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Definitions:

A Permutation Polynomial (PP) of a finite field Fq is polynomial
which permutes the elements of Fq as an evaluation mapping.

Examples:

P (x) = ax+ b, a 6= 0.

P (x) = xn is a PP of Fq iff (n, q − 1) = 1. (RSA)

Dickson polynomial Dn(x, 1) is PP of Fq iff (n, q2 − 1) = 1.

P1 ◦ P2 is a PP of Fq iff P1(x) and P2(x) are PPs.
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Problem

Problem (Lidl-Mullen, 1988)

Let Nd(q) denote the number of permutation polynomials of Fq

which have degree d. We have the trivial boundary conditions:
N1(q) = q(q − 1), Nd(q) = 0 if d is a divisor of (q − 1) larger than
1, and

∑
Nd(q) = q! where the sum is over all 1 ≤ d < q − 1 such

that d is either 1 or it is not a divisor of (q − 1). Find Nd(q).
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Previous work

Das [2] 2002 proved that Np−2(p) ∼ (ϕ(p)/p)p! as p→∞,
where ϕ is the Euler function. More precisely he proves that∣∣∣∣Np−2(p)−

ϕ(p)

p
p!

∣∣∣∣ ≤
√
pp+1(p− 2) + p2

p− 1
.

Konyagin and Pappalardi [3] 2002 proved that∣∣∣∣Nq−2(q)−
ϕ(q)

q
q!

∣∣∣∣ ≤
√

2e

π
q

q
2 .
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Previous work

Fix j integers k1, . . . , kj such that 0 < k1 < · · · < kj < q − 1.
Define N(k1, . . . , kj ; q) as the number of permutation polynomials
h of Fq of degree less than (q − 1) such that the coefficient of xki

in h equals 0, for i = 1, . . . , j.

Theorem (Konyagin-Pappalardi, [4], 2006)∣∣∣N(k1, . . . , kj ; q)− q!
qj

∣∣∣ < (1 +
√

1
e

)q

((q − k1 − 1)q)q/2.

Note that Nq−2(q) = q!−N(q − 2; q).
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Comments and Questions

Enumeration of permutation polynomials with a prescribed set
of nonzero monomials? Existence?

What happens when k1 is small?
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Existence of permutation polynomials of certain shapes

There are no permutation polynomials of Fq of degree d > 1
such that d | (q − 1).

For any positive even degree n, there is no permutation
polynomial of degree n of Fq if q is sufficiently large compared
to n (Fried, Guralnick, and Saxl, 1993).
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Existence of permutation polynomials of certain shapes

On the other hand one can prove the existence of permutation
polynomials of varying degrees.

Theorem (Carlitz-Wells, 1966)

(i) Let ` > 1. Then for q sufficiently large such that ` | (q − 1),
there exists a ∈ Fq such that the polynomial x(x(q−1)/` + a) is a
permutation polynomial of Fq.
(ii) Let ` > 1, (r, q − 1) = 1, and k be a positive integer. Then for
q sufficiently large such that ` | (q − 1), there exists a ∈ Fq such
that the polynomial xr(x(q−1)/` + a)k is a permutation polynomial
of Fq.
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Quantitative version of Carlitz-Wells’s Theorem

Laigle-Chapuy [1] 2007 gave a quantitative version of
Carlitz-Wells’s Theorem for k = 1 assuming

q > `2`+2
(
1 + `+1

``+2

)2
.

Masuda and Zieve [3] obtain a stronger result for more general
binomials of the form xr(xe1(q−1)/` + a). Result: q > `2`+2.

General polynomials?
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Setup–index of a polynomial

Let g(x) ∈ Fq[x] be non-constant and monic with g(0) = 0,
the index ` of g(x) is defined as the least divisor of q − 1 such
that g(x) can be written uniquely as xrf(x(q−1)/`) where r is
the vanishing order of g(x) at zero.

Any non-constant polynomial h(x) can be written as
h(x) = ag(x) + b where a 6= 0 and g(x) is monic with
g(0) = 0. We define the index of h(x) as the index of g(x).

h(x) can be written uniquely as

h(x) = a(xrf(x(q−1)/`)) + b.

Clearly, h(x) is a permutation polynomial of Fq, if and only if
g(x) = xrf(x(q−1)/`) is a permutation polynomial of Fq.
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Setup

Let ` ≥ 2 be a divisor of q − 1. We let

ga
r,e(x) := xr (xems + a1x

em−1s + · · ·+ am−1x
e1s + am) ,

where m, r are positive integers, a = (a1, . . . , am) ∈ (Fq
∗)m, and

ē = (e1, . . . , em) is an m-tuple of integers that satisfy the following
conditions:

0 < e1 < e2 · · · < em ≤ `−1 and (e1, . . . , em, `) = 1 and r+ems ≤ q−1,
(1)

where s := (q − 1)/`.
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Main result

Fix r,m, e, define Nm
r,e(`, q) as the number of all tuples a ∈

(
F∗q
)m

such that ga
r,e(x) is a permutation polynomial of Fq.

That is, Nm
r,e(`, q) is the number of all monic permutation

(m+ 1)-nomials ga
r,e(x) = xrf(x(q−1)/`) of Fq with index `.

Theorem

∣∣∣∣∣ ``

`!N
m
r,e(`, q)− qm

``+1qm−1/2

∣∣∣∣∣ < 1.

Or: ∣∣∣∣Nm
r,e(`, q)−

`!

