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Optimal tower

Let T; := F4(x1) be a rational function field. The second
Garcia-Stichtenoth tower over Iy is defined by

Tp:=Fa(xa,...,xn),

where 5
2 Xi_1

Xit X = .

X4 + Xi—1

This tower is an optimal tower, i.e.,

. N(T,)
lim =V4—-1=1 as n— oo.
g(Th)
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Galois Group and Kani-Rosen decomposition

Proposition

If n > 3, then the extension T, over T,_5 is Galois and

Gal(Tn/Th_2) = Z/2Z x Z/2Z.

We will always let C, denote a curve with function field T,.

The Galois covering C,, — C,_» implies a decomposition of the
Jacobian of the curve C,. If we denote Galois automorphism group
by (o, 7) then we have the following diagram of coverings
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Galois Group and Kani-Rosen decomposition

Cn
/ 2:1 21
Co1 = Co/{0) Ca/(0T) Ca/(T)

and the following isogeny of Jacobians
Jac(Cy) x Jac(Cp_2)? ~ Jac(Cp_1) x Jac(C,/(o7)) x Jac(C,/(7)),
which implies decomposition of L—polynomials

Le,(T) Le,o(T)> = Le, o (T) L, jiony(T) L, sy (T).
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The L-polynomial of T3

We start with remark that
Fa(Gs/(oT)) = Falx1, x3(x3 + 1/x1 + 7 + 1)),

and
Fa(G/(1)) = Falx1,x3(x3 + 1/x1 + 7)),

where 42+ 4+1=0.
It is not hard to rephrase these quotients in terms of Artin-Schreier
extensions, for example

Fa(Gs/(7)) = Falx1, v),

where u is a root of the polynomial

X2 X2
T+ T L L :
* +<x1+1> <1+”y2x12>
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The L-polynomial of T3

The following L-polynomials can be computed:

L, (T)=Lp =1,

L, jio)(T) =Ly (T) =14 3T +4T2,
L, ory(T) =143T +4T2,
Leym(T)=143T +4T2

Therefore

Lpy(T) = (1+3T +4T2)3. ]
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The L-polynomial of Tj

The decomposition of Jacobian into isogeny factors has the form
Jac(C3)? x Jac(Cs) ~ Jac(Cy) x Jac(Gs/(oT)) x Jac(Cs/ (7)),

where
F4(C5/<UT>) = ]F4(X17X2)X37 UO))

Fa(Cs/(7)) = Fa(x1, x2, X3, u1).

where ug and u; are roots of polynomials
T2+ T+ X?? X% 5,
x3+1 1+ ’72X3

2 X32 X32
T T
i +<X3+1) <1+72X32+X32>7

and

respectively.
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The L-polynomial of Tj

Therefore we have the following diagram of extensions of degree 2:

Fy(x1, x2, X3, X4, X5)

/

Fy(x1, x2, X3, t) Fa(x1, x2, X3, x4)

Fa(x2, x3, tp) Fa(x2, x3, up +1/x1) Fa(x1, x2, x3)

T Ty o

Fq(x3, up) Fa(x3, up +1/x2) Fa(x2, x3) Fa(x1, x2)

Fa(x3) Fy(x1)
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The L-polynomial of Tj

Therefore

2
Ly (Lr,)* = LF4(X1,X27X3,2U0)LF4(X1,X27X3,X4)LIF4(X17X2,X3,U1)’
LF4(X1,X27><37U0)(LF4(X27X3)) = LF4(X2,X37U0)LF4(X1,Xz,X3)LF4(X2,X3,Uo+1/X1)'

From previous step we know that

Lr,(T) = (L +3T +4T*%)3
Lr,(T)=(1—T+4T3?(1+3T +4T?)".

So in order to compute L, we need to compute L, (y, x;,4,) and

LF4(X2,X37U0+1/X1)'
Using the computer system Magma we compute these polynomials

and hence

Ly (T)=(1— T +4T2)%1+3T +4T72)11
(14+T+4T2)2(1+2T + T?+8T3 +16T4)2
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Recurrence relations and the general zeta function

Recall that, if T is a function field, Pic?(T) is isomorphic to the
Jacobian of the curve corresponaing to T. Let u be a root of a
Xn
(e + D1 +722)

Fn:=TFa(x1,...,xn,u),

Xy = Pic®(Fa(xi, ..., xn, 1)),

Fn,l = ]F4(X27 ceey Xp, U ]'/Xl)v

Xn71 = PiCO(F4(X2, ce oy Xp, U+ 1/X1)),
Jn = Pic?(T,) = Jac(C,).

, then we set

polynomial T2 + T +
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Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any m > 1:
QO X, = Pic®(Fa(Xm, ..., Xmin_1,w)), where w is a root of a
4

Xn+m—1
(Xnym-1+ 1)(1 +~2x2)’

polynomial T2 4+ T +
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Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any m > 1:

QO X, = Pic®(Fa(Xm, ..., Xmin_1,w)), where w is a root of a
4
. X -1
polynomial T2+ T + n+m ,
y (Xn+m—1 + 1)(1 + 72Xr21)
Q@ X, ~ Pic®(F4(Xm, - - -, Xmin_1,t)), Where t is a root of a
Xn+m71

polynomial T2 + T +

(Xntm-1+1)(L+ (v +1)2x3)’
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Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any m > 1:
QO X, = Pic®(Fa(Xm, ..., Xmin_1,w)), where w is a root of a
4

