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A B S T R A C T

We introduce a deterministic SEIR model and fit it to epidemiological data for the COVID-19 outbreak in
Ireland. We couple the model to economic considerations — we formulate an optimal control problem in
which the cost to the economy of the various non-pharmaceutical interventions is minimized, subject to hospital
admissions never exceeding a threshold value corresponding to health-service capacity. Within the framework
of the model, the optimal strategy of disease control is revealed to be one of disease suppression, rather than
disease mitigation.
1. Introduction

Since late 2019, the COVID-19 respiratory disease originating from
the SARS-CoV-2 virus [1] has caused a global pandemic, leading to
over 9 million confirmed cases and over 660,000 confirmed deaths
as of June 2020 [2]. As the epicentre of the pandemic has shifted
from Asia to Europe and the Americas, governments across the world
have taken steps to curb the spread of the disease. Due to the current
lack of a vaccine for COVID-19, and the current very limited number
of therapeutic agents available for treatment of COVID-19 [3], these
efforts have taken the form of non-pharmaceutical interventions (NPIs).

Non-pharmaceutical interventions (NPIs) to curb the spread a pan-
demic like COVID-19 may take various forms, ranging from mass
publicity campaigns to educate the public about proper hygiene, social
distancing, testing, up to quarantining. The main purpose of such
interventions is to reduce the effective reproduction number of the
disease. Reducing the effective reproduction number serves either to
mitigate the disease, or to suppress it entirely [4]. As per Ref. [4], we
take ‘suppression’ to mean ‘driving infections to the (unstable) 𝐼 = 0
ixed point’, that is, driving the number of infectious cases to zero.
herefore, for the present purposes, ‘suppression’ and ‘elimination’
re synonymous. In contrast, mitigation serves to make the spread
f the disease in the population more manageable (e.g. preventing a
reakdown in health services due to an excess of hospital admissions).
itigation may also involve a slow build-up of the disease in the

opulation, with a view to achieving ‘herd immunity’ [5–7]. In contrast,
uppression aims to reduce the effective reproduction number of the
isease so far below unity that the disease dies out in the population.

In this work, we address the tradeoffs between mitigation and
uppression for a specific country case (Ireland). We use official epi-
emiological data to generate a standard SEIR-type model for the
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outbreak of COVID-19 in Ireland. Thereafter, we carry out a counter-
factual exercise and look at what would be the optimal strategy of
NPIs to reduce the effective reproduction number of the disease while
simultaneously minimizing the cost to the national economy. The basic
methodology is a standard compartmental SEIR model with multiple
additional compartments for fitting the model to the extant data;
the model is deterministic and based on coupled ordinary-differential
equations. Thereafter, the model is reformulated in the context of
Optimal Control Theory — the model is solved in such a way as
to minimize a cost function, while satisfying certain state constraints
which correspond to the requirement that hospital admissions remain
below capacity for the duration of the outbreak.

Optimal control theory has already found great use in mathematical
epidemiology. It has been used to compute optimal vaccination strate-
gies for various diseases lethal to humans [8–10], as well as optimal
containment strategies for animal diseases [11,12]. These works use
the Pontryagin Maximum Principle [13] to formulate semi-analytical
conditions for the optimal control strategy. In cases with a linear
cost function (including optimal stopping time problems [11,12]), the
optimal control is revealed to be a so-called bang–bang control, where
the control switches between a maximum and a minimum value during
at a finite number of switching points.

Our work is a departure from these prior works, in that we recognize
the importance of state constraints in a context where it may be
desirable to strictly control the number of infectious cases, with a
view to preserving the integrity of a health system. Including state
constraints is challenging from the mathematical point of view, and
often a numerical approach is pursued [14]. Our work follows in this
vein.
https://doi.org/10.1016/j.mbs.2020.108496
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In this work, we perform optimal control theory over a fixed time
orizon of one year. The motivation is that this is a realistic time
orizon over which to manage the spread of COVID-19 in population,
efore the advent of anticipated therapeutic interventions such as anti-
iral drugs and vaccines. This approach follows the recent work in
ef. [5]. This prior work is an important first step in the application
f Optimal Control Theory to the COVID-19 outbreak. We build on
his prior work by working with a linear cost function (Reference [5]
ses a cost function that is quadratic in the intensity of the non-
harmaceutical interventions). A linear cost function may be more
ealistic from the point-of-view of economic modelling [15]. Ref. [5]
nvolves modelling in the absence of state constraints; in the present
rticle we include state constraints. This makes the mathematical anal-
sis more involved, so a numerical optimization approach is favoured
erein. Finally, we emphasize that although the model is calibrated for
he Irish context, and the optimization performed in that context also,
he methods are entirely generic, and will find use more broadly.

This article is organized as follows. In Section 2 we introduce the
asic SEIR model and demonstrate how it is fit to epidemiological data
or the COVID-19 outbreak in Ireland. In Section 3 we couple the model
o economic considerations — we formulate an optimal control problem
n which the cost to the economy of the various NPIs is minimized,
ubject to the satisfaction of certain key state constraints. Results are
resented in Section 4, and conclusions are presented in Section 5.

. Mathematical model

In this work, we develop an optimal control theory based on a
eterministic compartmental model of epidemiology. Therefore, in this
ection we introduce an appropriate multi-compartment susceptible–
xposed–infectious–removed (SEIR) model. The model is tailored to
OVID-19, and is based on prior works [16,17]. Thus, the model

ncludes specific compartments for susceptible individuals 𝑆, exposed
(but not yet infectious) individuals 𝐸, and three separate infectious
classes: infectious-pre-symptomatic (𝐼𝑃 ), infectious-asymptomatic (𝐼𝐴),
and infectious-symptomatic (𝐼𝑆 ) individuals. Removed cases (𝑅) are
considered also in a standard fashion. Finally, in order to fit the model
to existing data, further compartments are introduced to the model to
enable the recording of confirmed cases and deaths. In this way, we
arrive at the following model. Time is measured in days.

𝑑𝑆
𝑑𝑡

= −
𝑐𝑆

(

𝑞𝑃 𝐼𝑃 + 𝑞𝐴𝐼𝐴 + 𝑞𝑆𝐼𝑆
)

𝑁
, (1a)

𝑑𝐸
𝑑𝑡

=
𝑐𝑆

(

𝑞𝑃 𝐼𝑃 + 𝑞𝐴𝐼𝐴 + 𝑞𝑆𝐼𝑆
)

𝑁
− 1

𝜏𝐸
𝐸, (1b)

𝑑𝐼𝑃
𝑑𝑡

= 1
𝜏𝐸

𝐸 − 1
𝜏𝐼𝑃

𝐼𝑃 , (1c)

𝑑𝐼𝐴
𝑑𝑡

=
𝑓
𝜏𝐼𝑃

𝐼𝑃 − 1
𝜏𝐼

𝐼𝐴, (1d)

𝑑𝐼𝑆
𝑑𝑡

=
1 − 𝑓
𝜏𝐼𝑃

𝐼𝑃 − 1
𝜏𝐼

𝐼𝑆 , (1e)

𝑑𝑅
𝑑𝑡

= 1
𝜏𝐼

𝐼𝐴 +
1 − 𝑔
𝜏𝐼

𝐼𝑆 . (1f)

Additional, non-standard compartments are introduced to allow for
comparison with recorded data:

𝑑
𝑑𝑡

(Ailing) = 𝑔
𝜏𝐼

𝐼𝑆 − 1
𝜏𝐷

(Ailing), (1g)

𝑑𝐷
𝑑𝑡

= 1
𝜏𝐷

(Ailing), (1h)

𝑑
𝑑𝑡

(Awaiting Test) = 1 − 𝑓
𝜏𝐼𝑃

𝐼𝑃 − 1
𝜏𝑇

(Awaiting Test), (1i)

𝑑𝐶
𝑑𝑡

= 1
𝜏𝑇

(Awaiting Test). (1j)

Here, cases in the ‘Ailing’ compartment die and enter the 𝐷-compar-
tment at a rate 𝜏 . Also, it is assumed that all individuals entering the
𝐷

2

symptomatic compartment are tested — these cases enter the ‘Awaiting
Test’ compartment, wait on average 𝜏𝐼 days for a test; results are
subsequently reported and attributed to the 𝐶-compartment. Including
deaths in the model is important, as it enables us to fit the model to
a wider range of epidemiological data involving both confirmed cases
and deaths, thereby improving the fit of the model. Also, it opens up
the possibility of performing optimal control on the model in such a
way as to control or even limit the number of deaths over the course
of the epidemic.