``
qm

∣∣∣∣ < `!`qm−1/2.
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More results

Corollary

For any q, r, ē, m, ` that satisfy (1), (r, s) = 1, and q > `2`+2,
there exists an ā ∈ (F∗q)m such that the (m+ 1)-nomial gā

r,e(x) is a
permutation polynomial of Fq.

Remark

For q ≥ 7 we have `2`+2 < q as long as ` < log q
2 log log q .

Take r = 1 in the above result, we can obtain the existence of
permutation (m+ 1)-nomials which have coefficients equal to 0 for
their xk terms, where 2 ≤ k ≤ s. This observation addresses one
of the questions left open by Konyagin and Pappalardi (k1 = 2,
. . ., kj = s).

On Permutation Polynomials of Prescribed Shape QiangWang



Introduction Our Results Proof References

More results

Next note that for 1 ≤ t ≤ q − 2 the number of permutation
polynomials of degree at least (q − t− 1) is

q!−N(q − t− 1, q − t, . . . , q − 2; q).

In [4, Corollary 2] Konyagin and Pappalardi proved that

N(q − t− 1, q − t, . . . , q − 2; q) ∼ q!

qt

holds for q →∞ and t ≤ 0.03983 q. This result will guarantee the
existence of permutation polynomials of degree at least
(q − t− 1) for t ≤ 0.03983 q (as long as q is sufficiently large).
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Results

Theorem

Let m ≥ 1. Let q be a prime power such that (q − 1) has a divisor

` with m < ` and `2`+2 < q. Then for every 1 ≤ t < (`−m)
` (q − 1)

coprime with (q − 1)/` there exists an (m+ 1)-nomial gā
r,e(x) of

degree (q − t− 1) which is a permutation polynomial of Fq.

Note that this theorem establishes the existence of permutation
polynomials withe exact degree q − t− 1.

Corollary

Let m ≥ 1 be an integer, and let q be a prime power such that
(m+ 1) | (q − 1). Then for all n ≥ 2m+ 4, there exists a
permutation (m+ 1)-nomial of Fqn of degree (q − 2).
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Sketch of proof of the main theorem

Criterion (Wan & Lidl, 91): Let (r, s) = 1 and α be a generator of
Fq

∗. The polynomial ga permutes Fq if and only if the following
two conditions are satisfied:

(i) αiems + a1α
iem−1s + · · ·+ am−1α

ie1s + am 6= 0, for each
i = 1, . . . , `;

(ii) ga(αi)s 6= ga(αj)s, for 1 ≤ i < j ≤ `.

Nm
r,e(`, q) =

1

``

∑
a∈(F∗q)m

a satisfies (i)

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
. (2)

where ψ be a multiplicative character of order ` of the set µ` of
all `th root of unity in Fq

∗ and

Pσ(β1, . . . , β`) =
∏̀
i=1

`−1∑
j=0

(
ψ(βi)ψ(αs)−σ(i)

)j

 .
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Sketch of proof of the main theorem

Lemma

Let β1, . . . , β` ∈ µ`. Then

1

``

∑
σ∈S`

Pσ(β1, . . . , β`) =

{
1 if {β1, . . . , β`} = µ`

0 otherwise
.

Lemma

If βi ∈ µ` ∪{0} for each 1 ≤ i ≤ `, and at least one βi is zero, then

0 ≤ 1

``

∑
σ∈S`

Pσ(β1, . . . , β`) ≤
1

`
.
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Sketch of proof of main theorem

Combinatorial arguments.

1

``

∑
a∈Fm

q

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
− qm+1 − (q − 1)m+1 − (−1)m

q

≤ Nm
r,e(`, q)

≤ 1

``

∑
a∈Fm

q

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
.
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Sketch of proof of the main theorem

Theorem (Weil)

Let Ψ be a multiplicative character of Fq of order ` > 1 and let
f(x) ∈ Fq[x] be a monic polynomial of positive degree that is not
an `-th power of a polynomial. Let d be the number of distinct
roots of f(x) in its splitting field over Fq. Then for every t ∈ Fq

we have ∣∣∣∣∣∣
∑
a∈Fq

Ψ(tf(a))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.
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Sketch of proof of the main theorem

∑
am∈Fq

∏̀
i=1

(
ψ(ga(αi)s)ψ(αs)−σ(i)

)ki

=

∑
am∈Fq

ψ

(
β

P`
i=1(riki−σ(i)ki) ·

∏̀
i=1

(
βemi + a1β

em−1i + · · ·+ am−1β
e1i + am

)kis

)
,

(3)
which can be written as a character sum

∑
am∈Fq

Ψ

(
t
∏̀
i=1

(
βemi + a1β

em−1i + · · ·+ am−1β
e1i + am

)ki

)
,

where t := α
P`

i=1(riki−σ(i)ki) ∈ Fq.
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Sketch of proof of the main theorem

Let m > 1. Let β := αs be a fixed generator of µ`. We call a
(m− 1)-tuple (a1, . . . , am−1) ∈ (Fq)

m−1 good if there is no
1 ≤ i1 < i2 ≤ ` such that

βi1em+a1β
i1em−1+· · ·+am−1β

i1e1 = βi2em+a1β
i2em−1+· · ·+am−1β

i2e1 .

1

``

∑
am∈Fq

(a1,...,am−1) is good

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
− qm+1 − (q − 1)m+1 − (−1)m

q

≤ Nm
r,e(`, q)

≤
(
`

2

)
qm−1 +

1

``

∑
am∈Fq

(a1,...,am−1) is good

∑
σ∈S`

Pσ

(
ga(α1)s, . . . , ga(α`)s

)
.
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