# NEW PARAMETERS FOR BENT FUNCTIONS 

Jacques Wolfmann<br>IMATH (GRIM)<br>Université du Sud Toulon-Var<br>France

$\mathbb{F}_{q} 9$
Dublin, july 2009

Definition: A $k$-variable boolean function is a map $f$ from $\mathbb{F}_{2}^{k}$ into $\mathbb{F}_{2}$.
Weight: $w(f)=\sharp\left\{v \in \mathbb{F}_{2}^{k} \mid f(v)=1\right\}$.
Distance: $d(f, g)=\sharp\left\{v \in \mathbb{F}_{2}^{k} \mid f(v) \neq g(v)\right\}$.
Vector: If $\mathbb{F}_{2}^{k}=\left\{v_{0}, v_{1}, \ldots, v_{2^{k}-1}\right\}$

$$
V(f)=\left(f\left(v_{0}\right), f\left(v_{1}\right), \ldots, f\left(v_{2^{k}-1}\right)\right)
$$

Polynomial represent.: $P_{f}(x)=\sum_{i=0}^{2^{k}-1} f\left(v_{i}\right) x^{i}$
Walsh coefficients: For every $v \in \mathbb{F}_{2}^{m}$ :

$$
c_{v}=\sum_{x \in \mathbb{F}_{2}^{m}}(-1)^{f(x) \oplus<v, x>}
$$

with $<,>$ : usual inner product.

## Algebraic Normal Form (ANF)

$F\left(X_{0}, X_{1}, \ldots, X_{k-1}\right)$ in
$\mathbb{F}_{2}\left[X_{0}, X_{1}, \ldots, X_{k-1}\right] /\left(X_{0}^{2}-X_{0}, X_{1}^{2}-X_{1}, \ldots, X_{k-1}^{2}-X_{k-1}\right)$ such that: if $u=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right) \in \mathbb{F}_{2}^{k}$ then $f(u)=F\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$.

Degree: $\operatorname{deg}(f)$ is the degree of the ANF.
Derivative: If $e \in \mathbb{F}_{2}^{k}: D_{e}(x)=f(x)+f(x+e)$

## A special representation

We identify $\mathbb{F}_{2}^{k}$ with $\mathbb{F}_{2} \times \mathbb{F}_{2}^{k-1}$
and $\mathbb{F}_{2}^{k-1}$ with $\mathbb{F}_{2^{k-1}}=\mathbb{F}_{2}(\alpha)$
$n=2^{k-1}-1, f: k$-boolean function:

A special order:
$\mathbb{F}_{2^{k}}=\left\{v_{0}, v_{1}, \ldots, v_{n}, \ldots, v_{2 n+1}\right\}$ with:
$v_{0}=(0,1), v_{1}=(0, \alpha), \quad v_{2}=\left(0, \alpha^{2}\right) \ldots \ldots v_{n-1}=\left(0, \alpha^{n-1}\right)$,
$v_{n}=(1,1), v_{n+1}=(1, \alpha), v_{n+2}=\left(1, \alpha^{2}\right) \ldots v_{2 n-1}=\left(1, \alpha^{n-1}\right)$,
$v_{2 n}=(0, \underline{0}), v_{2 n+1}=(1, \underline{0})$
$V(f)=\left(f\left(v_{0}\right), \ldots, f\left(v_{n-1}\right), f\left(v_{n}\right), \ldots, f\left(v_{2 n-1}\right), f(0, \underline{0}), f(1, \underline{0})\right)$

Two ( $k-1$ )-boolean functions:
$u \in \mathbb{F}_{2^{k-1}}: f_{p}(u)=f(0, u), f_{q}(u)=f(1, u)$.
Polynomial represent.
$P_{f}(x)=p(x)+x^{n} q(x)+f_{p}(\underline{0}) x^{2 n}+f_{q}(\underline{0}) x^{2 n+1}$
with
$p(x)=\sum_{i=0}^{n-1} f_{p}\left(\alpha^{i}\right) x^{i}, q(x)=\sum_{i=0}^{n-1} f_{q}\left(\alpha^{i}\right) x^{i}$.

## BENT FUNCTIONS

$\mathcal{F}(k)$ : set of $k$-variable boolean functions. $\mathcal{A}(k)$ : subset of affine functions, ( $\mathrm{deg} \leq 1$ ).

