# A study of (x(q+1), x; 2, q)-minihypers

# Leo Storme

Ghent University Dept. of Pure Mathematics and Computer Algebra Krijgslaan 281 - S22 9000 Ghent Belgium

# FQ9, Dublin, 2009 (joint work with I. Landjev)



・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Leo Storme (x(q+1), x; 2, q)-minihypers

- Linear [n, k, d] code C over  $\mathbb{F}_q$  is:
  - k-dimensional subspace of V(n, q),
  - minimum distance d.



- Given k, d, q, for linear [n, k, d] code over  $\mathbb{F}_q$ ,
- Griesmer (lower) bound

$$n \geq \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil = g_q(k, d).$$

• Question: do there exist  $[g_q(k, d), k, d]$  codes?

# **GRIESMER BOUND AND MINIHYPERS**

## THEOREM (HAMADA AND HELLESETH)

Griesmer (lower) bound equivalent with minihypers in finite projective spaces.



Hill and Ward: detailed study of

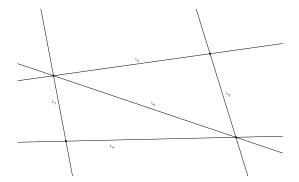
(x(q+1), x; 2, q)-minihypers.

- Weighted set of x(q + 1) points in PG(2, q) intersecting every line in at least x points.
- Classical example: sum of x (not necessarily distinct) lines

 $L_1 + \cdots + L_x$ .



# (x(q+1), x; 2, q)-minihypers





#### THEOREM (HILL, WARD)

Let *F* be an (x(q+1), x; 2, q)-minihyper,  $q = p^m$ , *p* prime,  $m \ge 1$ , with x < q, where  $p^f$  divides *x*. Then for each line *L* in  $PG(2, q), |L \cap F| \equiv x \pmod{p^{f+1}}$ .

#### THEOREM (HILL, WARD)

Every (x(q+1), x; 2, q)-minihyper F,  $q = p^m$ , p prime,  $m \ge 1$ , with  $x \le q - \frac{q}{p}$ , is a sum of x lines.



# THEOREM (HILL, WARD)

Every (x(q + 1), x; 2, q)-minihyper F, q even,  $m \ge 1$ , with  $x \le q/2$ , is a sum of x lines.

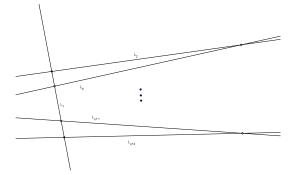


・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

- Take a dual hyperoval O in PG(2, q), q even: q + 2 lines L<sub>1</sub>,..., L<sub>q+2</sub>, no three through a common point.
- Point of PG(2, q) lies on zero or two lines of O.



# DUAL HYPEROVAL EXAMPLE





・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Leo Storme (x(q+1), x; 2, q)-minihypers

# DUAL HYPEROVAL EXAMPLE

- Take a dual hyperoval O in PG(2, q), q even: q + 2 lines, no three through a common point.
- Point of PG(2, q) lies on zero or two lines of O.
- Union of the lines of dual hyperoval is ((q/2+1)(q+1), q/2+1; 2, q)-minihyper.
- This particular example is not a sum of q/2 + 1 lines with integer coefficients.
- This particular example is a sum of q + 2 lines with coefficients 1/2:

$$\frac{1}{2}L_1+\cdots+\frac{1}{2}L_{q+2}.$$

< 回 > < 回 > < 回 >

# THEOREM (LANDJEV, STORME)

Let F be an (x(q + 1), x; 2, q)-minihyper. Then there exist lines  $L_1, \ldots, L_s$  and positive rational numbers  $c_1, \ldots, c_s$ , such that

$$F=c_1L_1+\cdots+c_sL_s,$$

with  $\sum_{i=1}^{s} c_i = x$ .



