On Permutation Polynomials of Prescribed Shape

Qiang Wang
School of Mathematics and Statistics
Carleton University
wang@math.carleton.ca

Joint work with Amir Akbary and Dragos Ghioca

FQ9, July 2009

Definitions:

A Permutation Polynomial (PP) of a finite field \mathbb{F}_{q} is polynomial which permutes the elements of \mathbb{F}_{q} as an evaluation mapping.

Examples:

- $P(x)=a x+b, a \neq 0$.
- $P(x)=x^{n}$ is a PP of \mathbb{F}_{q} iff $(n, q-1)=1$. (RSA)
- Dickson polynomial $D_{n}(x, 1)$ is PP of \mathbb{F}_{q} iff $\left(n, q^{2}-1\right)=1$.
- $P_{1} \circ P_{2}$ is a PP of \mathbb{F}_{q} iff $P_{1}(x)$ and $P_{2}(x)$ are PPs.

Problem

Problem (Lidl-Mullen, 1988)

Let $N_{d}(q)$ denote the number of permutation polynomials of \mathbb{F}_{q} which have degree d. We have the trivial boundary conditions: $N_{1}(q)=q(q-1), N_{d}(q)=0$ if d is a divisor of $(q-1)$ larger than 1 , and $\sum N_{d}(q)=q$! where the sum is over all $1 \leq d<q-1$ such that d is either 1 or it is not a divisor of $(q-1)$. Find $N_{d}(q)$.

Previous work

- Das [2] 2002 proved that $N_{p-2}(p) \sim(\varphi(p) / p) p$! as $p \rightarrow \infty$, where φ is the Euler function. More precisely he proves that

$$
\left|N_{p-2}(p)-\frac{\varphi(p)}{p} p!\right| \leq \sqrt{\frac{p^{p+1}(p-2)+p^{2}}{p-1}}
$$

Previous work

- Das [2] 2002 proved that $N_{p-2}(p) \sim(\varphi(p) / p) p$! as $p \rightarrow \infty$, where φ is the Euler function. More precisely he proves that

$$
\left|N_{p-2}(p)-\frac{\varphi(p)}{p} p!\right| \leq \sqrt{\frac{p^{p+1}(p-2)+p^{2}}{p-1}} .
$$

- Konyagin and Pappalardi [3] 2002 proved that

$$
\left|N_{q-2}(q)-\frac{\varphi(q)}{q} q!\right| \leq \sqrt{\frac{2 e}{\pi}} q^{\frac{q}{2}} .
$$

Previous work

Fix j integers k_{1}, \ldots, k_{j} such that $0<k_{1}<\cdots<k_{j}<q-1$.
Define $N\left(k_{1}, \ldots, k_{j} ; q\right)$ as the number of permutation polynomials h of \mathbb{F}_{q} of degree less than $(q-1)$ such that the coefficient of $x^{k_{i}}$ in h equals 0 , for $i=1, \ldots, j$.

Theorem (Konyagin-Pappalardi, [4], 2006)

$$
\left|N\left(k_{1}, \ldots, k_{j} ; q\right)-\frac{q!}{q^{j}}\right|<\left(1+\sqrt{\frac{1}{e}}\right)^{q}\left(\left(q-k_{1}-1\right) q\right)^{q / 2} .
$$

Note that $N_{q-2}(q)=q!-N(q-2 ; q)$.

Comments and Questions

- Enumeration of permutation polynomials with a prescribed set of nonzero monomials? Existence?
- What happens when k_{1} is small?

Existence of permutation polynomials of certain shapes

- There are no permutation polynomials of \mathbb{F}_{q} of degree $d>1$ such that $d \mid(q-1)$.
- For any positive even degree n, there is no permutation polynomial of degree n of \mathbb{F}_{q} if q is sufficiently large compared to n (Fried, Guralnick, and Saxl, 1993).

Existence of permutation polynomials of certain shapes

On the other hand one can prove the existence of permutation polynomials of varying degrees.