We further elaborate on the enumerated constants. The quantity
𝑁 is the total initial susceptible population. The coefficient 𝑐 denotes
the average number of contacts between a susceptible person and an
infectious person, per day. Correspondingly, the coefficient 𝑞𝑃 denotes
the probability that an infected, pre-symptomatic person transmits
the disease to a susceptible person during one of those contacts, and
similarly for 𝑞𝐴 and 𝑞𝑃 . By allowing for different values between 𝑞𝑃 ,
𝑞𝑆 , and 𝑞𝐴, we can account for the possibility that asymptomatic cases
are less infectious than symptomatic cases. We can also allow for the
effect of case isolation, which will reduce the value of 𝑞𝑆 . The time
𝜏𝐸 (in days) denotes an incubation time when an exposed individual
is not yet infectious, the time 𝜏𝐼𝑃 (in days) denotes the time interval
during which an exposed individual is infectious before symptom onset.
The coefficient 𝑓 denotes the fraction of pre-symptomatic cases that
never show any symptoms of the disease. All infectious cases (whether
asymptomatic or symptomatic) are assumed to remain infectious for a
period 𝜏𝐼 days. It is assumed that all asymptomatic cases recover and
are immune, while only 1 − 𝑔 of the symptomatic cases recover; the
remaining 𝑔 become ailing and subsequently, die. Thus, 𝑔 represents
the long-term case fatality rate of the disease.

2.1. Model fitting

For definiteness, we fit the model (1) to epidemiological data for
the COVID-19 outbreak in Ireland. The epidemiological data is obtained
from official sources [18], and involves both confirmed cases of COVID-
19, and deaths attributed to COVID-19. To fit the data to the model (1),
we have minimized the 𝐿2 norm,

𝛥 =
𝑛
∑

𝑗=0

{

ln
[

𝐶𝑚𝑜𝑑𝑒𝑙(𝑡𝑗 )
]

− ln
[

𝐶𝑑𝑎𝑡𝑎(𝑡𝑗 )
]

}2

+
𝑛
∑

𝑗=0

{

ln
(

𝑑𝐶𝑚𝑜𝑑𝑒𝑙
𝑑𝑡

)

𝑡𝑗
− ln

(

𝑑𝐶𝑑𝑎𝑡𝑎
𝑑𝑡

)

𝑡𝑗

}2

+
𝑛
∑

𝑗=𝑗𝐷1

{

ln
[

𝐷𝑚𝑜𝑑𝑒𝑙(𝑡𝑗 )
]

− ln
[

𝐷𝑑𝑎𝑡𝑎(𝑡𝑗 )
]

}2

+
𝑛
∑

𝑗=𝑗𝐷2

{

ln
(

𝑑𝐷𝑚𝑜𝑑𝑒𝑙
𝑑𝑡

)

𝑡𝑗
− ln

(

𝑑𝐷𝑑𝑎𝑡𝑎
𝑑𝑡

)

𝑡𝑗

}2
. (2)

Here, 𝑡𝑗 labels time in days. Here also, 𝑛 = 76, corresponding to 77
days’ worth of data, starting with the first recorded case of COVID-19
in Ireland on February 29th 2020 (𝑡𝑗 = 0) and ending on May 17th
020 (𝑡𝑗 = 76). The justification for choosing this time-period is that
t includes the initial phase of the COVID-19 outbreak before disease-
ontrol measures were introduced (beginning 12th March 2020). The
hosen time-period ends before the beginning of the phased lifting of
hese controls (May 18th 2020). Finally, 𝑗𝐷1 denotes the day with the

first recorded death and 𝑗𝐷2 denotes the first day in the outbreak after
which the number of new recorded deaths per day is strictly greater
than zero.

We use simulated annealing to minimize 𝛥 as a function of the
model parameters. To reduce the complexity of the problem slightly,
we re-write Eq. (1a) as:
𝑑𝑆
𝑑𝑡

= −𝛽0
𝑆
𝑁

(𝐼𝑃 + 𝑖𝐴𝐼𝐴 + 𝑖𝑆𝐼𝑆 ); (3)

a similar modification applies to Eq. (1b). Here, 𝛽0 = 𝑐𝑞𝑃 , 𝑖𝐴 = 𝑞𝐴∕𝑞𝑃 ,
and 𝑖 = 𝑞 ∕𝑞 . As such, 𝑖 and 𝑖 should henceforth be understood as
𝑆 𝑆 𝑃 𝐴 𝑆
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Table 1
Effect of various interventions on the value of the basic reproductive number 𝑅0. The formula for 𝑅0 is given in Eq. (8), with 𝛽0
replaced by 𝛽. The given values of 𝛽 correspond to 𝛽1 and 𝛽2 respectively in the optimization problem (6), the numerical values of
which are given in Appendix A. Similarly, the value for the case-isolation parameter 𝑖𝑆 is obtained from the optimization problem (6),
with the details provided again in Appendix A.
Intervention 𝛽 𝑖𝑆 𝑅0(𝛽, 𝑖𝑆 )

Case isolation, no other interventions 1.4695 0.3405 2.6945

Case isolation, schools and universities are closed,
mass gatherings are banned

1.1009 0.3405 2.0187

Case isolation, all non-essential services
and industries closed , travel restrictions

0.3576 0.3405 0.6557
h

𝑅

a
f
f

𝛽

H
m
a
a

ratios of probabilities – e.g. 𝑖𝐴 should be taken to mean the probability
that an asymptomatic individual transmits the disease to a suscep-
tible individual, divided by the probability that a pre-symptomatic
individual transmits the disease to a susceptible individual. A similar
interpretation should henceforth be applied to 𝑖𝑆 .

At the same time, the optimization problem is rendered more com-
lex, in several respects. First, the model is initialized at 𝑡 = −𝑡𝑜𝑓𝑓𝑠𝑒𝑡,

with

𝑆(𝑡 = −𝑡𝑜𝑓𝑓𝑠𝑒𝑡) = 𝑁 − 1 =
(

4.9 × 106
)

− 1, 𝐼𝑃 (𝑡 = −𝑡𝑜𝑓𝑓𝑠𝑒𝑡) = 1, (4)

and all other compartments equal to zero. Here, 𝑡𝑜𝑓𝑓𝑠𝑒𝑡 is an unknown
parameter, In this context, the total population is assumed to be sus-
ceptible to the disease, and 𝐼𝑃 (𝑡 = −𝑡𝑜𝑓𝑓𝑠𝑒𝑡) = 1 corresponds to ‘patient
zero’.

Furthermore, 𝛽0 changes over the course of the epidemic, corre-
sponding to the implementation of disease controls [19]. To account
for this, we replace 𝛽0 in the model (1) by:

𝛽𝑗 =

⎧

⎪

⎨

⎪

⎩

𝛽0, 𝑗 < 13,
𝛽1, 13 ≤ 𝑗 < 28,
𝛽2, 𝑗 ≥ 28.

(5)

In the first time period (𝑗 < 13), no disease controls are implemented. In
the second time period (13 ≤ 𝑗 < 28), all bars, schools and universities
are closed, and mass gatherings are banned. Finally, in the third time
period 𝑗 ≥ 28, all non-essential services and industries are closed down,
and travel is restricted to within 2 km of a person’s house, with certain
limited exceptions. Eq. (5) already contains some simplifications that
do not correspond exactly to the actual course of the COVID-19 control
efforts in Ireland – e.g. a four-day period (12th March 2020–15th March
2020, inclusive) where schools and universities were shut down and
mass gatherings banned but bars remained open. Also, after May 5th
2020 (𝑗 = 66), the 2 km restriction was extended to 5 km. However, we
gnore these details, as the main purpose of this article is not necessarily
o track and predict the course of COVID-19 in Ireland, but rather
o develop a simple, generic methodology to compute the optimum
pplication of non-pharmaceutical interventions to control the spread
f COVID-19. As such, we seek to solve the optimization problem for
0, where

0 = min
[

𝛥
(

𝑡𝑜𝑓𝑓𝑠𝑒𝑡, 𝛽0, 𝛽1, 𝛽2, 𝑓 , 𝑔, 𝜏𝐸 , 𝜏𝐼𝑃 , 𝜏𝐼 , 𝜏𝐷, 𝑖𝐴, 𝑖𝑆
)]

, (6)

hich is a 13-dimensional optimization problem.
We solve the optimization problem (6) using simulated annealing.

ounds for the search space are estimated from the literature — these
re reported in Appendix A, where we also provide the optimal pa-
ameter values corresponding to Eq. (6). Results are shown in Fig. 1.
ualitative agreement between the SEIR model (1) and the data can
e seen in the figure. To demonstrate quantitatively the agreement
etween the model, the data, and prior characterizations of the epi-
emiology of COVID-19, we have computed the basic reproduction
umber of the model (1) using the maximum eigenvalue of the next-

−1
eneration matrix [20], 𝑅0 = max spec(𝐹𝑉 ). For the model (1), the 0

3

matrices 𝐹 and 𝑉 are given by:

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎝

0 𝛽0 𝛽0𝑖𝐴 𝛽0𝑖𝑆
0 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜏−1𝐸 0 0
−𝜏−1𝐿 𝜏−1𝐼𝑃 0 0
0 −𝑓𝜏−1𝐼𝑃 𝜏−1𝐼 0
0 0 −(1 − 𝑓 )𝜏−1𝐼𝑃 𝜏−1𝐼

⎞

⎟

⎟

⎟

⎟

⎠

, (7)

ence

0(𝛽0, 𝑖𝑆 ) = 𝛽0

(

𝜏𝐼𝑃 + 𝑖𝐴𝑓𝜏𝐼 + 𝑓 (1 − 𝑓 )𝑖𝑆
𝜏2𝐼
𝜏𝐼𝑃

)

. (8)

(the reason for including the explicit functional dependence on the
parameters 𝛽0 and 𝑖𝑆 will become clear in what follows). We have used
the parameters obtained from solving the optimization problem (6) to
compute the value of 𝑅0. With case isolation (i.e. 𝑖𝑆 = 0.3405, as per
the solution of Eq. (6)), we have computed 𝑅0 = 2.6945. Without case
isolation (i.e. 𝑖𝑆 = 1), we have computed 𝑅0 = 3.4495. These results are
consistent with an existing estimates of the basic reproduction number
for COVID-19 [21]. Furthermore, by replacing 𝛽0 in Eq. (8) with both
𝛽1 and 𝛽2, we can estimate the effect of various measures to control the
spread of the epidemic. This is done in Table 1 – the results are very
close to other independent estimates of the same quantities [19]. These
findings confirm the robustness of the basic mathematical model (1)
and therefore provide a solid foundation on which to basic a theory of
optimal control in the remaining sections.

Finally, we emphasize that the focus of this article is on developing
a numerical framework for optimal control for epidemic outbreaks.
Therefore, quantifying the uncertainty in the fit of the SEIR model (1)
to the epidemiological data takes a back seat. However, in Appendix A,
along with the optimal parameter values corresponding to Eq. (6),
we also provide the confidence intervals for the same, as well as
confidence intervals for the basic reproductive number 𝑅0 and the
effective reproductive numbers in Table 1.

3. Optimal control theory

In this Section we model the imposition of non-pharmaceutical
interventions (NPIs) by replacing the constant value 𝛽0 in Eq. (1) with

piecewise-constant function denoted by 𝛽(𝑡). We solve the equations
rom the initial time 𝑡 = −𝑡𝑜𝑓𝑓𝑠𝑒𝑡 (initial conditions (4)) out to a fixed
inal time 𝑡 = 𝑇 . Specifically, we take:

(𝑡) =

{

𝛽0, 𝑡 ∈ (−𝑡𝑜𝑓𝑓𝑠𝑒𝑡, 𝑡0],
𝛽0 [1 − 𝑢(𝑡)] , 𝑡 ∈ (𝑡0, 𝑇 ].

(9a)

ere, 𝑢(𝑡) is a second piecewise-constant functions. In this way, the
odel (1) is solved with no controls for 𝑡 ≤ 𝑡0; controls are introduced

t time 𝑡0. The time 𝑡0 is fixed. For consistency, the following bounds
pply to 𝑢(𝑡):
≤ 𝑢(𝑡) ≤ 1, 𝑡 ∈ [𝑡0, 𝑇 ]. (9b)
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Fig. 1. Fit of the extended SEIR model (1) to the epidemiological data for the outbreak of COVID-19 in Ireland. 𝑡 = 0 is the 29th February 2020, the day of the first recorded
case. Data source: Ref. [18]. Top: Cumulative recorded cases and recorded deaths. Bottom: New daily recorded cases and daily recorded deaths.
The piecewise-constant function 𝑢(𝑡) is characterized as follows:

𝑢(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1, 𝑡0 < 𝑡 ≤ 𝑡𝑠1,
𝑢2, 𝑡𝑠1 < 𝑡 ≤ 𝑡𝑠2,
⋮

𝑢𝑛, 𝑡𝑠,𝑛−1 < 𝑡 ≤ 𝑇 .

(10)

Here, 𝑛 is an integer (one or greater), 𝑢1,… , 𝑢𝑛 are real numbers be-
tween zero and one, and 𝑡𝑠1,… , 𝑡𝑠,𝑛−1 are switching times (real numbers
between 𝑡0 𝑇 , such that 𝑡𝑠1 < ⋯ 𝑡𝑠,𝑛−1 < 𝑇 ). In practice, the switching
times correspond to how often the NPIs are updated.

We recall that 𝛽0 = 𝑐𝑞𝑝, where 𝑐 is the average number of contacts
between a susceptible person and an infections person, per day, and
𝑞𝑝 denotes the probability that an infected, pre-symptomatic person
transmits the disease to a susceptible person during one of those
contacts. Therefore, the function 𝑢(𝑡) describes at a population level
how to implement a strategy of NPIs — through a reduction of either 𝑐
or 𝑞𝑝. For example, 𝑢(𝑡) = 0.5 may correspond to a 50% reduction in 𝑐,
resulting from a corresponding reduction in mobility for the susceptible
population.

3.1. Formulation

We quantify the cost to the economy of implementing a sequence
{𝑢1,… , 𝑢𝑛} of controls by the cost function

𝐽 =
𝑛
∑

𝑢𝑖(𝑡𝑠,𝑖 − 𝑡𝑠,𝑖−1), (11)

𝑖=1

T

4

with the convention that 𝑡𝑠,0 = 𝑡0 and 𝑡𝑠,𝑛 = 𝑇 . As such, 𝐽 is a
function of the real variables {𝑢1,… , 𝑢𝑛, 𝑡𝑠1,… , 𝑡𝑠,𝑛−1}. The rationale
for this choice is as follows. The aim of each NPI is to reduce the
transmission of the virus. Other than the ‘easy’ interventions such as
public information campaigns, handwashing, etc. the interventions aim
to reduce the number of daily contacts between individuals. Assuming
economic activity is proportional to this number of contacts, there is a
natural linear relationship between the level of the NPIs and the cost to
the economy (e.g. if people’s daily contracts are reduced by 10%, then
one can expect economic activity to be reduced by the same factor).
However, we recognize that some of the more intense NPIs may carry
a disproportionate cost to the economy and for that reason, the linear
relationship in Eq. (11) may break down as 𝑢𝑖 → 1. For that reason,
in what follows, we investigate the robustness of our results to the
assumption of a linear cost function (Section 4).

We furthermore insist on an optimal control problem where human
life is put on a very high footing. As such, we propose the following
additional constraints on the optimal control problem:

𝑘𝐼𝑆 (𝑡) ≤ 𝐵, 𝑡 ∈ (−𝑡𝑜𝑓𝑓𝑠𝑒𝑡, 𝑇 ] (12)

In this context, the positive constant 𝑘 may be thought of as the
percentage of symptomatic cases who require a hospital bed (or a bed
in ICU) at time 𝑡, and the positive constant 𝐵 represents a corresponding
capacity limit (number of hospital beds, number of ICU beds, etc.).
Finally, we impose the additional constraint
𝑑𝐼𝑆
𝑑𝑡

≤ 0, 𝑡 = 𝑇 , (13)

which is true if and only if 𝜏−1𝐼𝑃 (1 − 𝑓 )𝐼𝑃 − 𝜏−1𝐼 𝐼𝑆 ≤ 0 at 𝑡 = 𝑇 .
his rules out any ‘optimal’ strategy in which a large epidemic peak
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would occur just beyond the horizon at 𝑡 = 𝑇 . The exclusion of such
strategies is desirable for public-health reasons. As such, the optimal
control problem to be solved is the following:

Under the epidemic modelled by Eq. (1), over a time horizon 𝑇 ,
compute the minimizer of

min
𝑛≥1

{

min
𝑢1 ,…,𝑢𝑛,

𝑡𝑠1 ,…,𝑡𝑠,𝑛−1

[ 𝑛
∑

𝑖=1
𝑢𝑖(𝑡𝑠,𝑖 − 𝑡𝑠,𝑖−1)

]

}

, (14)

subject to the constraints (12)–(13).

3.2. Discussion

We discuss the optimal control problem (14) in a more general
context. We use the notation 𝒙 = (𝑆,𝐸, 𝐼𝑃 , 𝐼𝐴, 𝐼𝑆 , 𝑅). We look at the
optimal control problem

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Minimize 𝐽 (𝒙, 𝑢) = ∫ 𝑇
0 𝑢(𝑡)d𝑡,

Subject to d𝒙∕d𝑡 satisfies Eq. (1), 0 ≤ 𝑡 ≤ 𝑇 ,

𝒙(𝑡 = 0) = 𝒙0, 𝒙0 = initial conditions implied by Eq. (4),
0 ≤ 𝑢(𝑡) ≤ 1, 0 ≤ 𝑡 ≤ 𝑇 ,

𝑘𝐼𝑆 (𝑡) ≤ 𝐵, 0 ≤ 𝑡 ≤ 𝑇 ,

𝜏−1𝐼𝑃 (1 − 𝑓 )𝐼𝑃 − 𝜏−1𝐼 𝐼𝑆 ≤ 0, 𝑡 = 𝑇 .