## Definition 1

$f \in \mathcal{F}(k)$ is a bent function if:

$$
d(f, \mathcal{A}(k))=\max _{g \in \mathcal{F}(k)} d(g, \mathcal{A}(k))
$$

From now on $k=2 t, t \geq 2$.

## Proposition 2 (classical)

Let $f \in \mathcal{F}(k), k=2 t, c_{v}$ : Walsh coeff. of $f$.

1) $f$ is a bent function if and only if:

$$
\forall v \in \mathbb{F}_{2}^{k} \quad\left|c_{v}\right|=2^{t} .
$$

2) $\exists \epsilon \in\{-1,+1\}$ such that:

$$
w(f)=2^{2 t-1}+\epsilon 2^{t-1}
$$

## A useful lemma

## Lemma 3

$f$ : $k$-bent function,
$e \in \mathbb{F}_{2}^{k}, e \neq 0$.
$g$ : linear form of $\mathbb{F}_{2}^{k}$ such that $g(e)=1$.
There exists a $k$-bent function $f^{\dagger}$ in $\{f, f \oplus 1, f \oplus g, f \oplus g \oplus 1\}$ such that $f^{\dagger}(0)=f^{\dagger}(e)=0$.

Strategy:
We can restrict the study to bent functions $f$ such that $f(0)=f(e)=0$.

We choose $e=(1,0, \ldots, 0)=(1, \underline{0})$.

## Special bent functions

## Definition 4

$\mathcal{B}_{0}(k)$ is the set of $k$-bent functions $f$ such that: $f(0, \underline{0})=f(1, \underline{0})=0$.

If $f \in \mathcal{B}_{0}(k)$, its (special) polynomial representation is:
$P_{f}(x)=p(x)+x^{n} q(x)+f_{p}(\underline{0}) x^{2 n}+f_{q}(\underline{0}) x^{2 n+1}$

$$
P_{f}(x)=p(x)+x^{n} q(x)
$$

$n=2^{k-1}-1$
$p(x)=\sum_{i=0}^{n-1} p_{i} x^{i}$ and $q(x)=\sum_{i=0}^{n-1} q_{i} x^{i}$.
$p_{i}=f_{p}\left(\alpha^{i}\right)=f\left(0, \alpha^{i}\right), q_{i}=f_{q}\left(\alpha^{i}\right)=f\left(1, \alpha^{i}\right)$.

Remark:
$p(x)$ and $q(x)$ are in $\mathbb{F}_{2}[x] /\left(x^{n}-1\right)$.
They are the polynomial representations of the ( $k-1$ )-boolean functions $f_{p}$ and $f_{q}$.

## Special divisors of $x^{2^{k}-1}-1$

## Definition:

If $i=\sum_{j=0}^{r-1} \epsilon_{j} 2^{j} \in \mathbb{N}$ then $w_{2}(i)$ is the weight of $\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{j}, \ldots, \epsilon_{r-1}\right)$.
(binary weight of $i$ ).
$37=1+2^{2}+2^{5}, w_{2}(37)=3$.
Remark: $i$ and $\left(2^{j}\right) i$ calculated modulo $2^{m}-1$ have the same binary weight.
Notations:
$\alpha$ : primitive root of $\mathbb{F}_{2^{m}}$.
$m_{i}(x)$ : minimal polynomial of $\alpha^{i}$.
$M_{j}(x)$ : product, without repetition, of the $m_{i}(x)$ such that $1 \leq w_{2}(i) \leq j$.

Example: $m=5$.

$$
\begin{aligned}
x^{31}-1= & m_{0}(x) m_{1}(x) m_{3}(x) m_{5}(x) m_{7}(x) \\
& m_{11}(x) m_{15}(x)
\end{aligned}
$$

If $w_{2}(i)=1: i=1$. If $w_{2}(i)=2: i=3,5$.
If $w_{2}(i)=3: i=7,11$. If $w_{2}(i)=4: i=15$.

$$
\begin{aligned}
& M_{1}(x)=m_{1}(x), M_{2}(x)=m_{1}(x) m_{3}(x) m_{5}(x) . \\
& M_{3}(x)=m_{1}(x) m_{3}(x) m_{5}(x) m_{7}(x) m_{11}(x) .
\end{aligned}
$$

Notation: $n=2^{2 t-1}-1$
$g(x)$ : divisor of $x^{n}-1$ in $\mathbb{F}_{2}[x]$.
$<g(x)>_{2}^{n}=\left\{\right.$ multiples modulo $x^{n}-1$ of $\left.g(x)\right\}$.
(ideal generated by $g(x)=$ polynomial representation of a cyclic code).