Theorem (Carlitz-Wells, 1966)

(i) Let $\ell>1$. Then for q sufficiently large such that $\ell \mid(q-1)$, there exists $a \in \mathbb{F}_{q}$ such that the polynomial $x\left(x^{(q-1) / \ell}+a\right)$ is a permutation polynomial of \mathbb{F}_{q}.
(ii) Let $\ell>1,(r, q-1)=1$, and k be a positive integer. Then for q sufficiently large such that $\ell \mid(q-1)$, there exists $a \in \mathbb{F}_{q}$ such that the polynomial $x^{r}\left(x^{(q-1) / \ell}+a\right)^{k}$ is a permutation polynomial of \mathbb{F}_{q}.

Quantitative version of Carlitz-Wells's Theorem

- Laigle-Chapuy [1] 2007 gave a quantitative version of Carlitz-Wells's Theorem for $k=1$ assuming $q>\ell^{\ell \ell+2}\left(1+\frac{\ell+1}{\ell^{\ell+2}}\right)^{2}$.
- Masuda and Zieve [3] obtain a stronger result for more general binomials of the form $x^{r}\left(x^{e_{1}(q-1) / \ell}+a\right)$. Result: $q>\ell^{2 \ell+2}$.
- General polynomials?

Setup-index of a polynomial

- Let $g(x) \in \mathbb{F}_{q}[x]$ be non-constant and monic with $g(0)=0$, the index ℓ of $g(x)$ is defined as the least divisor of $q-1$ such that $g(x)$ can be written uniquely as $x^{r} f\left(x^{(q-1) / \ell}\right)$ where r is the vanishing order of $g(x)$ at zero.
- Any non-constant polynomial $h(x)$ can be written as $h(x)=a g(x)+b$ where $a \neq 0$ and $g(x)$ is monic with $g(0)=0$. We define the index of $h(x)$ as the index of $g(x)$.
- $h(x)$ can be written uniquely as

$$
h(x)=a\left(x^{r} f\left(x^{(q-1) / \ell}\right)\right)+b
$$

- Clearly, $h(x)$ is a permutation polynomial of \mathbb{F}_{q}, if and only if $g(x)=x^{r} f\left(x^{(q-1) / \ell}\right)$ is a permutation polynomial of \mathbb{F}_{q}.

Setup

Let $\ell \geq 2$ be a divisor of $q-1$. We let

$$
g_{r, \bar{e}}^{\bar{a}}(x):=x^{r}\left(x^{e_{m} s}+a_{1} x^{e_{m-1} s}+\cdots+a_{m-1} x^{e_{1} s}+a_{m}\right),
$$

where m, r are positive integers, $\bar{a}=\left(a_{1}, \ldots, a_{m}\right) \in\left(\mathbb{F}_{q}{ }^{*}\right)^{m}$, and $\bar{e}=\left(e_{1}, \ldots, e_{m}\right)$ is an m-tuple of integers that satisfy the following conditions:
$0<e_{1}<e_{2} \cdots<e_{m} \leq \ell-1$ and $\left(e_{1}, \ldots, e_{m}, \ell\right)=1$ and $r+e_{m} s \leq q-1$,
where $s:=(q-1) / \ell$.

Main result

Fix r, m, \bar{e}, define $N_{r, \bar{e}}^{m}(\ell, q)$ as the number of all tuples $\bar{a} \in\left(\mathbb{F}_{q}^{*}\right)^{m}$ such that $g_{r, \bar{e}}^{\bar{a}}(x)$ is a permutation polynomial of \mathbb{F}_{q}. That is, $N_{r, \bar{e}}^{m}(\ell, q)$ is the number of all monic permutation $(m+1)$-nomials $g_{r, \bar{e}}^{\bar{\pi}}(x)=x^{r} f\left(x^{(q-1) / \ell}\right)$ of \mathbb{F}_{q} with index ℓ.