(15)

The control is activated at 𝑡 = 0; between 𝑡 = −𝑡𝑜𝑓𝑓𝑠𝑒𝑡 and 𝑡 = 0, the
volution of d𝒙∕d𝑡 is given by Eq. (1) with 𝑢 = 0. This particular optimal

control problem can be put into the framework of Theorem 23.11 in
Ref. [22] – this framework provides the conditions such that, if there is
at least one admissible process (𝒙, 𝑢) for which 𝐽 is finite, the optimal
control problem admits a solution. The structure of the problem (15)
is relatively simple, and to show that the conditions of Theorem 23.11
in Ref. [22] apply here, it suffices to show that solutions 𝒙(𝑡) of the
rdinary differential equation (1) remain in a bounded hypercube in
6; this is done in Appendix C. Furthermore, if the number of infectious

ndividuals is sufficiently small at 𝑡 = 0, then by making 𝑢(𝑡) = Const.
sufficiently large, the solution 𝒙(𝑡) will follow a standard epidemic
urve with 𝑘𝐼𝑆 (𝑡) ≤ 𝐵 – this gives the required admissible process.

This framework gives very general necessary conditions for a solu-
ion to the problem (15) to exist. Often, standard analytical approaches
an be applied to compute this solution analytically. The application of
hese approaches is hampered in the present context by the presence
f the state constraints in Eqs. (12)–(13). For a system of ordinary
ifferential equations 𝑑𝒙∕𝑑𝑡 = 𝒇 (𝒙, 𝑢), state constraints are generically

expressed as 𝑆(𝒙) ≤ 0 (for this brief presentation we assume for
iscussion purposes that there is only one state constraint, hence 𝑆 is a

scalar-valued function of its arguments). The order of the constraint is
the minimum value of 𝑝 for which 𝑑𝑝𝑆∕𝑑𝑡𝑝 can be expressed as a linear
function of 𝑢, that is, 𝑑𝑝𝑆∕𝑑𝑡𝑝 = 𝐴(𝒙, 𝑡) + 𝑢(𝑡)𝐵(𝒙, 𝑡). Here, 𝑑𝑆∕𝑑𝑡 =
(∇𝑆) ⋅ 𝒇 , and 𝐴 and 𝐵 are continuous functions of their arguments.
In the absence of such state constraints, a convenient way of solving
optimal control problems is the Pontryagin Maximum Principle [13].
For cost functions that are linear in the control 𝑢(𝑡), a consequence of
the Pontryagin Maximum Principle is that the optimal control is bang–
bang. That is, if 0 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥, then the optimal control switches
between 𝑢(𝑡) = 0 and 𝑢(𝑡) = 𝑢𝑚𝑎𝑥, with a finite number of switching
times. With state constraints, the optimal control tends to be a mixture
of bang–bang control sequences and ‘boundary arcs’, during which time
the control 𝑢(𝑡) is such that the system maintains 𝑑𝑝𝑆∕𝑑𝑡𝑝 = 0 [23].

The state constraints in Problem (14) are of high order (for instance,
Eq. (12) is a third-order state constraint). The analysis of such problems
is demanding, as the constraints involve the analysis of new multipli-
ers associated with each individual constraint [14]. For this reason,
the focus of this work is on computing optimal controls numerically.
Clearly, the resulting absence of theoretical analysis means that our
5

Fig. 2. Plot of 𝐽𝑚𝑖𝑛 as a function of 𝑢𝑚𝑎𝑥, with 𝑛 = 2. The plot range is 𝑢𝑚𝑎𝑥 ∈ [0.61, 0.8].
he upper limit is justified in the text. The lower limit is 𝑢𝑚𝑎𝑥 ≥ 0.61; for smaller values
f 𝑢𝑚𝑎𝑥 the state constraints (12)–(13) fail to be satisfied.

Fig. 3. Plot of 𝑘𝐼𝑆 (𝑡) under a bang–bang control with a single switch. Here, 𝑘 =
0.016 and 𝑡0 = 13Days. The curves correspond in monotone order to 𝑢𝑚𝑎𝑥 =
0.8, 0.78, 0.76, 0.74, 0.72, 0.71.

results should be treated with care since there is no guarantee that they
are optimal. However, we have carefully examined the robustness of
our numerical calculations — this is described in detail in Section 4
and also, in Appendix B.

There is also a second and more compelling reason for our use
of numerical optimization methods in this work. From the outset we
rule out the search for optimal controls that involve boundary arcs. Al-
though this restriction may result in the ruling out of globally optimum
solutions, we are guided by the intended application of the work, where
the outbreak of an epidemic is to be controlled using public-health
interventions. These interventions tend to be on the population level.
Communication with, and collaboration from, the entire population is
necessary for such measures to work. As such, piecewise-controls of
the type (10) are more realistic. The formulation of the optimization
problem in terms of such discrete controls lends itself naturally to a
numerical approach.

3.3. Methodology

We solve the optimization problem (14) using simulated annealing.
We use the built-in simulated annealing algorithms in Matlab/Octave.
The source code is obtainable via an online repository [24]. Dur-
ing each round of simulated annealing, a random set of controls



L.Ó. Náraigh and Á. Byrne Mathematical Biosciences 330 (2020) 108496

a
w
t
t
w
t
t
0
a

t
f



T

a
p
t
r
o

o

0

a
2

𝑢

T
v

{𝑢1,… , 𝑢𝑛, 𝑡𝑠1,… , 𝑡𝑠,𝑛−1} is drawn from the feasible values. The model
(1) is then solved numerically using ODE45 in Matlab/Octave and
the penalty function (11) is calculated. Extra terms are added to
the penalty function for cases where the choice of controls causes
the constraints (12)–(13) to be breached. The simulated annealing
algorithm generates successive random sets of controls until a global
minimum value of the penalty function is attained. Simulated annealing
is guaranteed asymptotically to converge to the global minimum —
more precisely, for any finite-dimensional problem, the probability that
the simulated annealing algorithm terminates with a global optimal
solution approaches 1 as the annealing schedule is extended [25]. In
practice, the convergence can be very slow, and the Matlab/Octave
codes employ built-in stopping criteria to confirm if a global minimum
has been reached. These built-in stopping criteria can occasionally
cause the simulated-annealing algorithm to converge before the attain-
ment of the global minimum. We have checked this by comparing the
results of the simulated annealing with other fundamentally different
optimization methods with independent stopping criteria (e.g. particle-
swarm optimization), and the results are the same. This inspires con-
fidence in our numerical method, although the absence of theoretical
analysis of the optimal control problem (14) at this time means that
our results should be treated with some care.

4. Numerical results

We solve a variant of optimization problem (14) numerically.
Specifically, for various values of the number of controls 𝑛, we compute

𝐽𝑚𝑖𝑛 = min
𝑢1 ,…,𝑢𝑛,

𝑡𝑠1 ,…,𝑡𝑠,𝑛−1

[ 𝑛
∑

𝑖=1
𝑢𝑖(𝑡𝑠,𝑖 − 𝑡𝑠,𝑖−1)

]

(16)

subject to the constraints (12)–(13) (we also compute the correspond-
ing values {𝑢1,… , 𝑢𝑛} and {𝑡𝑠1,… , 𝑡𝑠,𝑛−1} which achieve the minimum).
We report on the trends as the integer 𝑛 is increased from 𝑛 = 2 to 𝑛 =
12. The model (1) is solved subject to the initial conditions (4), with 𝑡 =
0 corresponding to February 29th 2020, the day on which the first case
of COVID-19 was recorded in Ireland. The model is solved without any
controls until 𝑡 = 𝑡0 = 13 Days (cf. Eq. (5)), whereupon the control 𝑢(𝑡) is
ctivated. In this way we look at counter-factual scenarios, to determine
hat would have been the optimal sequence of controls to implement,

o control the outbreak of COVID-19 in Ireland. We fix the final time
o be 𝑇 = 𝑡0 + 365 days. In this, we are motivated by similar recent
ork which looks at how to control an outbreak of COVID-19 over a

imeframe prior to the development of pharmaceutical treatments of
he disease [5]. Finally, based on the official statistics [26], we use 𝑘 =
.016 and 𝐵 = 300 in the state constraints (12)–(13), this corresponds to
n ICU admission rate of 1.6% among all confirmed cases of COVID-19.

