	Our Results	Proof	References
On F	Permutation Polynomia	als of Prescribec	l Shape
	Qiang W School of Mathemati	0	
	Carleton Ur wang@math.c		
	Joint work with Amir Akba	ary and Dragos Ghio	са

FQ9, July 2009

A Permutation Polynomial (PP) of a finite field \mathbb{F}_q is polynomial which permutes the elements of \mathbb{F}_q as an evaluation mapping.

Examples:

•
$$P(x) = ax + b, a \neq 0.$$

- $P(x) = x^n$ is a PP of \mathbb{F}_q iff (n, q 1) = 1. (RSA)
- Dickson polynomial $D_n(x, 1)$ is PP of \mathbb{F}_q iff $(n, q^2 1) = 1$.
- $P_1 \circ P_2$ is a PP of \mathbb{F}_q iff $P_1(x)$ and $P_2(x)$ are PPs.

Problem

Problem (Lidl-Mullen, 1988)

Let $N_d(q)$ denote the number of permutation polynomials of \mathbb{F}_q which have degree d. We have the trivial boundary conditions: $N_1(q) = q(q-1), N_d(q) = 0$ if d is a divisor of (q-1) larger than 1, and $\sum N_d(q) = q!$ where the sum is over all $1 \le d < q-1$ such that d is either 1 or it is not a divisor of (q-1). Find $N_d(q)$.

Introduction	Our Results	Proof	References
Previous work			

• Das [2] 2002 proved that $N_{p-2}(p) \sim (\varphi(p)/p)p!$ as $p \to \infty$, where φ is the Euler function. More precisely he proves that

$$\left| N_{p-2}(p) - \frac{\varphi(p)}{p} p! \right| \le \sqrt{\frac{p^{p+1}(p-2) + p^2}{p-1}}$$

• Das [2] 2002 proved that $N_{p-2}(p) \sim (\varphi(p)/p)p!$ as $p \to \infty$, where φ is the Euler function. More precisely he proves that

$$\left| N_{p-2}(p) - \frac{\varphi(p)}{p} p! \right| \le \sqrt{\frac{p^{p+1}(p-2) + p^2}{p-1}}$$

• Konyagin and Pappalardi [3] 2002 proved that

$$\left|N_{q-2}(q) - rac{\varphi(q)}{q}q!\right| \leq \sqrt{rac{2e}{\pi}}q^{rac{q}{2}}.$$

Fix j integers k_1, \ldots, k_j such that $0 < k_1 < \cdots < k_j < q - 1$. Define $N(k_1, \ldots, k_j; q)$ as the number of permutation polynomials h of \mathbb{F}_q of degree less than (q-1) such that the coefficient of x^{k_i} in h equals 0, for $i = 1, \ldots, j$.

Theorem (Konyagin-Pappalardi, [4], 2006)

$$\left|N(k_1,\ldots,k_j;q)-rac{q!}{q^j}
ight|<\left(1+\sqrt{rac{1}{e}}
ight)^q\left((q-k_1-1)q
ight)^{q/2}.$$

Note that $N_{q-2}(q) = q! - N(q-2;q)$.

Proo

Comments and Questions

- Enumeration of permutation polynomials with a prescribed set of nonzero monomials? Existence?
- What happens when k_1 is small?

Existence of permutation polynomials of certain shapes

- There are no permutation polynomials of 𝔽_q of degree d > 1 such that d | (q − 1).
- For any positive even degree n, there is no permutation polynomial of degree n of \mathbb{F}_q if q is sufficiently large compared to n (Fried, Guralnick, and SaxI, 1993).

Existence of permutation polynomials of certain shapes

On the other hand one can prove the existence of permutation polynomials of varying degrees.

Theorem (Carlitz-Wells, 1966)

(i) Let $\ell > 1$. Then for q sufficiently large such that $\ell \mid (q-1)$, there exists $a \in \mathbb{F}_q$ such that the polynomial $x(x^{(q-1)/\ell} + a)$ is a permutation polynomial of \mathbb{F}_q . (ii) Let $\ell > 1$, (r, q - 1) = 1, and k be a positive integer. Then for q sufficiently large such that $\ell \mid (q - 1)$, there exists $a \in \mathbb{F}_q$ such that the polynomial $x^r(x^{(q-1)/\ell} + a)^k$ is a permutation polynomial of \mathbb{F}_q .