Theorem

$$
\left|\frac{\frac{\ell^{\ell}}{\ell!} N_{r, \bar{e}}^{m}(\ell, q)-q^{m}}{\ell^{\ell+1} q^{m-1 / 2}}\right|<1 .
$$

Or:

$$
\left|N_{r, \bar{e}}^{m}(\ell, q)-\frac{\ell!}{\ell^{\ell}} q^{m}\right|<\ell!\ell q^{m-1 / 2} .
$$

More results

Corollary

For any q, r, \bar{e}, m, ℓ that satisfy $(1),(r, s)=1$, and $q>\ell^{2 \ell+2}$, there exists an $\bar{a} \in\left(\mathbb{F}_{q}^{*}\right)^{m}$ such that the $(m+1)$-nomial $g_{r, \bar{e}}^{\bar{a}}(x)$ is a permutation polynomial of \mathbb{F}_{q}.

Remark

For $q \geq 7$ we have $\ell^{2 \ell+2}<q$ as long as $\ell<\frac{\log q}{2 \log \log q}$.
Take $r=1$ in the above result, we can obtain the existence of permutation $(m+1)$-nomials which have coefficients equal to 0 for their x^{k} terms, where $2 \leq k \leq s$. This observation addresses one of the questions left open by Konyagin and Pappalardi ($k_{1}=2$, $\ldots, k_{j}=s$).

More results

Next note that for $1 \leq t \leq q-2$ the number of permutation polynomials of degree at least $(q-t-1)$ is

$$
q!-N(q-t-1, q-t, \ldots, q-2 ; q)
$$

In [4, Corollary 2] Konyagin and Pappalardi proved that

$$
N(q-t-1, q-t, \ldots, q-2 ; q) \sim \frac{q!}{q^{t}}
$$

holds for $q \rightarrow \infty$ and $t \leq 0.03983 q$. This result will guarantee the existence of permutation polynomials of degree at least $(q-t-1)$ for $t \leq 0.03983 q$ (as long as q is sufficiently large).

Results

Theorem

Let $m \geq 1$. Let q be a prime power such that $(q-1)$ has a divisor ℓ with $m<\ell$ and $\ell^{2 \ell+2}<q$. Then for every $1 \leq t<\frac{(\ell-m)}{\ell}(q-1)$ coprime with $(q-1) / \ell$ there exists an $(m+1)$-nomial $g_{r, \bar{e}}^{\bar{a}}(x)$ of degree $(q-t-1)$ which is a permutation polynomial of \mathbb{F}_{q}.

Note that this theorem establishes the existence of permutation polynomials withe exact degree $q-t-1$.

Corollary

Let $m \geq 1$ be an integer, and let q be a prime power such that $(m+1) \mid(q-1)$. Then for all $n \geq 2 m+4$, there exists a permutation $(m+1)$-nomial of $\mathbb{F}_{q^{n}}$ of degree $(q-2)$.

Sketch of proof of the main theorem

Criterion (Wan \& Lidl, 91): Let $(r, s)=1$ and α be a generator of $\mathbb{F}_{q}{ }^{*}$. The polynomial $g^{\bar{a}}$ permutes \mathbb{F}_{q} if and only if the following two conditions are satisfied:
(i) $\alpha^{i e_{m} s}+a_{1} \alpha^{i e_{m-1} s}+\cdots+a_{m-1} \alpha^{i e_{1} s}+a_{m} \neq 0$, for each $i=1, \ldots, \ell$;
(ii) $g^{\bar{a}}\left(\alpha^{i}\right)^{s} \neq g^{\bar{a}}\left(\alpha^{j}\right)^{s}$, for $1 \leq i<j \leq \ell$.