To take account of strategies which reduce the spread of the disease
o a very low level, we supplement Eq. (3) by introducing an indicator
unction,

(𝑡) =

{

0, if 𝐼𝑃 + 𝑖𝐴𝐼𝐴 + 𝑖𝑆𝐼𝑆 < 1,
1, otherwise.

(17)

hen, Eq. (3) is further modified to read,
𝑑𝑆
𝑑𝑡

= −(𝑡)𝛽0
𝑆
𝑁

(𝐼𝑃 + 𝑖𝐴𝐼𝐴 + 𝑖𝑆𝐼𝑆 ); (18)

similar modification applies to the equation for the ‘exposed’ com-
artment. In this way, once the disease is reduced to a low level in
he population, in the sense that 𝐼𝑃 + 𝑖𝐴𝐼𝐴 + 𝑖𝑆𝐼𝑆 < 1, an unrealistic
esurgence in the disease by a notional ‘fraction of a person’ is ruled
ut.

The main purpose of this section is to characterize the solution
f Eq. (16) as a function of 𝑢𝑚𝑎𝑥, where

≤ 𝑢(𝑡) ≤ 𝑢 , 𝑢 ≤ 1. (19)
𝑚𝑎𝑥 𝑚𝑎𝑥

6

Fig. 4. Plot of 𝑘𝐼𝑆 (𝑡) under an optimal-control strategy in which the boundary is
ttained. Control parameters: 𝑢1 ≈ 0.607, 𝑢2 ≈ 0.468, with switching time at 𝑡 − 𝑡0 ≈
56.5Days.

Fig. 5. 𝐼𝑆 (𝑡) versus 𝑡 for three scenarios: disease outbreak with controls 𝑢𝑚𝑎𝑥 = 0.7 and
𝑚𝑎𝑥 = 0.8 and also, disease outbreak with no controls.

hat is, we look at the structure of the solution of the problem (16) for
arious values of 𝑢𝑚𝑎𝑥. We deliberately restrict ourselves to 𝑢𝑚𝑎𝑥 ≤ 0.8.

When the model (1) was fitted to the data for Ireland, 𝑢𝑚𝑎𝑥 ≈ 0.8 was the
maximum reduction in 𝛽 achieved, under a severe set of interventions
designed to curb the spread of COVID-19 (all non-essential services and
industries closed down, travel restricted to within 2 km of a person’s
house, with certain exceptions).

4.1. One switching time, 𝑛 = 2

We start by looking at the structure of the solution of the prob-
lem (16), for a range of values of 𝑢𝑚𝑎𝑥, and for 𝑛 = 2. Although
switching between different sets of controls only once in the time period
𝑇 might be unrealistic, this is a first step that helps with understanding
(we investigate 𝑛 > 2 in what follows). As such, we plot the minimum
value 𝐽𝑚𝑖𝑛 as a function of 𝑢𝑚𝑎𝑥 in Fig. 2. For large values of 𝑢𝑚𝑎𝑥,
𝑢𝑚𝑎𝑥 ? 0.7, the optimal control is bang–bang with one switch: the
control is enabled at the maximum value 𝑢(𝑡) = 𝑢𝑚𝑎𝑥 for between
58 (𝑢𝑚𝑎𝑥 = 0.8) and 193 days (𝑢𝑚𝑎𝑥 = 0.71). The evolution of the
infection under these controls is shown in Fig. 3 – under these bang–
bang controls, the epidemic is seen to be suppressed, and the number
of infectious cases is zero at the end-time 𝑇 . In contrast, for 𝑢𝑚𝑎𝑥 >
0.7, the optimal control is no longer bang–bang. Instead, the optimal
control strategy is revealed to be independent of 𝑢 : for an initial time
𝑚𝑎𝑥
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Fig. 6. Time evolution of the outbreak for three scenarios: disease outbreak with controls 𝑢𝑚𝑎𝑥 = 0.7 and 𝑢𝑚𝑎𝑥 = 0.8 and also, disease outbreak with no controls. The −◦ curves
show the actual course of the outbreak over the time interval for which the model is fitted to the data.
Fig. 7. Two-dimensional plots of 𝐽 (𝑢1 , 𝑢2 , 𝑡𝑠1) (cf. Eq. (20) at fixed 𝑡𝑠1 showing the dependence of 𝐽 on the controls 𝑢1 and 𝑢2. A local minimum is shown using a square marker
in each panel. Solid line: the state constraint 𝑘max𝑡∈[𝑡0 ,𝑇 ] 𝐼𝑆 (𝑡) = 𝐵. Broken line: the state constraint (𝑑𝐼𝑆∕𝑑𝑡)𝑡=𝑇 = 0. The closed regions demarcated by the broken lines correspond
o the forbidden regions (𝑑𝐼𝑆∕𝑑𝑡)𝑡=𝑇 > 0; regions to the left of the solid lines are forbidden also, and correspond to regimes where the constraint 𝑘𝐼𝑆 (𝑡) ≤ 𝐵 is breached.
interval, the value 𝑢 ≈ 0.607 is optimal, during which the boundary of
the state constraint 𝑘𝐼𝑆 (𝑡) = 𝐵 is attained, for some 𝑡. In a second time
interval, the value 𝑢 ≈ 0.468 is optimal, during which time the boundary
f the state constraint is again attained. The switching time occurs at
𝑠1 − 𝑡0 ≈ 256.5Days. The evolution of the epidemic under this scenario
s shown in Fig. 4. This scenario corresponds to a ‘containment’ of the
pidemic: the number of infectious cases is non-zero at the end-time
, but the maximum capacity of the hospital system is not breached.
inally, a comparison between a disease outbreak with controls, and
ne without any controls, is shown in Fig. 5. The imposition of controls
ontains or suppresses the epidemic: specifically, max(𝐼𝑆 ) ≈ 3.7 × 105

ith no controls, max(𝐼𝑆 ) = 𝐵∕𝑘 = 18,750 with 𝑢𝑚𝑎𝑥 = 0.7, and
max(𝐼𝑆 ) ≈ 100 with the optimal control 𝑢𝑚𝑎𝑥 = 0.8. Comparison between
these scenarios and the actual course of the outbreak is shown in Fig. 6.
The model predictions for the counterfactual scenario of an unmitigated
outbreak are consistent with the initial modelling of the epidemiology
of COVID-19 elsewhere, e.g. Ref. [4].

In the case with one switching time (i.e. 𝑛 = 2), the optimiza-
tion problem (16) contains only three parameters, and the optimal
control strategies found in Figs. 3–4 can be investigated separately
via a ‘brute-force approach’. This is desirable because it helps with
our understanding and also, because it gives further confidence in the
correctness of the simulated-annealing approach in isolating the global
minimum. As such, we have evaluated

𝐽 (𝑢 , 𝑢 , 𝑡 ) = 𝑢 (𝑡 − 𝑡 ) + 𝑢 (𝑇 − 𝑡 ) (20)
1 2 𝑠1 1 𝑠1 0 2 𝑠1

7

for a wide range of values, by direct computation. By fixing 𝑡𝑠1, a
two-dimensional plot can be made, and a value 𝑗(𝑡𝑠1) = min𝑢1 ,𝑢2
[

𝑢1(𝑡𝑠1 − 𝑡0) + 𝑢2(𝑇 − 𝑡𝑠1)
]

(subject to the state constraints) can be ob-
tained graphically. By repeating this procedure over all values of 𝑡𝑠1,
the optimal control strategies reported in Figs. 3–4 are recovered.
Sample two-dimensional plots along these lines are shown in Fig. 7.
The minimum marked in panel (a) corresponds to the global minimum
with the imposed constraint 𝑢𝑚𝑎𝑥 = 0.8 on the control. This corresponds
to a bang–bang control with 𝑢 = 𝑢𝑚𝑎𝑥 with one switching time at
𝑡𝑠1 − 𝑡0 ≈ 0.198 × 365Days, and 𝑢 = 0 thereafter. It can be asked if
the minimum (𝑢1 = 0.8, 𝑢2 = 0, 𝑡𝑠1 − 𝑡0 ≈ 0.198 × 365) is a true bang–
bang control or is instead a boundary control, as this optimal control
appears to occur along the curve 𝑘max𝑡∈[𝑡0 ,𝑇 ] 𝐼𝑆 (𝑡) = 𝐵 in Fig. 7(a). The
answer is that the surface 𝛷(𝑢1, 𝑢2) = 𝑘max𝑡∈[𝑡0 ,𝑇 ] 𝐼𝑆 (𝑡) − 𝐵 possesses a
jump discontinuity, which arises as a result of the extra condition (17)–
(18) in the model (1). Therefore, the optimal control (𝑢1 = 0.8, 𝑢2 =
0, 𝑡𝑠1 − 𝑡0 ≈ 0.198×365Days) occurs on one side of a jump discontinuity
and thus produces a solution that never attains the boundary value
𝑘max𝑡∈[𝑡0 ,𝑇 ] 𝐼𝑆 (𝑡) = 𝐵. This explanation can be verified by removing the
condition (17)–(18) from the model; in that case, the discontinuity goes
away, and the optimal control (𝑢1 = 0.8, 𝑢2 = 0, 𝑡𝑠1−𝑡0 ≈ 0.198×365Days)
shifts elsewhere. However, we rule out further study of this special case
as the condition (17)–(18) is deemed necessary for model realism.

