On the Zeta Functions of an optimal tower over \mathbb{F}_{4}

> Alexey Zaytsev,
> (Joint work with Gary McGuire)

Claude Shannon Institute and
School of Mathematical Sciences
University College Dublin
Ireland
July 14, 2009

Optimal tower

Let $T_{1}:=\mathbb{F}_{4}\left(x_{1}\right)$ be a rational function field. The second Garcia-Stichtenoth tower over \mathbb{F}_{4} is defined by

$$
\mathrm{T}_{n}:=\mathbb{F}_{4}\left(x_{1}, \ldots, x_{n}\right)
$$

where

$$
x_{i}^{2}+x_{i}=\frac{x_{i-1}^{3}}{x_{i-1}^{2}+x_{i-1}}
$$

This tower is an optimal tower, i.e.,

$$
\lim \frac{N\left(\mathrm{~T}_{n}\right)}{g\left(\mathrm{~T}_{n}\right)}=\sqrt{4}-1=1 \quad \text { as } \quad n \rightarrow \infty
$$

Galois Group and Kani-Rosen decomposition

Proposition

If $n \geq 3$, then the extension T_{n} over T_{n-2} is Galois and

$$
\operatorname{Gal}\left(\mathrm{T}_{n} / \mathrm{T}_{n-2}\right) \cong \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}
$$

We will always let C_{n} denote a curve with function field T_{n}. The Galois covering $C_{n} \rightarrow C_{n-2}$ implies a decomposition of the Jacobian of the curve C_{n}. If we denote Galois automorphism group by $\langle\sigma, \tau\rangle$ then we have the following diagram of coverings

Galois Group and Kani-Rosen decomposition

and the following isogeny of Jacobians
$\operatorname{Jac}\left(C_{n}\right) \times \operatorname{Jac}\left(C_{n-2}\right)^{2} \sim \operatorname{Jac}\left(C_{n-1}\right) \times \operatorname{Jac}\left(C_{n} /\langle\sigma \tau\rangle\right) \times \operatorname{Jac}\left(C_{n} /\langle\tau\rangle\right)$,
which implies decomposition of L -polynomials

$$
\mathrm{L}_{C_{n}}(T) \mathrm{L}_{C_{n-2}}(T)^{2}=\mathrm{L}_{C_{n-1}}(T) \mathrm{L}_{C_{n} /\langle\sigma \tau\rangle}(T) \mathrm{L}_{C_{n} /\langle\tau\rangle}(T)
$$

The L-polynomial of T_{3}
We start with remark that

$$
\mathbb{F}_{4}\left(C_{3} /\langle\sigma \tau\rangle\right)=\mathbb{F}_{4}\left(x_{1}, x_{3}\left(x_{3}+1 / x_{1}+\gamma+1\right)\right),
$$

and

$$
\mathbb{F}_{4}\left(C_{3} /\langle\tau\rangle\right)=\mathbb{F}_{4}\left(x_{1}, x_{3}\left(x_{3}+1 / x_{1}+\gamma\right)\right),
$$

where $\gamma^{2}+\gamma+1=0$.
It is not hard to rephrase these quotients in terms of Artin-Schreier extensions, for example

$$
\mathbb{F}_{4}\left(C_{3} /\langle\tau\rangle\right)=\mathbb{F}_{4}\left(x_{1}, u\right)
$$

where u is a root of the polynomial

$$
T^{2}+T+\left(\frac{x_{1}^{2}}{x_{1}+1}\right)\left(\frac{x_{1}^{2}}{1+\gamma^{2} x_{1}^{2}}\right) .
$$

The following L-polynomials can be computed:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{T}_{1}}(T)=\mathrm{L}_{\mathbb{P}^{1}}=1, \\
& \mathrm{~L}_{C_{3} /\langle\sigma\rangle}(T)=\mathrm{L}_{\mathrm{T}_{2}}(T)=1+3 T+4 T^{2}, \\
& \mathrm{~L}_{C_{3} /\langle\sigma \tau\rangle}(T)=1+3 T+4 T^{2}, \\
& \mathrm{~L}_{C_{3} /\langle\tau\rangle}(T)=1+3 T+4 T^{2} .
\end{aligned}
$$