Quantitative version of Carlitz-Wells's Theorem

- Laigle-Chapuy [1] 2007 gave a quantitative version of Carlitz-Wells's Theorem for k = 1 assuming $q > \ell^{2\ell+2} \left(1 + \frac{\ell+1}{\ell^{\ell+2}}\right)^2$.
- Masuda and Zieve [3] obtain a stronger result for more general binomials of the form x^r(x^{e₁(q−1)/ℓ} + a). Result: q > ℓ^{2ℓ+2}.
- General polynomials?

Setup-index of a polynomial

- Let $g(x) \in \mathbb{F}_q[x]$ be non-constant and monic with g(0) = 0, the index ℓ of g(x) is defined as the least divisor of q - 1 such that g(x) can be written uniquely as $x^r f(x^{(q-1)/\ell})$ where r is the vanishing order of g(x) at zero.
- Any non-constant polynomial h(x) can be written as h(x) = ag(x) + b where $a \neq 0$ and g(x) is monic with g(0) = 0. We define the *index* of h(x) as the index of g(x).
- h(x) can be written uniquely as

$$h(x) = a(x^r f(x^{(q-1)/\ell})) + b.$$

• Clearly, h(x) is a permutation polynomial of \mathbb{F}_q , if and only if $g(x) = x^r f(x^{(q-1)/\ell})$ is a permutation polynomial of \mathbb{F}_q .

	Our Results	Proof	References
Setup			
Jetup			

Let $\ell \geq 2$ be a divisor of q-1. We let

$$g_{r,\overline{e}}^{\overline{a}}(x) := x^r \left(x^{e_m s} + a_1 x^{e_{m-1} s} + \dots + a_{m-1} x^{e_1 s} + a_m \right),$$

where m, r are positive integers, $\overline{a} = (a_1, \ldots, a_m) \in (\mathbb{F}_q^*)^m$, and $\overline{e} = (e_1, \ldots, e_m)$ is an *m*-tuple of integers that satisfy the following conditions:

$$0 < e_1 < e_2 \dots < e_m \le \ell - 1$$
 and $(e_1, \dots, e_m, \ell) = 1$ and $r + e_m s \le q - 1$,
(1)
where $s := (q - 1)/\ell$.

	Our Results	Proof	References
Main result			

Fix r, m, \overline{e} , define $N_{r,\overline{e}}^{m}(\ell, q)$ as the number of all tuples $\overline{a} \in (\mathbb{F}_{q}^{*})^{m}$ such that $g_{r,\overline{e}}^{\overline{a}}(x)$ is a permutation polynomial of \mathbb{F}_{q} . That is, $N_{r,\overline{e}}^{m}(\ell, q)$ is the number of all monic permutation (m + 1)-nomials $g_{\overline{r},\overline{e}}^{\overline{a}}(x) = x^{r} f(x^{(q-1)/\ell})$ of \mathbb{F}_{q} with index ℓ .

Theorem

$$\left|\frac{\frac{\ell^\ell}{\ell!}N^m_{r,\overline{e}}(\ell,q)-q^m}{\ell^{\ell+1}q^{m-1/2}}\right|<1.$$

Or:

$$\left|N_{r,\overline{e}}^m(\ell,q) - rac{\ell!}{\ell^\ell}q^m\right| < \ell!\ell q^{m-1/2}.$$

	Our Results	Proof	References
More results			

Corollary

For any q, r, \bar{e} , m, ℓ that satisfy (1), (r, s) = 1, and $q > \ell^{2\ell+2}$, there exists an $\bar{a} \in (\mathbb{F}_q^*)^m$ such that the (m+1)-nomial $g_{r,\bar{e}}^{\bar{a}}(x)$ is a permutation polynomial of \mathbb{F}_q .

Remark

For
$$q \ge 7$$
 we have $\ell^{2\ell+2} < q$ as long as $\ell < \frac{\log q}{2\log \log q}$.

Take r = 1 in the above result, we can obtain the existence of permutation (m + 1)-nomials which have coefficients equal to 0 for their x^k terms, where $2 \le k \le s$. This observation addresses one of the questions left open by Konyagin and Pappalardi $(k_1 = 2, \ldots, k_j = s)$.

Next note that for $1 \le t \le q-2$ the number of permutation polynomials of degree at least (q-t-1) is

$$q! - N(q - t - 1, q - t, \dots, q - 2; q).$$

In [4, Corollary 2] Konyagin and Pappalardi proved that

$$N(q-t-1,q-t,\ldots,q-2;q)\sim rac{q!}{q^t}$$

holds for $q \to \infty$ and $t \le 0.03983 q$. This result will guarantee the existence of permutation polynomials of degree at least (q-t-1) for $t \le 0.03983 q$ (as long as q is sufficiently large).