We emphasize finally that although the two control strategies rep-
resented by Figs. 3–4 each represent a solution to the optimal control
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Fig. 8. Plot of 𝐽𝑚𝑖𝑛 as a function of 𝑢𝑚𝑎𝑥, with 𝑛 ≥ 2.

Fig. 9. Plot of 𝑘𝐼𝑆 (𝑡) under an optimal-control strategy in which the boundary is
ttained. Control parameters: 𝑛 = 6, 𝑢𝑚𝑎𝑥 = 0.68. Cost: 𝐽𝑚𝑖𝑛 ≈ 146.5. Similar results
re found for other values of 𝑛, e.g. with 𝑛 = 12 an eight-peak plot is obtained with
𝑚𝑖𝑛 ≈ 129.6.

roblem (16), they are by no means equivalent. The ‘bang–bang’ con-
rol strategy (high 𝑢𝑚𝑎𝑥) comes with a much lower economic cost (lower
𝑚𝑖𝑛). Therefore, subject to the model assumptions and the framework
f the optimal control problem (14), an eradication strategy is far
referable to a containment strategy.

.2. Several switching times, 𝑛 > 2

We extend the foregoing analysis to include control strategies with
ultiple switching times. The results are summarized succinctly in

ig. 8. The results are qualitatively similar to what is observed in the
ase of a single-switch (𝑛 = 2) control — that is, for large values of
𝑚𝑎𝑥, the bang–bang control with a single switch and the complete
uppression of the disease is optimal, while for lower values of 𝑢𝑚𝑎𝑥
containment strategy is optimal. Under the mitigation strategy, the

tate constraint 𝑘max𝑡∈[𝑡0 ,𝑇 ] 𝐼𝑆 (𝑡) = 𝐵 is attained at several times — the
attainment of the bound corresponds to local maxima in the function
𝐼𝑆 (𝑡) of infectious cases (e.g. Fig. 9). Also, the cost to the economy of
the mitigation strategy is reduced as the number of switching times
is increased. Overall, however, the strategy of complete suppression is
optimal: the higher the value of 𝑢𝑚𝑎𝑥 permitted, the lower the economic
cost of the control measures.
8

The results in Fig. 8 are for 𝑛 ≤ 12; we do not rule out that for 𝑛 > 12,
a mitigation strategy may become competitive with a suppression strat-
egy. However, all mitigation strategies (no matter how many switches)
have an inherent instability-like behaviour — small deviations from the
optimal control lead to large deviations in the outcome of the epidemic.
This is illustrated in Fig. 10, where we show 10 different simulation
results corresponding to control sequences that are within 10% of the
optimal control. In several cases, this small deviation away from the
optimal control leads to a breach of the state constraint concerning ICU
capacity by a factor of 4. Thus, the maintenance of the state constraints
is highly sensitive to small deviations away from the optimal control.
Now, the non-pharmaceutical interventions discussed in this article are
population-based interventions, concerning such public-health initia-
tives as social distancing, testing suspect cases, quarantining infected
individuals, up to so-called ‘lockdown’ of entire populations. It can be
appreciated that these are blunt tools for epidemic control, and are
dependent on a high degree of compliance from the public. Conse-
quently, a deviation of 10% in the implementation of these controls
seems reasonable. And yet such a small deviation leads to a four-fold
breach in the ICU capacity. This sensitivity in the outcomes to small
deviations in the controls is another reason why the mitigation strategy
is inferior to the suppression strategy.

4.3. Quadratic penalty function

We have repeated the analysis of the previous sections for a quadr-
atic cost function,

𝐽 =
𝑛
∑

𝑖=1
𝑢2𝑖 (𝑡𝑠,𝑖 − 𝑡𝑠,𝑖−1). (21)

The motivation for considering Eq. (21) is to look at the hypothetical
scenario where the cost to the economy of the non-pharmaceutical
interventions is nonlinear in the intensity 𝑢𝑖 of the interventions. In this
way, Eq. (21) describes a scenario where the more intense interventions
(𝑢𝑖 = 1) carry a disproportionately severe cost in comparison to less
intense interventions (𝑢𝑖 < 1). In spite of the differences between the
linear and quadratic cost functions, the results in both cases are quali-
tatively the same – e.g. a plot of the minimum value of 𝐽 as a function
of 𝑢𝑚𝑎𝑥 for the quadratic case is shown in Fig. 11, to be compared with
the linear cost function in Fig. 8. The main difference between these
two figures is that the crossover where the optimal strategy switches
from mitigation to suppression occurs at a higher value of 𝑢𝑚𝑎𝑥 for
the quadratic cost function — that is, under the assumption of the
quadratic cost function, mitigation is an optimal strategy for a wider
range of values of 𝑢𝑚𝑎𝑥. That being said, the sensitivity of the mitigation
strategy to small deviations in the controls still applies for the case of
the quadratic penalty function.

4.4. Sensitivity of results to parameter variations

We briefly discuss the sensitivity of our results to parameter varia-
tions, focusing on some key parameters of interest. In the first instance,
we remark that we have taken 𝑡0 as fixed in this work — that is, the
day on which NPIs are first introduced is fixed a priori. We have taken
𝑡0 = 13 days, corresponding to the day on which NPIs were introduced
in Ireland, on foot of the outbreak of COVID-19. By fixing 𝑡0 in this way,
we are asking what would be the optimal sequence of NPIs, given that
the NPIs commence on a particular day. Certainly, it may be of interest
to look at varying 𝑡0. Based on the other results in this work, it would
seem that the optimal strategy in this case would still be to suppress
the disease from the outset (and to make 𝑡0 as small as possible). In this
way, any initial sharp rise in case numbers (due to exponential growth)
would be more strongly suppressed (compared to fixed 𝑡0), and high-
intensity NPIs could be lifted sooner, corresponding to a lower cost to
the economy.



L.Ó. Náraigh and Á. Byrne Mathematical Biosciences 330 (2020) 108496

i
f
p
7
o
r
u
t

i
c
t
p
b
a
o
f

D

c
i

A

f
a

Fig. 10. Black line: Plot of 𝑘𝐼𝑆 (𝑡) under an optimal-control strategy in which the
boundary is attained. Control parameters: 𝑛 = 6, 𝑢𝑚𝑎𝑥 = 0.68. Other curves: plot of
𝑘𝐼𝑆 (𝑡) for control strategies that are within 10% of the optimal control strategy —
specifically, each 𝑢𝑛 and 𝑡𝑛 is varied independently by 10% with respect to the optimal
values.

Fig. 11. Plot of 𝐽𝑚𝑖𝑛 as a function of 𝑢𝑚𝑎𝑥, with 𝑛 ≥ 2, quadratic cost function (Eq. (21)).

In the same way, we emphasize again (cf. Section 1) that the time
horizon of the optimal control problem is fixed, with 𝑇 = 1 year.
The motivation is that this is a realistic time horizon over which
to manage the spread of COVID-19 in population, before the advent
of anticipated therapeutic interventions such as anti-viral drugs and
vaccines. Introducing a variable time horizon for the optimal control
problem can be addressed in future work — the same observations
as above will apply, namely the importance of suppressing the initial
exponential growth of the epidemic.

Finally, it can be noted that optimal control solutions are well
known to suffer from low robustness. The same caveat applies here — it
may be anticipated that the control parameters {𝑢1,… , 𝑢𝑛, 𝑡𝑠1,… , 𝑡𝑠,𝑛−1}
will vary under small changes in the model parameters (for instance,
parameter variations within the bounds of the confidence intervals
in Appendix A). As such, the optimal control parameters are not ex-
pected to be prescriptive. Instead, the general trends in the results are
more important — in particular, the importance of suppressing any
initial sharp rise in cases, such that high-intensity NPIs can be lifted
as soon as possible, with a view to minimizing the economic cost of
the suppression strategy.
 C

9

5. Conclusions

Summarizing, we have introduced a mathematical model to describe
the outbreak of COVID-19 in Ireland in March–May 2020. Based on
this model, which we compare to actual epidemiological data, we
have used numerical methods from optimal control theory to answer
a hypothetical question — what would have been the optimal strategy
for the control of the epidemic? The optimal control theory is based on
minimizing a cost function which is related to the cost to the economy
of the various control measures. At the same time, the theory introduces
state constraints as a means of maintaining the number of infectious
cases below a maximum threshold such that hospital capacity is not
overwhelmed. By insisting on piecewise-constant controls (appropriate
for modelling rather crude population-level public-health interven-
tions) and state constraints, the optimal-control model is not amenable
to theoretical analysis — hence a numerical approach is considered.
As such, we have performed the necessary optimizations via numerical
simulated annealing — the results show that a suppression strategy
(implemented promptly) is superior to a mitigation strategy.