Therefore

$$
\mathrm{L}_{\mathrm{T}_{3}}(T)=\left(1+3 T+4 T^{2}\right)^{3} .
$$

The L-polynomial of T_{5}
The decomposition of Jacobian into isogeny factors has the form

$$
\operatorname{Jac}\left(\mathrm{C}_{3}\right)^{2} \times \operatorname{Jac}\left(\mathrm{C}_{5}\right) \sim \operatorname{Jac}\left(C_{4}\right) \times \operatorname{Jac}\left(C_{5} /\langle\sigma \tau\rangle\right) \times \operatorname{Jac}\left(C_{5} /\langle\tau\rangle\right)
$$

where

$$
\begin{gathered}
\mathbb{F}_{4}\left(C_{5} /\langle\sigma \tau\rangle\right)=\mathbb{F}_{4}\left(x_{1}, x_{2}, x_{3}, u_{0}\right) \\
\mathbb{F}_{4}\left(C_{5} /\langle\tau\rangle\right)=\mathbb{F}_{4}\left(x_{1}, x_{2}, x_{3}, u_{1}\right)
\end{gathered}
$$

where u_{0} and u_{1} are roots of polynomials

$$
T^{2}+T+\left(\frac{x_{3}^{2}}{x_{3}+1}\right)\left(\frac{x_{3}^{2}}{1+\gamma^{2} x_{3}^{2}}\right)
$$

and

$$
T^{2}+T+\left(\frac{x_{3}^{2}}{x_{3}+1}\right)\left(\frac{x_{3}^{2}}{1+\gamma^{2} x_{3}^{2}+x_{3}^{2}}\right)
$$

respectively.

The L-polynomial of T_{5}

Therefore we have the following diagram of extensions of degree 2 :

Therefore

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{T}_{5}}\left(\mathrm{~L}_{\mathrm{T}_{3}}\right)^{2}=\mathrm{L}_{\mathbb{F}_{4}\left(x_{1}, x_{2}, x_{3}, u_{0}\right)} \mathrm{L}_{\mathbb{F}_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right.} \mathrm{L}_{\mathbb{F}_{4}\left(x_{1}, x_{2}, x_{3}, u_{1}\right)}, \\
& \mathrm{L}_{\mathbb{F}_{4}\left(x_{1}, x_{2}, x_{3}, u_{0}\right)}\left(\mathrm{L}_{\mathbb{F}_{4}\left(x_{2}, x_{3}\right)}\right)^{2}=\mathrm{L}_{\mathbb{F}_{4}\left(x_{2}, x_{3}, u_{0}\right)} \mathrm{L}_{\mathbb{F}_{4}\left(x_{1}, x_{2}, x_{3}\right)} \mathrm{L}_{\mathbb{F}_{4}\left(x_{2}, x_{3}, u_{0}+1 / x_{1}\right)} .
\end{aligned}
$$

From previous step we know that

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{T}_{3}}(T)=\left(1+3 T+4 T^{4}\right)^{3} \\
& \mathrm{~L}_{\mathrm{T}_{4}}(T)=\left(1-T+4 T^{2}\right)^{2}\left(1+3 T+4 T^{2}\right)^{7} .
\end{aligned}
$$

So in order to compute $\mathrm{L}_{\mathrm{T}_{5}}$ we need to compute $\mathrm{L}_{\mathbb{F}_{4}\left(x_{2}, x_{3}, \mu_{0}\right)}$ and $\mathrm{L}_{\mathbb{F}_{4}\left(x_{2}, x_{3}, u_{0}+1 / x_{1}\right)}$.
Using the computer system Magma we compute these polynomials and hence

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{T}_{5}}(T)=\left(1-T+4 T^{2}\right)^{4}\left(1+3 T+4 T^{2}\right)^{11} \\
& \left(1+T+4 T^{2}\right)^{2}\left(1+2 T+T^{2}+8 T^{3}+16 T^{4}\right)^{2}
\end{aligned}
$$

Recurrence relations and the general zeta function

Recall that, if T is a function field, $\operatorname{Pic}^{0}(T)$ is isomorphic to the Jacobian of the curve corresponding to T. Let u be a root of a polynomial $T^{2}+T+\frac{x_{n}^{4}}{\left(x_{n}+1\right)\left(1+\gamma^{2} x_{n}^{2}\right)}$, then we set
$F_{n}:=\mathbb{F}_{4}\left(x_{1}, \ldots, x_{n}, u\right)$,
$X_{n}:=\operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{1}, \ldots, x_{n}, u\right)\right)$,
$F_{n, 1}:=\mathbb{F}_{4}\left(x_{2}, \ldots, x_{n}, u+1 / x_{1}\right)$,
$X_{n, 1}:=\operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{2}, \ldots, x_{n}, u+1 / x_{1}\right)\right)$,
$\mathrm{J}_{n}:=\operatorname{Pic}^{0}\left(\mathrm{~T}_{n}\right) \cong \operatorname{Jac}\left(C_{n}\right)$.

Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any $m \geq 1$:
(1) $X_{n} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, w\right)\right)$, where w is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+\gamma^{2} x_{n}^{2}\right)}$,

Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any $m \geq 1$:
(1) $X_{n} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, w\right)\right)$, where w is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+\gamma^{2} x_{n}^{2}\right)}$,
(2) $X_{n} \sim \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, t\right)\right)$, where t is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+(\gamma+1)^{2} x_{n}^{2}\right)}$,

Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any $m \geq 1$:
(1) $X_{n} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, w\right)\right)$, where w is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+\gamma^{2} x_{n}^{2}\right)}$,
(2) $X_{n} \sim \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, t\right)\right)$, where t is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+(\gamma+1)^{2} x_{n}^{2}\right)}$,
(3) $X_{n, 1} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m+1}, \ldots, x_{m+n-1}, w+1 / x_{m}\right)\right)$,

Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any $m \geq 1$:
(1) $X_{n} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, w\right)\right)$, where w is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+\gamma^{2} x_{n}^{2}\right)}$,
(2) $X_{n} \sim \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, t\right)\right)$, where t is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+(\gamma+1)^{2} x_{n}^{2}\right)}$,
(3) $X_{n, 1} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m+1}, \ldots, x_{m+n-1}, w+1 / x_{m}\right)\right)$,
(9) $X_{n, 1} \sim \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m+1}, \ldots, x_{m+n-1}, t+1 / x_{m}\right)\right)$,

Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any $m \geq 1$:
(1) $X_{n} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, w\right)\right)$, where w is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+\gamma^{2} x_{n}^{2}\right)}$,
(2) $X_{n} \sim \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, t\right)\right)$, where t is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+(\gamma+1)^{2} x_{n}^{2}\right)}$,
(3) $X_{n, 1} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m+1}, \ldots, x_{m+n-1}, w+1 / x_{m}\right)\right)$,
(9) $X_{n, 1} \sim \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m+1}, \ldots, x_{m+n-1}, t+1 / x_{m}\right)\right)$,
(0 $\mathrm{J}_{n} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}\right)\right)$, with $n \geq 1$.

Recurrence relations and the general zeta function

The isomorphisms and isogenies of abelian varieties for any $m \geq 1$:
(1) $X_{n} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, w\right)\right)$, where w is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+\gamma^{2} x_{n}^{2}\right)}$,
(2) $X_{n} \sim \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}, t\right)\right)$, where t is a root of a polynomial $T^{2}+T+\frac{x_{n+m-1}^{4}}{\left(x_{n+m-1}+1\right)\left(1+(\gamma+1)^{2} x_{n}^{2}\right)}$,
(3) $X_{n, 1} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m+1}, \ldots, x_{m+n-1}, w+1 / x_{m}\right)\right)$,
(9) $X_{n, 1} \sim \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m+1}, \ldots, x_{m+n-1}, t+1 / x_{m}\right)\right)$,
(- $\mathrm{J}_{n} \cong \operatorname{Pic}^{0}\left(\mathbb{F}_{4}\left(x_{m}, \ldots, x_{m+n-1}\right)\right)$, with $n \geq 1$.
(0) Owing to an inclusion
$\mathbb{F}_{4}\left(x_{2}, \ldots, x_{n}\right) \subset \mathbb{F}_{4}\left(x_{2}, \ldots, x_{n}, u+1 / x_{1}\right)$ there exist an isogeny $X_{n, 1} \sim \mathrm{~J}_{n-1} \times \mathrm{Y}_{n, 1}$, where $\mathrm{Y}_{n, 1}$ is an abelian variety.

Recurrence relations and the general zeta function

up to isomorphism, diagram of extensions of degree 2 .

Recurrence relations and the general zeta function

Theorem

If $n \geq 3$ then there exists the following isogeny

$$
X_{n} \sim \mathrm{~J}_{n} \times X_{1} \times X_{2,1} \times \mathrm{Y}_{3,1} \times \ldots \times \mathrm{Y}_{n, 1}
$$

Therefore

Corollary

If $n \geq 5$ then there are an isogenies

$$
\mathrm{J}_{n} \sim X_{1}^{2 n-3} \times X_{2,1}^{2 n-6} \times \mathrm{Y}_{3,1}^{2 n-8} \times \cdots \times \mathrm{Y}_{n-2,1}^{2}
$$

Recurrence relations and the general zeta function

Decomposition of $\operatorname{Pic}^{0}\left(\mathrm{~T}_{n}\right)$ and the L-polynomial of T_{n}.