$$
\begin{equation*}
N_{r, \bar{e}}^{m}(\ell, q)=\frac{1}{\ell^{\ell}} \sum_{\substack{\left.\bar{a} \in\left(\mathbb{F}^{*}\right)^{m} \\ \bar{a} \text { satisfies (i) }\right)}} \sum_{\sigma \in S_{\ell}} P_{\sigma}\left(g^{\bar{a}}\left(\alpha^{1}\right)^{s}, \ldots, g^{\bar{a}}\left(\alpha^{\ell}\right)^{s}\right) . \tag{2}
\end{equation*}
$$

where ψ be a multiplicative character of order ℓ of the set μ_{ℓ} of all ℓ th root of unity in $\mathbb{F}_{q}{ }^{*}$ and

$$
P_{\sigma}\left(\beta_{1}, \ldots, \beta_{\ell}\right)=\prod_{i=1}^{\ell}\left(\sum_{j=0}^{\ell-1}\left(\psi\left(\beta_{i}\right) \psi\left(\alpha^{s}\right)^{-\sigma(i)}\right)^{j}\right) .
$$

Sketch of proof of the main theorem

Lemma

Let $\beta_{1}, \ldots, \beta_{\ell} \in \mu_{\ell}$. Then

$$
\frac{1}{\ell^{\ell}} \sum_{\sigma \in S_{\ell}} P_{\sigma}\left(\beta_{1}, \ldots, \beta_{\ell}\right)=\left\{\begin{array}{cc}
1 & \text { if }\left\{\beta_{1}, \ldots, \beta_{\ell}\right\}=\mu_{\ell} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Lemma

If $\beta_{i} \in \mu_{\ell} \cup\{0\}$ for each $1 \leq i \leq \ell$, and at least one β_{i} is zero, then

$$
0 \leq \frac{1}{\ell^{\ell}} \sum_{\sigma \in S_{\ell}} P_{\sigma}\left(\beta_{1}, \ldots, \beta_{\ell}\right) \leq \frac{1}{\ell}
$$

Sketch of proof of main theorem

Combinatorial arguments.

$$
\begin{aligned}
& \frac{1}{\ell^{\ell}} \sum_{\bar{a} \in \mathbb{F}_{q}^{m}} \sum_{\sigma \in S_{\ell}} P_{\sigma}\left(g^{\bar{a}}\left(\alpha^{1}\right)^{s}, \ldots, g^{\bar{a}}\left(\alpha^{\ell}\right)^{s}\right)-\frac{q^{m+1}-(q-1)^{m+1}-(-1)^{m}}{q} \\
\leq & N_{r, \bar{e}}^{m}(\ell, q) \\
\leq & \frac{1}{\ell^{\ell}} \sum_{\bar{a} \in \mathbb{F}_{q}^{m}} \sum_{\sigma \in S_{\ell}} P_{\sigma}\left(g^{\bar{a}}\left(\alpha^{1}\right)^{s}, \ldots, g^{\bar{a}}\left(\alpha^{\ell}\right)^{s}\right) .
\end{aligned}
$$

Sketch of proof of the main theorem

Theorem (Weil)

Let Ψ be a multiplicative character of \mathbb{F}_{q} of order $\ell>1$ and let $f(x) \in \mathbb{F}_{q}[x]$ be a monic polynomial of positive degree that is not an ℓ-th power of a polynomial. Let d be the number of distinct roots of $f(x)$ in its splitting field over \mathbb{F}_{q}. Then for every $t \in \mathbb{F}_{q}$ we have

$$
\left|\sum_{a \in \mathbb{F}_{q}} \Psi(t f(a))\right| \leq(d-1) \sqrt{q}
$$

Sketch of proof of the main theorem

$$
\begin{gather*}
\sum_{a_{m} \in \mathbb{F}_{q}} \prod_{i=1}^{\ell}\left(\psi\left(g^{\bar{a}}\left(\alpha^{i}\right)^{s}\right) \psi\left(\alpha^{s}\right)^{-\sigma(i)}\right)^{k_{i}}= \\
\sum_{a_{m} \in \mathbb{F}_{q}} \psi\left(\beta^{\sum_{i=1}^{\ell}\left(r i k_{i}-\sigma(i) k_{i}\right)} \cdot \prod_{i=1}^{\ell}\left(\beta^{e_{m} i}+a_{1} \beta^{e_{m-1} i}+\cdots+a_{m-1} \beta^{e_{1} i}+a_{m}\right)^{k_{i} s}\right) \tag{3}
\end{gather*}
$$