	Our Results	Proof	References
Results			

Theorem

Let $m \ge 1$. Let q be a prime power such that (q-1) has a divisor ℓ with $m < \ell$ and $\ell^{2\ell+2} < q$. Then for every $1 \le t < \frac{(\ell-m)}{\ell}(q-1)$ coprime with $(q-1)/\ell$ there exists an (m+1)-nomial $g_{r,\overline{e}}^{\overline{a}}(x)$ of degree (q-t-1) which is a permutation polynomial of \mathbb{F}_q .

Note that this theorem establishes the existence of permutation polynomials with eexact degree q - t - 1.

Corollary

Let $m \ge 1$ be an integer, and let q be a prime power such that $(m+1) \mid (q-1)$. Then for all $n \ge 2m + 4$, there exists a permutation (m+1)-nomial of \mathbb{F}_{q^n} of degree (q-2).

Pr<u>oof</u>

Sketch of proof of the main theorem

Criterion (Wan & Lidl, 91): Let (r, s) = 1 and α be a generator of \mathbb{F}_q^* . The polynomial $g^{\overline{\alpha}}$ permutes \mathbb{F}_q if and only if the following two conditions are satisfied:

(i)
$$\alpha^{ie_ms} + a_1 \alpha^{ie_{m-1}s} + \dots + a_{m-1} \alpha^{ie_1s} + a_m \neq 0$$
, for each $i = 1, \dots, \ell$;
(ii) $g^{\overline{a}}(\alpha^i)^s \neq g^{\overline{a}}(\alpha^j)^s$, for $1 \le i < j \le \ell$.

$$N_{r,\overline{e}}^{m}(\ell,q) = \frac{1}{\ell^{\ell}} \sum_{\substack{\overline{a} \in (\mathbb{F}_{q}^{*})^{m} \\ \overline{a} \text{ satisfies (i)}}} \sum_{\sigma \in S_{\ell}} P_{\sigma} \left(g^{\overline{a}}(\alpha^{1})^{s}, \dots, g^{\overline{a}}(\alpha^{\ell})^{s} \right).$$
(2)

where ψ be a multiplicative character of order ℓ of the set μ_ℓ of all $\ell {\rm th}$ root of unity in $\mathbb{F}_q{}^*$ and

$$P_{\sigma}(\beta_1,\ldots,\beta_\ell) = \prod_{i=1}^{\ell} \left(\sum_{j=0}^{\ell-1} \left(\psi(\beta_i) \psi(\alpha^s)^{-\sigma(i)} \right)^j \right)$$

Sketch of proof of the main theorem

Lemma

Let $\beta_1, \dots, \beta_\ell \in \mu_\ell$. Then $\frac{1}{\ell^\ell} \sum_{\sigma \in S_\ell} P_\sigma(\beta_1, \dots, \beta_\ell) = \begin{cases} 1 & \text{if } \{\beta_1, \dots, \beta_\ell\} = \mu_\ell \\ 0 & \text{otherwise} \end{cases}.$

Lemma

If $\beta_i \in \mu_\ell \cup \{0\}$ for each $1 \le i \le \ell$, and at least one β_i is zero, then

$$0 \leq rac{1}{\ell^\ell} \sum_{\sigma \in S_\ell} P_\sigma(eta_1, \dots, eta_\ell) \leq rac{1}{\ell}.$$

Sketch of proof of main theorem

Combinatorial arguments.

$$\begin{split} & \frac{1}{\ell^{\ell}} \sum_{\overline{\alpha} \in \mathbb{F}_q^m} \sum_{\sigma \in S_{\ell}} P_{\sigma} \left(g^{\overline{\alpha}} (\alpha^1)^s, \dots, g^{\overline{\alpha}} (\alpha^{\ell})^s \right) - \frac{q^{m+1} - (q-1)^{m+1} - (-1)^m}{q} \\ & \leq N_{r,\overline{e}}^m (\ell, q) \\ & \leq \frac{1}{\ell^{\ell}} \sum_{\overline{\alpha} \in \mathbb{F}_q^m} \sum_{\sigma \in S_{\ell}} P_{\sigma} \left(g^{\overline{\alpha}} (\alpha^1)^s, \dots, g^{\overline{\alpha}} (\alpha^{\ell})^s \right). \end{split}$$

Sketch of proof of the main theorem

Theorem (Weil)