A chain of ideals in $\mathbb{F}_{2}[x] /\left(x^{n}-1\right):$
$<(x-1) M_{t-2}(x)>_{2}^{n} \supset<(x-1) M_{t-1}(x)>_{2}^{n}$
$\supset<(x-1) M_{t}(x)>_{2}^{n} \supset<(x-1) M_{t+1}(x)>_{2}^{n}$
$\supset \ldots \ldots . \supset<(x-1) M_{j}(x)>{ }_{2}^{n} \supset \ldots \ldots \ldots \ldots$.
$<(x-1) M_{2 t-3}(x)>_{2}^{n} \supset<(x-1) M_{2 t-2}(x)>_{2}^{n}=\{0\}$

## Remark:

$M_{i}(x)$ is the generator of $\mathcal{R}(m-i-1, m)^{*}$ (punctured Reed-Muller code)

## The main result

## Theorem 5

$f \in \mathcal{B}_{0}(k)_{2 t-1}, k=2 t,{ }_{t-1}=2^{2 t-1}-1$.
$w(f)=2^{2 t-1}+\epsilon 2^{t-1}$ with $\epsilon \in\{-1,+1\}$.
$P_{f}(x)=p(x)+x^{n} q(x)$
Define $r(x)=p(x) \oplus q(x)$.
1)

$$
\begin{gathered}
w(p(x))=w(r(x))=2^{2 t-2} . \\
w(q(x))=2^{2 t-2}+\epsilon 2^{t-1} . \\
\text { or } \\
w(p(x))=2^{2 t-2}+\epsilon 2^{t-1} . \\
w(q(x))=w(r(x))=2^{2 t-2} .
\end{gathered}
$$

2) a) There exists $l, t-2 \leq l \leq 2 t-4$ s.t:

- $p(x)$ and $q(x)$ are in $<(x-1) M_{l}(x)>{ }_{2}^{n}$.
b) Let $\mathfrak{s}$ be the largest integer s.t. $r(x) \in<(x-1) M_{\mathfrak{s}}(x)>_{2}^{n}$ and $\mathfrak{s} \leq 2 t-3$.
- $P_{f}(x) \in<(x-1) M_{\mathfrak{s}}(x)>2_{2}^{2 n}$.
- $P_{D_{e}}(x) \in<\left(x^{n}-1\right)(x-1) M_{\mathfrak{s}}(x)>2_{2}^{n}$. ( $e=(1, \underline{0})$ ).


## Two parameters

## Definition 6

$f \in \mathcal{B}_{0}(k)$ with $P_{f}(x)=p(x)+x^{n} q(x)$ and $w(f)=2^{2 t-1}+\epsilon 2^{t-1}, \epsilon \in\{-1,+1\}$.
$\bullet i$ is the largest integer $j \in[t-2,2 t-4]$ s.t. $p(x)$ and $q(x)$ belong to $<(x-1) M_{j}(x)>_{2}^{n}$.

- $\mathfrak{s}$ is the largest integer $m \in[i, 2 t-3]$ s.t. $r(x)$ belongs to $<(x-1) M_{m}(x)>\frac{n}{2}$.


## Properties

$$
\begin{aligned}
& w(p(x))=2^{2 t-2}\left(\text { or } 2^{2 t-2}+\epsilon 2^{t-1}\right) . \\
& p(x)=\mu(x)(x-1) M_{\mathfrak{i}}(x) . \\
& w(q(x))=2^{2 t-2}+\epsilon 2^{t-1}\left(\text { or } 2^{2 t-2}\right) . \\
& q(x)=\nu(x)(x-1) M_{\mathfrak{i}}(x) . \\
& w(r(x))=2^{2 t-2} . \\
& r(x)=\rho(x)(x-1) M_{\mathfrak{s}}(x) . \\
& P_{f}(x)=\eta(x) M_{\mathfrak{s}}(x) . \\
& P_{D_{e}}(x)=\theta(x)\left(x^{n}-1\right)(x-1) M_{\mathfrak{s}}(x) .
\end{aligned}
$$

## New parameters for Bent Functions

Let $\mathcal{L}(k)$ be the set of linear $k$-boolean functions.