# THEOREM (LANDJEV, STORME, METSCH)

Every ((q/2 + 1)(q + 1), q/2 + 1; 2, q)-minihyper, q even, is either:

• sum of q/2 + 1 lines,

a sum

$$\frac{1}{2}L_1+\cdots+\frac{1}{2}L_{q+2},$$

where  $\{L_1, \ldots, L_{q+2}\}$  is dual hyperoval.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

- Let  $q = 2^m$  and consider two hyperovals  $H_1$  and  $H_2$  in PG(2, q) that meet in q + 2 x points.
- Let *F* be the symmetric difference of  $H_1$  and  $H_2$ .
- |F| = 2x and  $|F \cap L| = 0, 2$ , or 4 for every line *L*.
- Dualize and regard 4-lines as 2-points, 2-lines as 1-points, and 0-lines as 0-points, we get an (x(q + 1), x)-minihyper.

- Assume multiset *K* with |K| = sx such that  $|K \cap L| = is$ ,  $i \in \mathbb{N}$ , for every line *L*.
- Define multiset *F* in the dual plane in which lines of multiplicity *is* become points of multiplicity *i*, then *F* is an (x(q+1), x)-minihyper.



- Complement in AG(2, q), q even, of maximal arc,
- Complement of unital in PG(2, q), q square,
- Complement of small linear blocking set in PG(2, q),
- (*q* + *t*, *t*)-arc in PG(2, *q*), *q* even, of type (0, 2, *t*).

- Let *K* be (*q*+4,4)-arc of type (0,2,4) in PG(2,*q*), *q* even.
- Then Ball's construction gives  $((\frac{q}{2}+2)(q+1), \frac{q}{2}+2; 2, q)$ -minihyper.



#### THEOREM (LANDJEV, STORME)

Every  $((\frac{q}{2}+2)(q+1), \frac{q}{2}+2; 2, q)$ -minihyper K, q even,  $q \ge 8$ , is either:

(1) a sum  $L_1 + \cdots + L_{q/2+2}$  of q/2 + 2 lines  $L_1, \ldots, L_{q/2+2}$ , or (2) the sum of a line and a  $((\frac{q}{2} + 1)(q+1), \frac{q}{2} + 1; 2, q)$ -minihyper arising from a dual hyperoval in PG(2, q), q even, or (3) a  $((\frac{q}{2} + 2)(q+1), \frac{q}{2} + 2; 2, q)$ -minihyper constructed via a (q + 4, 4)-arc of type (0, 2, 4).



(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

#### DEFINITION

(x(q + 1), x; 2, q)-minihyper *F* is called *indecomposable* if it cannot be represented as sum  $F = F_1 + F_2$  of two other minihypers  $(f_i, m_i; 2, q)$ -minihypers  $F_i$ , i = 1, 2.



## THEOREM

Let F be an indecomposable (x(q+1), x; 2, q)-minihyper, then

• for every line L,  $|L \cap F| \le x + q - 1$ ,

# • there is at least one point with weight zero (else F - PG(2, q) is an ((x - q)(q + 1) - 1, x - q - 1; 2, q)-minihyper).

### THEOREM (LANDJEV, STORME)

Let F be an indecomposable (x(q+1), x; 2, q)-minihyper, then

• 
$$x \leq q^2 - q$$
,

• 
$$0 \leq w(P) \leq q-1$$
.

UNIVERSITEIT

イロン イヨン イヨン

Let F be an indecomposable (x(q + 1), x; 2, q)-minihyper.
Let P be a point of weight zero.

Define

$$w'(Q) = \begin{cases} q-1-w(Q) & \text{if } Q \neq P; \\ 0 & \text{if } Q = P. \end{cases}$$
(1)

• Then new (y(q + 1), y; 2, q)-minihyper F', with  $y = q^2 - q - x$ , is obtained.

# THEOREM (HILL, WARD)

Every (x(q+1), x; 2, q)-minihyper F,  $q = p^m$ , p prime,  $m \ge 1$ , with  $x \le q - \frac{q}{p}$ , is a sum of x lines.

# THEOREM (LANDJEV, STORME)

Every (x(q + 1), x; 2, q)-minihyper F',  $q = p^m$ , p prime,  $m \ge 1$ , with  $x \ge q^2 - 2q + \frac{q}{p}$ , is decomposable.



- Similar results for (x|PG(N-1,q)|, x|PG(N-2,q)|; N, q)-minihypers.
- Similar results by K. Metsch (Universität Giessen, Germany)



Thank you for your attention!