Let Ψ be a multiplicative character of \mathbb{F}_q of order $\ell > 1$ and let $f(x) \in \mathbb{F}_q[x]$ be a monic polynomial of positive degree that is not an ℓ -th power of a polynomial. Let d be the number of distinct roots of f(x) in its splitting field over \mathbb{F}_q . Then for every $t \in \mathbb{F}_q$ we have

$$\left|\sum_{a\in\mathbb{F}_q}\Psi(tf(a))
ight|\leq (d-1)\sqrt{q}.$$

Sketch of proof of the main theorem

$$\sum_{a_m \in \mathbb{F}_q} \prod_{i=1}^{\ell} \left(\psi(g^{\overline{a}}(\alpha^i)^s) \psi(\alpha^s)^{-\sigma(i)} \right)^{k_i} =$$

$$\sum_{a_m \in \mathbb{F}_q} \psi \left(\beta^{\sum_{i=1}^{\ell} (rik_i - \sigma(i)k_i)} \cdot \prod_{i=1}^{\ell} \left(\beta^{e_m i} + a_1 \beta^{e_{m-1}i} + \dots + a_{m-1} \beta^{e_1 i} + a_m \right)^{k_i s} \right)$$
(3)

which can be written as a character sum

$$\sum_{a_m \in \mathbb{F}_q} \Psi\left(t\prod_{i=1}^{\ell} \left(\beta^{e_m i} + a_1 \beta^{e_{m-1} i} + \dots + a_{m-1} \beta^{e_1 i} + a_m\right)^{k_i}\right),$$

where
$$t := \alpha^{\sum_{i=1}^{\ell} (rik_i - \sigma(i)k_i)} \in \mathbb{F}_q$$
.

Pr<u>oof</u>

Sketch of proof of the main theorem

Let m > 1. Let $\beta := \alpha^s$ be a fixed generator of μ_ℓ . We call a (m-1)-tuple $(a_1, \ldots, a_{m-1}) \in (\mathbb{F}_q)^{m-1}$ good if there is no $1 \le i_1 < i_2 \le \ell$ such that

$$\beta^{i_1e_m} + a_1\beta^{i_1e_{m-1}} + \dots + a_{m-1}\beta^{i_1e_1} = \beta^{i_2e_m} + a_1\beta^{i_2e_{m-1}} + \dots + a_{m-1}\beta^{i_2e_1}.$$

$$\frac{1}{\ell^{\ell}} \sum_{\substack{a_m \in \mathbb{F}_q \\ (a_1, \dots, a_{m-1}) \text{ is good}}} \sum_{\sigma \in S_{\ell}} P_{\sigma} \left(g^{\overline{a}} (\alpha^1)^s, \dots, g^{\overline{a}} (\alpha^{\ell})^s \right) - \frac{q^{m+1} - (q-1)^{m+1} - (-1)^m}{q} \\
\leq N_{r,\overline{e}}^m (\ell, q) \\
\leq \binom{\ell}{2} q^{m-1} + \frac{1}{\ell^{\ell}} \sum_{\substack{a_m \in \mathbb{F}_q \\ (a_1, \dots, a_{m-1}) \text{ is good}}} \sum_{\sigma \in S_{\ell}} P_{\sigma} \left(g^{\overline{a}} (\alpha^1)^s, \dots, g^{\overline{a}} (\alpha^{\ell})^s \right).$$

Our Results	Proof	References

A. Akbary, G. Ghioca, Q. Wang,

On permutation polynomials of prescribed shape, Finite Fields Appl. **15** (2009), 195-206.

P. Das, The number of permutation polynomials of a given degree over a

finite field, Finite Fields Appl. **8** (2002), 478–490.

🔋 S. Konyagin and F. Pappalardi,

Enumerating permutation polynomials over finite fields by degree, Finite Fields Appl. **8** (2002), no. 4, 548–553.

🔋 S. Konyagin and F. Pappalardi,

Enumerating permutation polynomials over finite fields by degree. II, Finite Fields Appl. **12** (2006), no. 1, 26–37.

Our Results	Proof	References
Y. Laigle-Chapuy,		
Permutation polynomials and appli	cations to coding theory	Finite
Fields Appl. 13 (2007), no. 1, 58–7		, 1 11120
1000000000000000000000000000000000000	0.	
R. Lidl and G. L. Mullen,		

When does a polynomial over a finite field permute the elements of the field?, Amer. Math. Monthly **95** (1988), 243–246.

📑 A. Masuda and M. E. Zieve,

Permutation binomials over finite fields, Trans. Amer. Math. Soc. **361** (2009), no. 8, 4169–4180.

D. Wan and R. Lidl,

Permutation polynomials of the form $x^r f(x^{(q-1)/d})$ and their group structure, Monatsh. Math. **112** (1991), 149–163.