## Definition 7

If $f \in \mathcal{B}(k)$ define:
$Z(f)=\{f, f \oplus 1, f \oplus g, f \oplus g \oplus 1 \mid g \in \mathcal{L}(k), g((1, \underline{0}))=1\}$

## Proposition 8 and definition.

a) If $f \in \mathcal{B}(k)$ then there is $f^{\dagger}$ in $Z(f)$ such that $f^{\dagger} \in \mathcal{B}_{0}(k)$
b) All the $f^{\dagger}$ in $Z(f)$ which are in $\mathcal{B}_{0}(k)$ have the same parameters $\mathfrak{i}$ and $\mathfrak{s}$.
$\mathfrak{i}$ and $\mathfrak{s}$ are defined as the parameters of $f$.

## Definition 9

$\mathcal{B}(k)[\mathfrak{i}, \mathfrak{s}]$ is the set of $k$-bent functions $f$ with parameters $\mathfrak{i}$ and $\mathfrak{s}$.

## Proposition 10

The non-empty sets $\mathcal{B}(k)[\mathfrak{i}, \mathfrak{s}]$ form a partition of the set of $k$-bent functions.

## Proposition 11

If $f \in \mathcal{B}(k)[i, \mathfrak{s}]$ with $k=2 t$ and $\operatorname{deg}(f)=d$, then

$$
\begin{aligned}
(\mathfrak{i}, \mathfrak{s}) & =(k-d-1, k-d-1) \\
& \text { or } \\
(\mathfrak{i}, \mathfrak{s})= & (k-d-2, s) \text { with } k-d-1 \leq s \leq k-3 .
\end{aligned}
$$

Conclusion

Unfortunately

Fortunately

## EXAMPLES

The partition of $\mathcal{B}(6)$ : (G.Vega).
$\mathcal{B}(6)=\mathcal{B}(6)[1,2] \cup \mathcal{B}(6)[1,3] \cup \mathcal{B}(6)[2,2] \cup \mathcal{B}(6)[2,3]$
Degree 3

$$
\begin{aligned}
& \mathcal{B}(6)[1,2]=2^{13}\left(3^{4}\right)(7)(31)(37) \\
& \mathcal{B}(6)[1,3] \mid=2^{13}\left(3^{3}\right)(7)(31) \\
& \mathcal{B}(6)[2,2] \mid=2^{13}\left(3^{3}\right)(7)(31)
\end{aligned}
$$

Degree 2

$$
\mathcal{B}(6)[2,3] \mid=2^{13}(7)(31)
$$

Remark: $\quad|\mathcal{B}(6)[1,3]|=|\mathcal{B}(6)[2,2]|$

## Duality

The dual of $f$ is the $k$-boolean function $f^{*}$ whose support is $\left\{v \in \mathbb{F}_{2}^{k} \mid c_{v}=-2^{t}\right\}$. $f^{*}$ is a bent function and $\left(f^{*}\right)^{*}=f$.

Define $\delta: \mathcal{B}(6) \longrightarrow \mathcal{B}(6)$ such that $\delta(f)=f^{*}$. We obtain:

$$
\begin{aligned}
\delta(\mathcal{B}(6)[1,2]) & =\mathcal{B}(6)[1,2] \\
\delta(\mathcal{B}(6)[2,3]) & =\mathcal{B}(6)[2,3] \\
\delta(\mathcal{B}(6)[1,3]) & =\mathcal{B}(6)[2,2]
\end{aligned}
$$

## Example 1:

Definition of $f$ :
Let $\gamma$ be a primitive root of $\mathbb{F}_{64}$ with $\gamma^{6}+\gamma+1=0$.
$L=\mathbb{F}_{8}^{*}=\left\{1, \gamma^{9}, \gamma^{18}, \gamma^{27}, \gamma^{36}, \gamma^{45}, \gamma^{54},\right\}$.

The support of $f$ is $L \cup \gamma L \cup \gamma^{2} L \cup \gamma^{3} L$.
Thus $f$ is a "Partial-Spread Bent Function" (Dillon).
$w(f)=28, \epsilon=-1$.
$(0, \underline{0})$ is the representation of 0 and $(1, \underline{0})$ is the representation of $\gamma^{5}$ but 0 and $\gamma^{5}$ are not in the support of $f$.
Then $f \in \mathcal{B}^{-}$(6).