The optimal suppression strategy may be compared to the strategy
actually implemented by the Irish Government in the early stages
of the epidemic (March–May 2020). Broadly, the optimal strategy is
similar to the actually implemented strategy, in the sense that both
involve high-intensity NPIs at the beginning of the epidemic, with
a view to suppressing the outbreak. However, the optimal strategy
envisages maximum-intensity NPIs at the very outset — this saves lives
(e.g. Fig. 6, with 1547 deaths at 𝑡 − 𝑡0 = 65 of the outbreak in real
life, and 57 deaths on the same day under the optimal strategy, and
an asymptotic final number of deaths of 61 under the same optimal
strategy). Therefore, imposing high-intensity NPIs from the very begin-
ning saves lives; it is also economically less costly, under the penalty
function formulated in this work.

The optimal strategy predicted by the model envisages the maxi-
mum level of non-pharmaceutical interventions (NPIs) from the outset
(Day 13 in our calculations, cf. Eq. (5)), and lasting 58 days at 𝑢𝑚𝑎𝑥 =
0.8. In contrast, the strategy implemented by the Irish Government
nvolved some controls on Day 13, maximum controls on Day 28,
ollowed by gradual easing of controls on Day 79 (May 18th 2020). The
eriod between the initial NPIs and the first easing of NPIs is therefore
9−13 = 66Days. Thus, the immediate imposition of maximum controls
n Day 13 would have resulted in the lifting of the most intense NPIs
oughly 14 days sooner. Naturally, this estimate is subject to model
ncertainty, but the clear message (supported by the other findings in
his paper) is that prompt implementation of maximum NPIs is best.

Finally, it can be emphasized that the coupling of the epidemiolog-
cal model to the economy in the present model framework is rather
rude (e.g. the linear cost function (11)). In future, it can be envisaged
hat epidemiological models can may be coupled to economic models of
roduction [15] or employment [27] to better understand the interplay
etween the different societal costs of a disease outbreak. Equally, the
pproach presented in this work may form a basis for the design of an
ptimal vaccination strategy if and when a vaccine becomes available
or COVID-19.
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Table A.2
Table of the range of allowed parameter values for the solution of the optimization problem (6) by simulated annealing.
Parameter Lower bound Upper bound Reference/Justification

𝑡𝑜𝑓𝑓𝑠𝑒𝑡 1 15 Optimal value is checked to make sure
it is strictly with in the bounds

𝛽0 0 5 Optimal value checked to make sure it is strictly
within the bounds and checked also for
consistency with known values of the basic
reproduction number 𝑅0

𝛽1 0 5 Optimal values are checked and the consistency
criterion 𝛽1 < 𝛽0 is satisfied.

𝛽2 0 5 Optimal values are checked and the consistency
criterion 𝛽2 < 𝛽1 is satisfied.

𝑓 0.1 0.5 In a recent review, the proportion of positive cases
that remained asymptomatic was estimated at
16%, with a range from 6 to 41% [28].

𝑔 0.05 0.07 Case Fatality Ratio. Ireland: 5.6% [26]. World:
5.6% [29].

𝜏𝐸 3.05 4.35 Mean value 3.7 days [16]. Variation in this
parameter accounted for in line with the reference.

𝜏𝐼𝑃 0.85 2.15 Mean value 3.7 days [16]. Variation in this
parameter accounted for in line with the reference.
Mean value of 𝜏𝐸 + 𝜏𝐼 = 5.2 days.

𝜏𝐼 1.3 3.3 Mean value 2.3 days [16]. Significant variation
accounted for in the optimization. Optimal value
checked to make sure it is strictly within the
bounds.

𝜏𝐷 10 30 Ref. [30]

𝜏𝑇 1 5 Optimal value is checked to make sure it is strictly
within the bounds

𝑖𝐴 0 1 𝑞𝑆 ≈ 𝑞𝑃𝑆 due to occurrence of peak viral load
close to symptom onset [31]. Also, 𝑞𝐴 < 𝑞𝑆 [28].
Hence, 𝑖𝐴 = 𝑞𝐴∕𝑞𝑃 ≤ 1.

𝑖𝑆 0 1 𝑖𝑆 ≤ 1 to account for some level of case isolation.
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Appendix A. Fitting the extended SEIR model to epidemiological
data for the outbreak of COVID-19 in Ireland.

In this Appendix we provide the necessary background information
to fit the model (1) to the epidemiological data in Ref. [18] for the out-
break of COVID-19 in Ireland. A nonlinear optimization is performed to
minimize the penalty function 𝛥

(

𝑡𝑜𝑓𝑓𝑠𝑒𝑡, 𝛽0, 𝛽1, 𝛽2, 𝑓 , 𝑔, 𝜏𝐸 , 𝜏𝐼𝑃 ,
𝜏𝐼 , 𝜏𝐷, 𝑖𝐴, 𝑖𝑆

)

in Eq. (6). First, bounds on the range of acceptable
parameter values are obtained in Table A.2. The resulting optimal
parameter values are provided in Table A.3. In this table, we also
present confidence intervals for these optimal parameter values – these
have been obtained by bootstrapping – the model residuals are resam-
pled with replacement 𝑛𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 times. These residuals are then used to
compute 𝑛𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 synthetic data sets, and the model (1) is fitted to each
ata set in turn. This then gives a range of 𝑛𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 ‘optimal’ parameter
alues; a histogram based on this range of values is constructed and
he 2.5 and 97.5 percentiles are computed to produce the reported
onfidence intervals. We use 𝑛𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 = 100 and 𝑛𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 = 1000, with
ittle or no difference observed between these two choices.

Furthermore, we have used the data in Table A.3 to generate esti-
ates of the basic reproduction number and the effective reproduction
umber under various NPIs, with appropriate lower and upper bounds.
he results are shown in Table A.4, these may be compared with
able 1 in the main paper.

According to the estimates in Table A.2, the mean value of the
nfectious periods 𝜏𝐼𝑃 + 𝜏𝐼 is between 2.15 and 5.45 days. This is
onsistent with Ref. [16]. However, some other studies indicate that the
nfectious period may be significantly longer (e.g. up to 10 days [31]).
s the main purpose of this article is to establish a methodology for
omputing optimal control strategies, this discrepancy is not important
n the current context. However, exploring the effect of this range of
alues on the results may be of interest in future work.
 c
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ppendix B. Description of simulated annealing method for opti-
ization

To maximize the chance of finding a globally optimal control,
e use the method of Simulated Annealing. We exploit the built-

n simulated annealing capabilities in Matlab and Octave for these
urposes. As such, we solve Eq. (1) for an arbitrary sequence of controls
𝑢1,… , 𝑢𝑛, 𝑡𝑠1,… , 𝑡𝑠,𝑛−1}. In Matlab/Octave programming we execute
he following command:

enalty=ode_solve_seir(u);

ere, ode_solve_seir is a Matlab/Octave ODE45 solver which
akes in the input 𝚞 = {𝑢1,… , 𝑢𝑛, 𝑡𝑠1,… , 𝑡𝑠,𝑛−1}, solves Eqs. (1) out

the final time 𝑡 = 𝑇 , and returns the penalty function (11). The state
onstraints (12)–(13) are taken into account by adjoining to the penalty
unction an additional term

tanh
(

0.016max(𝐼𝑆 ) − 300
0.1

)

+ 1
]

[

0.016max(𝐼𝑆 ) − 300
]2

+
[

tanh
(

(𝑑𝐼𝑆∕𝑑𝑡)𝑡=𝑇
0.1

)

+ 1
]

[

(𝑑𝐼𝑆∕𝑑𝑡)𝑡=𝑇
]2 , (B.1)

this imposes an additional penalty on configurations {𝑢1,… , 𝑢𝑛, 𝑡𝑠1,… ,
𝑡𝑠,𝑛−1} that violate the state constraints (12)–(13) but leaves other states
un-penalized.

We use the default convergence criteria in the simulated annealing
algorithm in Matlab. In particular, the algorithm is deemed to have
converged if the average change in the objective function over the
previous 500 × (Problem Size) is less than 10−6. Here, (Problem Size) is
he size of the optimization problem which in the present case is 2𝑛−1.

e have systematically varied these parameters and find no significant
hange to the estimated global minima.
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Table A.3
Optimal parameter values corresponding to the optimization problem (6). The reported confidence intervals use 𝑛𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 = 1000.