which can be written as a character sum

$$
\sum_{a_{m} \in \mathbb{F}_{q}} \Psi\left(t \prod_{i=1}^{\ell}\left(\beta^{e_{m} i}+a_{1} \beta^{e_{m-1} i}+\cdots+a_{m-1} \beta^{e_{1} i}+a_{m}\right)^{k_{i}}\right)
$$

where $t:=\alpha^{\sum_{i=1}^{\ell}\left(r i k_{i}-\sigma(i) k_{i}\right)} \in \mathbb{F}_{q}$.

Sketch of proof of the main theorem

Let $m>1$. Let $\beta:=\alpha^{s}$ be a fixed generator of μ_{ℓ}. We call a ($m-1$)-tuple $\left(a_{1}, \ldots, a_{m-1}\right) \in\left(\mathbb{F}_{q}\right)^{m-1}$ good if there is no $1 \leq i_{1}<i_{2} \leq \ell$ such that $\beta^{i_{1} e_{m}}+a_{1} \beta^{i_{1} e_{m-1}}+\cdots+a_{m-1} \beta^{i_{1} e_{1}}=\beta^{i_{2} e_{m}}+a_{1} \beta^{i_{2} e_{m-1}}+\cdots+a_{m-1} \beta^{i_{2} e_{1}}$.

$$
\begin{aligned}
& \frac{1}{\ell^{\ell}} \sum_{\substack{a_{m} \in \mathbb{F}_{q} \\
\left(a_{1}, \ldots, a_{m-1}\right) \text { is good }}} \sum_{\sigma \in S_{\ell}} P_{\sigma}\left(g^{\bar{a}}\left(\alpha^{1}\right)^{s}, \ldots, g^{\bar{a}}\left(\alpha^{\ell}\right)^{s}\right)-\frac{q^{m+1}-(q-1)^{m+1}-(-1)^{n}}{q} \\
& \leq N_{r, \bar{e}}^{m}(\ell, q) \\
& \leq\binom{\ell}{2} q^{m-1}+\frac{1}{\ell^{\ell}} \sum_{\substack{a_{m} \in \mathbb{F}_{q} \\
\left(a_{1}, \ldots, a_{m-1}\right) \text { is good }}} \sum_{\sigma \in S_{\ell}} P_{\sigma}\left(g^{\bar{a}}\left(\alpha^{1}\right)^{s}, \ldots, g^{\bar{a}}\left(\alpha^{\ell}\right)^{s}\right) .
\end{aligned}
$$

目 A. Akbary, G. Ghioca, Q. Wang,
On permutation polynomials of prescribed shape, Finite Fields Appl.
15 (2009), 195-206.
P. Das,

The number of permutation polynomials of a given degree over a finite field, Finite Fields Appl. 8 (2002), 478-490.
S. Konyagin and F. Pappalardi,

Enumerating permutation polynomials over finite fields by degree,
Finite Fields Appl. 8 (2002), no. 4, 548-553.

S. Konyagin and F. Pappalardi,

Enumerating permutation polynomials over finite fields by degree. II, Finite Fields Appl. 12 (2006), no. 1, 26-37.

围 Y. Laigle-Chapuy,
Permutation polynomials and applications to coding theory, Finite Fields Appl. 13 (2007), no. 1, 58-70.
R. Ridl and G. L. Mullen,

When does a polynomial over a finite field permute the elements of the field?, Amer. Math. Monthly 95 (1988), 243-246.
(A. Masuda and M. E. Zieve,
Permutation binomials over finite fields, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4169-4180.
目 D. Wan and R. Lidl,
Permutation polynomials of the form $x^{r} f\left(x^{(q-1) / d}\right)$ and their group structure, Monatsh. Math. 112 (1991), 149-163.