We find: $P_{f}(x)=p(x)+x^{31} q(x)$ with:

$$
\begin{aligned}
& p(x)= x^{28}+x^{26}+x^{25}+x^{24}+x^{23}+x^{21}+x^{16}+x^{15} \\
&+x^{13}+x^{12}+x^{8}+x^{5}+x^{3}+x^{2}+x+1 \\
&= \mathbf{A}(\mathbf{x})(\mathbf{x}-\mathbf{1}) \mathbf{M}_{1}(\mathbf{x}) \text { with } \\
& A(x)=(x+1)\left(x^{21}+x^{17}+x^{16}+x^{15}+x^{12}+x^{9}+x^{7}\right. \\
&\left.+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) \\
& q(x)= x^{30}+x^{28}+x^{24}+x^{21}+x^{20}+x^{18}+x^{17}+x^{16} \\
&+x^{13}+x^{12}+x^{11}+x^{4}=\mathbf{B}(\mathbf{x})(\mathbf{x}-1) \mathbf{M}_{1}(\mathbf{x}) \text { with } \\
& B(x)= x^{4}(x+1)\left(x^{6}+x^{5}+x^{4}+x^{2}+1\right) \\
&\left(x^{13}+x^{12}+x^{9}+x^{8}+x^{7}+x^{6}+x^{4}+x^{2}+1\right) \\
& r(x)= x^{30}+x^{26}+x^{25}+x^{23}+x^{20}+x^{18}+x^{17}+x^{15} \\
& \quad+x^{11}+x^{8}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \\
&= \mathbf{C}(\mathbf{x})(\mathbf{x}-1) \mathbf{M}_{2}(\mathbf{x}) \text { with } \\
& C(x)=(x+1)^{4}\left(x^{4}+x^{3}+1\right)\left(x^{6}+x^{4}+x^{2}+x+1\right) \\
& P_{f}(x)= \mathbf{D}(\mathbf{x})(\mathbf{x}-1) \mathbf{M}_{2}(\mathbf{x}] \text { with } \\
& D(x)= \\
&(x+1)^{3}\left(x^{13}+x^{10}+x^{9}+x^{6}+x^{5}+x^{4}+x^{2}+x+1\right) \\
&\left(x^{9}+x^{8}+x^{6}+x^{5}+x^{3}+x+1\right)\left(x^{3}+x+1\right) \\
&\left(x^{18}+x^{15}+x^{14}+x^{12}+x^{9}+x^{7}+x^{5}+x^{3}+1\right) \\
& f \text { belongs to } \mathcal{B}_{0}(6)[1,2]
\end{aligned}
$$

the degree of $f$ is 3 ,

$$
\begin{aligned}
& w(p(x))=w(r(x))=2^{2 t-2}=16 \\
& w(q(x))=2^{2 t-2}-2^{t-1}=12
\end{aligned}
$$

## Example 2:

$k=6$ and $f$ is the nondegenerate quadratic form defined by

$$
F\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)=\sum \sum_{0 \leq i<j \leq 5} X_{i} X_{j}
$$

$(0, \underline{0})$ and $(1, \underline{0})$ are not in the support of $f$ and thus $f$ belongs to $\mathcal{B}^{-}(6)$.

We find:

$$
\begin{aligned}
& p(x)=\mathbf{A}(\mathbf{x})(\mathbf{x}-1) \mathbf{M}_{2}(\mathbf{x}) \text { with. } A(x)= \\
& x^{5}\left(x^{5}+x^{4}+x^{2}+x+1\right)\left(x^{9}+x^{7}+x^{5}+x^{3}+x^{2}+x+1\right) \\
& q(x)=\mathbf{B}(\mathrm{x})(\mathbf{x}-1) \mathbf{M}_{2}(\mathrm{x}) \text { with } \\
& B(x)=(x-1)\left(x^{13}+x^{12}+x^{11}+x^{10}+x^{8}+x^{6}+x^{5}+x^{2}+1\right)
\end{aligned}
$$

$r(x)=\left(\mathrm{x}^{2}+\mathrm{x}+1\right)(\mathrm{x}-1) \mathrm{M}_{3}(\mathrm{x})($ in the Simplex Code $)$.