𝑡𝑜𝑓𝑓𝑠𝑒𝑡 𝛽0 𝛽1 𝛽2 𝑓 𝑔 𝜏𝐸
(days) (days)−1 (days)−1 (days)−1 (days)

Lower bound 7.9057 1.4679 0.9524 0.3205 0.2245 0.0500 3.6257
Best estimate 9.9831 1.4695 1.1009 0.3576 0.3084 0.0599 3.7486
Upper bound 9.9936 1.6961 1.2201 0.3908 0.4445 0.0614 3.7976

𝜏𝐼𝑃 𝜏𝐼 𝜏𝐷 𝜏𝑇 𝑖𝐴 𝑖𝑆
Lower bound 1.1394 1.9160 14.9812 3.3146 0.3303 0.2741
Best estimate 1.2938 2.1738 15.2210 3.8911 0.4096 0.3405
Upper bound 1.3841 2.4337 16.5007 5.2055 0.4758 0.4367
Table A.4
Estimates of the basic reproduction number and the effective reproduction number under various NPIs, with lower and upper bounds generated from
the confidence intervals in Table A.3.
Intervention 𝛽 𝑖𝑆 𝑅0(𝛽, 𝑖𝑆 ) 𝑅0(𝛽, 𝑖𝑆 ) 𝑅0(𝛽, 𝑖𝑆 )

(Best fit) (Best fit) (Lower bound) (Best fit) (Upper bound)

No interventions,
basic reproduction number

1.4695 1 2.7664 3.4495 4.9079

Case isolation, no other interventions 1.4695 0.3405 2.0798 2.6945 3.7549

Case isolation, schools and universities are closed,
mass gatherings are banned

1.1009 0.3405 1.2880 2.0187 2.7204

Case isolation, all non-essential services and industries
closed, travel restrictions

0.3576 0.3405 0.4847 0.6557 0.8324
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In order to carry out large-scale simulated annealing runs (e.g. over
0 runs to generate the graph in Fig. 8, some taking over 3 days),
e have implemented the simulated annealing algorithms in Octave

a GNU open-source alternative to Matlab) and carried out large-
cale runs on a cluster. The cluster is made up of 10-core/20-thread
ntel(R) ‘Ivy Bridge’ Xeon(R) CPUs (2.50 GHz, 32 GB RAM). Each
ptimization job is run on a single core; however, the jobs are carried
ut simultaneously in batch mode. The default convergence criteria
or the simulated annealing algorithm are different from those in
atlab [32] (the average change in the objective function over the
previous pseudo-temperature changes in the simulated annealing

lgorithm should be less than 10−10). The results under the Matlab con-
vergence criteria and the Octave convergence criteria are near-identical
(exactly-identical results are unlikely, since simulated annealing is a
non-deterministic algorithm). This inspires confidence in the robustness
of the results generated in the paper, although certainly, without a
theoretical analysis of the optimal control problem, convergence to a
global minimum is never guaranteed.

Appendix C. Solutions of the SEIR model remain in a bounded set

We show that solutions (𝑆,𝐸, 𝐼𝑃 , 𝐼𝐴, 𝐼𝑆 , 𝑅) of Eq. (1) remain bou-
nded for all time, once suitable initial conditions are provided. For
clarity of the exposition, we assume that Eq. (1) is posed on a time
interval (0, 𝜏], with initial conditions provided at 𝑡 = 0; specifically,

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼𝑃 (0) = 𝐼𝑃0, 𝐼𝐴(0) = 𝐼𝐴0,

𝐼𝑆 (0) = 𝐼𝑆0, 𝑅(0) = 𝑅0, (C.1)

where 𝑆0,… , 𝑅0 are non-negative real numbers, and where specifically,

𝑆0 > 0, 𝐸0 = 0, 𝐼𝑃0 > 0, (C.2)

corresponding to standard initial conditions for the outbreak of an
epidemic.

Eqs. (1)(a)–(f) can be summed up to yield

𝑑 (

𝑆 + 𝐸 + 𝐼𝑃 + 𝐼𝐴 + 𝐼𝑆 + 𝑅
)

= 0, (C.3)

𝑑𝑡 𝑆
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hence
(

𝑆 + 𝐸 + 𝐼𝑃 + 𝐼𝐴 + 𝐼𝑆 + 𝑅
)

(𝑡) = 𝑆0 + 𝐸0 + 𝐼𝑃0 + 𝐼𝐴0 + 𝐼𝑆0 + 𝑅0 = 𝑁,

𝑡 ∈ [0, 𝜏], (C.4)

here 𝑁 is the total population (positive constant). We formally inte-
rate Eq. (1)(a) to obtain

(𝑡) = 𝑆0e− ∫ 𝑡
0 𝑐(𝑞𝐴𝐼𝐴+𝑞𝑃 𝐼𝑃 +𝑞𝑆𝐼𝑆 )d𝑡, 𝑆0 > 0, (C.5)

ence 𝑆(𝑡) ≥ 0.
We assume as per Eq. (C.2) that 𝐸0 = 0, with 𝐼𝑃0 > 0, and 𝐼𝐴0, 𝐼𝑆0 ≥

. By continuity, there is a time interval on which 𝐼𝑃 (𝑡) > 0. Let 𝑡∗ be
he first time such that 𝐼𝑃 (𝑡) = 0. We assume for contradiction that
∗ ∈ [0, 𝜏].

From Eq. (1), we have

𝐴(𝑡) = 𝐼𝐴(0)e−𝑡∕𝜏𝐼 +
𝑓
𝜏𝐼𝑃 ∫

𝑡

0
𝐼𝑃 (𝑡′)e−(𝑡−𝑡

′)∕𝜏𝐼 d𝑡′, (C.6)

ence 𝐼𝐴(𝑡) > 0 for 𝑡 ∈ (0, 𝑡∗]. Similarly,

𝑆 (𝑡) = 𝐼𝑆 (0)e−𝑡∕𝜏𝐼 +
1 − 𝑓
𝜏𝐼𝑃 ∫

𝑡

0
𝐼𝑃 (𝑡′)e−(𝑡−𝑡

′)∕𝜏𝐼 d𝑡′, (C.7)

ence 𝐼𝐴(𝑡) > 0 for 𝑡 ∈ (0, 𝑡∗]. Thus,
∑

=𝑃 ,𝐴,𝑆
𝑞𝑗𝐼𝑗 > 0, 𝑡 ∈ [0, 𝑡∗]. (C.8)

ow, from Eq. (1) again, we have

(𝑡) = ∫

𝑡

0
e−(𝑡−𝑡

′)∕𝜏𝐸

[

∑

𝑗=𝑃 ,𝐴,𝑆
𝑞𝑗𝐼𝑗 (𝑡′) >

]

𝑐𝑆(𝑡′)d𝑡′, (C.9)

ence 𝐸(𝑡) > 0 for 𝑡 ∈ (0, 𝑡∗]. Finally, from Eq. (1) again, we have
𝑑𝐼𝑃
𝑑𝑡

= 1
𝜏𝐸

𝐸 − 1
𝜏𝐼𝑃

𝐼𝑃 > − 1
𝜏𝐼𝑃

𝐼𝑃 , 𝑡 ∈ (0, 𝑡∗]. (C.10)

Hence, by Gronwall’s Inequality,

𝐼𝑃 (𝑡) > 𝐼𝑃0e−𝑡∕𝜏𝐼𝑃 , 𝑡 ∈ (0, 𝑡∗]. (C.11)

ut this is a contradiction, since 𝐼𝑃 (𝑡∗) = 0. Hence, 𝑡∗ ≠ [0, 𝜏], and 𝐼𝑃
emains positive for all 𝑡 ∈ [0, 𝜏]. From Eqs. (C.6), (C.7), and (C.9), the
ame conclusion follows for 𝐼𝐴, 𝐼𝑆 , and 𝐸 respectively, and by similar
easoning, 𝑅(𝑡) ≥ 0 also, for all 𝑡 ∈ [0, 𝜏]. Thus,

(𝑡) ≥ 0, 𝐸(𝑡) ≥ 0,… , 𝑅(𝑡) ≥ 0, 𝑡 ∈ [0, 𝜏].
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Since
(

𝑆 + 𝐸 + 𝐼𝑃 + 𝐼𝐴 + 𝐼𝑆 + 𝑅
)

(𝑡) = 𝑁 , it follows that each of
(𝑆,𝐸, 𝐼𝑃 , 𝐼𝐴, 𝐼𝑆 , 𝑅) remains between 0 and 𝑁 for all 𝑡 ∈ [0, 𝜏] and hence,
he solution of the ordinary differential equation (1) is bounded.
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