Corollary

The L-polynomial of the function field T_{n} has the following factorization

$$
\mathrm{L}_{\mathrm{T}_{n}}=\mathrm{L}_{X_{1}}^{2 n-3} \times \mathrm{L}_{X_{2,1}}^{2 n-6} \times \mathrm{L}_{\mathrm{Y}_{3,1}}^{2 n-8} \times \cdots \times \mathrm{L}_{\mathrm{Y}_{n-2,1}}^{2},
$$

or more precisely

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{T}_{n}}=\left(T^{2}+T+4\right)^{2 n-8}\left(T^{2}+3 T+4\right)^{12 n-49}\left(T^{2}-T+4\right)^{6 n-26} \\
& \left(T^{4}+2 T^{3}+T^{2}+8 T+16\right)^{6 n-24} \\
& \left(T^{6}+T^{5}-T^{4}+3 T^{3}-4 T^{2}+16 T+64\right)^{2 n-10} \mathrm{~L}_{Y_{5,1}}^{2 n-12} \cdots \mathrm{~L}_{Y_{n-2,1}}^{2}
\end{aligned}
$$

The order of the finite group

$$
\# \operatorname{Pic}^{0}\left(\mathrm{~T}_{n}\right)\left(\mathbb{F}_{4}\right)=2^{58 n-243} 3^{2 n-8} 5^{2 n-10} \mathrm{~L}_{Y_{5,1}}^{2 n-12}(1) \ldots \mathrm{L}_{Y_{n-2,1}}^{2}(1)
$$

Dimension of $Y_{n, 1}$

A crucial role in the computation of the Zeta function of T_{n+2} is the Zeta function of the factor $Y_{n, 1}$.

Theorem

$$
\operatorname{dim}\left(Y_{n, 1}\right)=\left\{\begin{array}{lc}
2^{n-1}, & \text { if } n \text { is even } \\
2^{n-1}-2^{(n-3) / 2}, & \text { if } n \text { is odd }
\end{array}\right.
$$

As a corollary we get the degree of the characteristic polynomial of Frobenius endomorphism of an abelian variety $Y_{n, 1}$.

Corollary

Let $\mathrm{L}_{Y_{n, 1}}$ be the L-polynomial of an abelian variety $Y_{n, 1}$. Then

$$
\operatorname{deg}\left(L_{Y_{n, 1}}\right)= \begin{cases}2^{n}, & \text { if } n \text { is even } \\ 2^{n}-2^{(n-1) / 2}, & \text { if } n \text { is odd }\end{cases}
$$

The Tower is Ordinary

We prove that J_{m} is ordinary by showing that the p-rank is equal to the genus of $\tilde{\mathrm{T}}_{n}$, where $\tilde{\mathrm{T}}_{n}$ is a Galois closure of T_{n} over T_{1}. We use the Deuring-Shafaravich formula, which states that if E / F is a finite Galois extension of function fields in characteristic p, and the Galois group is a p-group, then

$$
r_{p}(E)-1=[E: F]\left(r_{p}(F)-1\right)+\sum_{P}(e(P)-1)
$$

where $r_{p}(E)$ denotes the p-rank of E, and $e(P)$ denotes the ramification index.

We apply this to the tower \tilde{T}_{n}, where is it known that the Galois group of $\tilde{T}_{n} / \tilde{T}_{1}$ is a p-group and

$$
g\left(\tilde{\mathrm{~T}}_{n}\right)=\left[\tilde{\mathrm{T}}_{n}: \mathrm{T}_{1}\right]\left(p-p^{3-n}-p^{2-n}\right)+1
$$

Theorem

We have

$$
r_{p}\left(\tilde{\mathrm{~T}}_{n}\right)=\left[\tilde{\mathrm{T}}_{n}: \mathrm{T}_{1}\right]\left(p-p^{3-n}-p^{2-n}\right)+1 .
$$

In particular, $\tilde{\mathrm{T}}_{n}$ is ordinary.

Corollary

The second Garcia-Stichtenoth tower is ordinary.

Thank you for your attention!

