI, (1c)

dR

dt
= γI. (1d)

In this context, ‘R’ means immune or recovered. We take t ≥ 0, and we measure time
in days. For the initial conditions we take (as given in the data):

S(0) = 0.7N, E(0) = 0, I(0) = I0, R(0) = 0.3N − I0,

The number of people becoming infected at time t is equal to the number of
previously-exposed people entering the ‘I’ compartment at that time, hence aE. The
number of new recorded cases is C, there will be dC/dt new infectious cases per unit
time, this is proportional to the number of people leaving the exposed compartment,
hence:

dC

dt
= faE.

Here, f is a number between 0 and 1: f = 1 corresponds to all infected people being
recorded as such by the authorities, which would happen with universal testing or di-
agonsis. In this way, the number of new infections recorded in a time interval from τ1
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Week 1 6
Week 2 9
Week 3 20
Week 4 40
Week 5 77
Week 6 138
Week 7 219
Week 8 287
Week 9 294
Week 10 235
Week 11 153
Week 12 87
Week 13 45
Week 14 23
Week 15 11
Week 16 5
Week 17 2
Week 18 1
Week 19 0

Table 1: Number of new cases recorded in each week of the outbreak. Week 1 ends 7th
September 1918.

to τ2 is:

C(τ2)− C(τ1) = fa

∫ τ2

τ1

E(t) dt.

We interpolate the results of solving the ODE onto a discrete time points t0, t1, · · · ,
where ti = i Days. The number of newly recorded infections in the first week (7 days)
is thus:

C(t7) = fa

∫ 7 Days

0

E(t) dt.

We therefore introduce notation – and a formula – for the number number of recorded
infections in the jth week:

Cj ≈ fa

7j∑
i=7(j−1)+1

(
dC

dt

)
ti

∆t, ∆t = 1 Day, j in weeks (2)

The aim now is to fit the data in Table 1 to the model prediction for the weekly new
case count Cj in Equation (2).

2 Least Squares Again

We fit the model (Equation (2)) to the model by introducing the cost function:

J(x) =
∑

j, weeks

(
Cmodel

j − Cdata
j

)2
, (3)

where x = (a, β, γ, I0, f). Sample results are shown in Figure 1.
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Figure 1:

3 Maximum Likelihood Function

Rather than least squares (where the choice of cost function is a bit arbitrary), it is
better to fit the model to the data using the Maximum Likelihood function. We again
look at the case count Cj in Equation (2). We assume that the observed case count
Cdata

j at time tj (in weeks) satisfies:

Cdata
j = Cmodel

j + ϵi,

where ϵi is an error term.
Maximum Likelihood estimation requires that we make some assumption for the dis-

tribution of the error terms. Here, we assume that the error terms are independently
normallly distributed. The maximum likelihood function is the ‘probability of the obser-
vations given the model’, hence:

L(x) =
∏

j, Weeks

p(Cdata
j ;µj, σ(x)),

where:

� p is the normal distributioin;
� µj is the model value, µ = Cmodel

j ;
� The variance is:

σ =

√√√√ 1

N

N∑
j=1

[Cdata
j − Cmodel

j ]2

where N is the number of weeks of observations.

We then minimize the negative of the log-likelihood function:

x∗ = argmin
x

[− logL(x)] ,

which corresponds to maximizing the log-likelihood function.
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Remark

With ϵi normally distributed, ML is equivalent to the least-squares minimization (3).
However, ML has a better theoretical basis, the choice of the cost function is less
arbitrary. Another benefit is that the modeller can try different options for the error
terms. As well as a model where the ϵi’s are normally distributed, other models can be
tried as well, for instance a Poisson process.

In the Poisson process, what is usually observed is the cumulative case count, in our
case:

CMj =

j∑
i=1

Ci, j in weeks.

Then, the observed cumulative case count is described as a Poisson process, the jth

datapoint CMdata
j is modelled as a Poisson process with Poisson parameter CMmodel

j .
The likelihood function to minimize is thus:

L(x) =
∏

j, Weeks

p(Cdata
j ;λj),

where λj = Cmodel
j and p(n, λ) = (λn/n!)e−λ.

Finally, using ML estimation, the variances can be estimated from the Fisher Infor-
mation matrix F , where

Hij = − ∂2

∂xi∂xj

[logL(x)] , F = H−1.

4 The task

Using Least Squares and ML estimation, fit an SEIR model to the data in Table 1. Con-
struct confidence intervals using both bootstrapping and the Fisher Information matrix.
Comment on the results.
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