Xn+m—1
(Xnym-1+ 1)(1 +~2x2)’
Q@ X, ~ Pic®(F4(Xm, - - -, Xmin_1,t)), Where t is a root of a
4

polynomial T2 4+ T +

X
olynomial T2+ T + ntm—1 ,
Poly (Xn+m—1 + ]-)(]- + (’Y + 1)2Xr%)

Q X,1= PicY(Fa(Xmi1, - - » Xmin—1, W + 1/xm)),
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Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any m > 1:

QO X, = Pic®(Fa(Xm, ..., Xmin_1,w)), where w is a root of a
4
. X -1
polynomial T2 + T + ntm ,
y (Xn+m—1 + 1)(1 + 72Xr21)
Q@ X, ~ Pic®(F4(Xm, - - -, Xmin_1,t)), Where t is a root of a
X§+m71

polynomial T2 + T +

(Xntm—1+ 1)1+ (v +1)2x7)’
Q X,1= PicY(Fa(Xmi1, - - » Xmin—1, W + 1/xm)),
QO Xo1~ Pic®(Fa(Xmi1, -+ > Xmin—1,t +1/Xm)),
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Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any m > 1:

QO X, = Pic®(Fa(Xm, ..., Xmin_1,w)), where w is a root of a
4
. X -1
polynomial T2+ T + n+m ,
y (Xn+m—1 + 1)(1 + 72Xr21)
Q@ X, ~ Pic®(F4(Xm, - - -, Xmin_1,t)), Where t is a root of a
Xn+m71

olynomial T2+ T + ,
Poly (Xn+m—1 + ]-)(]- + (’Y + 1)2Xr%)

(s} Xn,l = PiCO(F4(Xm+1a <oy Xmtn—1, W + 1/Xm))1
o Xn,l n~ PiCO(F4(Xm+1a coy Xmgn—1, T+ 1/Xm))v
Q J, =2 Pic®(Fa(Xm, - - Xmin_1)), with n > 1.
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Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any m > 1:
QO X, = Pic®(Fa(Xm, ..., Xmin_1,w)), where w is a root of a
4

Xn+m—1
(Xnym-1+ 1)(1 +~2x2)’
Xp ~ Pic®(F4(Xm, - - -, Xm+n—1,t)), where t is a root of a

polynomial T2 4+ T +

©

Xn+m71
(Xntm-1+1)(L+ (v +1)2x3)’
Xn1 = PicY(Fa(Xmi1, - - » Xmin—1, W + 1/xm)),
Xn1 ~ Pic®(Fa(Xmi1, -+ > Xmin—1,t +1/Xm)),
Jn =2 Pic®(Fa(xmy - - -, Xmtn—1)), with n > 1.
Owing to an inclusion
Fa(x2,...,%n) C Fa(xa,...,xn,u+ 1/x1) there exist an
isogeny Xp1 ~ Jp—1 X Y1, where Y, 1 is an abelian variety.

polynomial T2 + T +

©00O0
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Recurrence relations and the general zeta function

up to isomorphism, diagram of extensions of degree 2.
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Recurrence relations and the general zeta function

If n > 3 then there exists the following isogeny

XnNJnXX1XX271XY371X...XYnﬁl.

Therefore

If n > 5 then there are an isogenies

Jn o XP 3 x X200 x Y38 x - x Y2,

)

Alexey Zaytsev, (Joint work with Gary McGuire) On the Zeta Functions of an optimal tower over Fy



Recurrence relations and the general zeta function

Decomposition of Pic?(T,) and the L-polynomial of T,,.

Corollary

The L-polynomial of the function field T, has the following
factorization

__ 12n-3 2n—6 2n—8 . 2
Lt, = LX1 X LXQ’1 X LY371 X X LY,H’I,

or more precisely

LT,, — (T2 + T+ 4)2n78(T2 43T + 4)12n749(T2 — T+ 4)6n726
(T*+2T3+ T2 48T +16)°"2
(TO+ T°— T*+3T3—4T2+16T +64)> 0Ly ... L3

n—2,1

The order of the finite group

#Pic%(T,)(Fa) = 2587-24332n-852n10 3012(1) 13, | (1)
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Dimension of Y,

A crucial role in the computation of the Zeta function of T, 5 is
the Zeta function of the factor Y, .

. i if n iseven
dim(Yp1) = { on=1_2(n=3)/2 it p s odd.

As a corollary we get the degree of the characteristic polynomial of
Frobenius endomorphism of an abelian variety Y, .

Let Ly, , be the L-polynomial of an abelian variety Y,1 . Then

21, if n iseven

deg(Ly,,) = { o2n —2(n=1)/2 " if p is odd.
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The Tower is Ordinary

We prove that J,, is ordinary by showing that the p-rank is equal
to the genus of T,,, where Tn is a Galois closure of T, over T}.
We use the Deuring-Shafaravich formula, which states that if E/F
is a finite Galois extension of function fields in characteristic p, and
the Galois group is a p-group, then

) = 1= [E: FI((F) = 1)+ Y

where rp(E) denotes the p-rank of E, and e(P) denotes the
ramification index.
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We apply this to the tower T, where is it known that the Galois
group of T,,/Tl is a p-group and

g(To)=[Tn:Til(p—p* "= p* ") +1.

We have

rp(Tn) =T, T4d(p—p>"—p>")+ 1.

In particular, T, is ordinary.

The second Garcia-Stichtenoth tower is ordinary.
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Thank you for your attention!
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