Then $f$ belongs to $\mathcal{B}_{0}(6)[2,3]$,
The degree of $f$ is 2 ,

$$
\begin{aligned}
& w(p(x))=2^{2 t-2}+2^{t-1}=20 \\
& w(q(x))=w(r(x))=2^{2 t-2}=16
\end{aligned}
$$

## Example 3 (given by G.Leander):

With $\underline{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)$ :
$P(\underline{X})=X_{1} X_{2}+X_{2} X_{3}+X_{3} X_{4}$,
$Q(\underline{X})=P(\underline{X})+X_{1} X_{3}+X_{5}$
Let $f$ be defined by its AFN:
$F\left(X_{0}, \underline{X}\right)=\left(1+X_{0}\right) P(\underline{X})+X_{0} Q(\underline{X})$
One can check by computer that the boolean function $f$ is a bent function. We find :

$$
\begin{aligned}
& p(x)= x^{28}+x^{27}+x^{23}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16} \\
&+x^{15}+x^{14}+x^{13}+x^{8}=\mathrm{x}^{8}(\mathrm{x}+1)^{5} \mathbf{M}_{2}(\mathrm{x}) \\
& q(x)= x^{30}+x^{27}+x^{25}+x^{24}+x^{21}+x^{20}+x^{19}+x^{18} \\
&+x^{15}+x^{14}+x^{11}+x^{10}+x^{9}+x^{7}+x^{5}+x^{4} \\
&=\mathbf{x}^{4}(\mathbf{x}+1)\left(\mathrm{x}^{10}+\mathrm{x}^{9}+\mathrm{x}^{8}+\mathrm{x}^{6}+\mathrm{x}^{5}+\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}+1\right) \mathrm{M}_{2}(\mathrm{x}) \\
& \\
& r(x)= x^{30}+x^{28}+x^{25}+x^{24}+x^{21}+x^{17}+x^{16}+x^{13} \\
&+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{5}+x^{4} \\
&=\mathrm{x}^{4}(\mathrm{x}+1)\left(\mathrm{x}^{4}+\mathrm{x}^{3}+1\right)\left(\mathrm{x}^{6}+\mathrm{x}+1\right) \mathbf{M}_{2}(\mathrm{x})
\end{aligned}
$$

Then $f$ belongs to $\mathcal{B}_{0}(6)[2,2]$
The degree of $f$ is 3 .

$$
\begin{aligned}
& w(p(x))=2^{2 t-2}+\epsilon 2^{t-1}=12 \\
& w(q(x))=w(r(x))=2^{2 t-2}=16
\end{aligned}
$$

## Example 4:

$f$ is defined by:
$f_{p}(x)=\operatorname{tr}\left(\omega x+x^{7}+x^{11}\right)$
$f_{q}(x)=\operatorname{tr}\left((\omega+1) x+x^{7}+x^{11}\right)$ with $\omega=\alpha^{-1}$.
We check by computer that $f$ is a bent function. We find:

$$
\begin{aligned}
& p(x)= x^{28}+x^{27}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{17} \\
&+x^{16}+x^{13}+x^{11}+x^{9}+x^{8}+x^{5}+x^{3}+x^{2} \\
&=\mathbf{A}(\mathbf{x})(\mathbf{x}+1) \mathbf{M}_{1}(\mathbf{x}) \mathbf{w i t h} \\
& A(x)= x^{2}\left(x^{10}+x^{9}+x^{8}+x^{6}+x^{4}+x^{2}+1\right) m_{7}(x) m_{11}(x) .
\end{aligned}
$$

$$
q(x)=x^{28}+x^{27}+x^{26}+x^{23}+x^{18}+x^{16}+x^{12}+x^{10}
$$

$$
+x^{8}+x^{6}+x^{2}+1
$$

$$
=\mathrm{B}(\mathrm{x})(\mathrm{x}+1) \mathrm{M}_{1}(\mathrm{x}) \text { with }
$$

$$
\left.B(x)=(x+1) x^{11}+x^{7}+x^{3}+x^{2}+1\right) m_{7}(x) m_{11}(x) .
$$

$$
r(x)=x^{26}+x^{24}+x^{22}+x^{21}+x^{20}+x^{18}+x^{17}+x^{13}
$$

$$
+x^{12}+x^{11}+x^{10}+x^{9}+x^{6}+x^{5}+x^{3}+1
$$

$$
=(\mathrm{x}+1) \mathrm{M}_{3}(\mathrm{x})
$$

$f$ belongs to $\mathcal{B}(6)[1,3]$
The degree of $f$ is 3 .

## Weights:

$$
\begin{aligned}
& w(q(x))=2^{2 t-2}-2^{t-1}=20 \\
& w(p(x))=w(r(x))=2^{2 t-2}=16
\end{aligned}
$$

