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Introduction

Sizes of many algebraic geometry objects are dis-

tributed in accordance with the Sato-Tate density:

µST (β, γ) =
2

π

∫ γ
β

√
1− α2dα,

Two most famous examples:

Elliptic Curves and Kloosterman Sums

Elliptic Curves

By the Hasse theorem, for an elliptic curve E/IFq:

#E(IFq)− q − 1

2q1/2
∈ [−1,1]. (1)

Sato–Tate conjecture:

If E is defined over Q and q runs through primes

p ≤ x then the number of the ratios (1) (for re-

ductions of E modulo p) which belong to [β, γ] is

∼ µST (β, γ)π(x).
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R. Taylor (2007):

The Sato–Tate conjecture holds for all non-CM

elliptic curves with a non-integral j-invariant.

B. J. Birch (1968):

An analogue of the Sato–Tate conjecture in the

dual case when the finite field IFq is fixed and the

ratios (1) are taken over all elliptic curves IE over

IFq.

S. Baier and L. Zhao (2007); W. D. Banks and

I.S. (2008); I.S. (2009):

A series of works showing that similar type of be-

havior also holds in mixed situations (when both

the field and the curve vary) over various families

of curves.
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Kloosterman Sums

For a ∈ IF∗q and a fixed nonprincipal additive char-

acter ψ of IFq we define the Kloosterman sum

Kq(a) =
∑
x∈IF∗q

ψ
((
x+ ax−1

))
.

By the Weil theorem:

Kq(a)

2q1/2
∈ [−1,1].

An analogue of the Sato–Tate conjecture can and

has been formulated.

Unfortunately the result and method of R. Taylor

does not apply to Kloosterman sums.

However an analogue of the result of Birch was

obtained by N. M. Katz (1988) and put in a quan-

titative form by H. Niederreiter (1991).

There are also function field analogues by C.-L.

Chai and W.-C. W. Li (2004).
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Our Results

Set-up

We fix an ordinary elliptic curve E over IFq and

consider analogue of the ratios (1) taken in the

consecutive extensions of IFq:

#E(IFqn)− qn − 1

2qn/2
∈ [−1,1], n = 1,2, . . . . (2)

We show, that, surprisingly enough, distribution

of the ratios (2) is not governed by µST (β, γ) but

rather by a different distribution function

λ(β, γ) =
1

π

∫ γ
β

(√
1− α2

)−1
dα.

Supersingular elliptic curves:

#E(IFqn) = qn+1 and #E(IFqn) = (qn/2−1)2

for odd and even n, respectively.
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Precise Formulation

Put

αn =
#E(IFqn)− qn − 1

2qn/2

and define

Tβ,γ(N) = #

{
n = 1, . . . , N :

#E(IFqn)− qn − 1

2qn/2
∈ [β, γ]

}

Theorem 1 There is a constant η > 0 depending

only on q such that uniformly over −1 ≤ β ≤ γ ≤ 1

we have

Tβ,γ(N) = λ(β, γ)N +O(N1−η).
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Frobenius Angles

Our method is based on the explicit formula

#E(IFqn) = qn + 1− τn − τn (3)

where τ means the complex conjugate of τ .

The Frobenius eigenvalues τ, τ satisfy

|τ | = |τ | = q1/2 (4)

We write (4) as

τ = q1/2eπiϑ and τ = q1/2e−πiϑ, (5)

with some ϑ ∈ [0,1] which we call the Frobenius

angle.

Note: Sometimes πϑ is called the Frobenius angle.

Lemma 2 If E is ordinary, then Frobenius angle ϑ

is irrational.

Proof. if ϑ = r/s then τ2s = τ2s = qs. =⇒ None

of them can be a p-adic unit. This contradicts the

definition of ordinary curve. ut
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Reformulation

We see from (3) and (5) that

αn = cos(πϑn).

Consider the interval

I(β, γ) = [π−1 arccos γ, π−1 arccosβ]

Then Tβ,γ(N) counts the number of fractional parts

{ϑn} ∈ I(β, γ)

Tβ,γ(N) = #{n = 1, . . . , N : {ϑn} ∈ I(β, γ)}.

⇓

We use tools from the theory of uniformly dis-

tributed sequences to estimate Tβ,γ(N).
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Background on the Uniform Distribution

For an N-element finite set A ⊆ [0,1], we define

its discrepancy as

∆(A) = sup
γ∈[0,1]

∣∣∣∣∣#{α ∈ A : α < γ}
N

− γ
∣∣∣∣∣ ,

Let ‖z‖ be the distance between a real z and the

closest integer.

Lemma 3 Suppose that ϑ is irrational and for

some function ϕ(t) such that ϕ(t)/t is monotoni-

cally increasing for real t ≥ 1 we have

‖kϑ‖ ≥
1

ϕ (|k|)
, k ∈ ZZ, k 6= 0.

Then the discrepancy D(N) of the sequence

{ϑn}, n = 1, . . . , N,

satisfies

D(N)�
logN logϕ−1(N)

ϕ−1(N)
,

where ϕ−1(t) is the inverse function of ϕ(t).
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Linear Forms in Logarithms

We present a classical result of A. Baker (1966)

in a more convenient multiplicative form

Lemma 4 For arbitrary algebraic numbers ξ1, . . . , ξs

there are constants C1 > 0 and C2 > 1 such that

the inequality

O < |ξk1
1 . . . ξkss − 1|
≤ C1 (max{|k1|, . . . , |ks|}+ 1)−C2

has no solution in (k1, . . . , ks) ∈ ZZs \ (0, . . . ,0).
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Diophantine Properties of Frobenius Angles

We are now ready to establish a necessary result

which is needed for an application of Lemma 3.

Lemma 5 There are constants c1 > 0 and c2 > 1

depending only on q such that

‖kϑ‖ ≥ c1|k|−c2

for any non-zero integer k.
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Proof. Assume that for some integer m we have

kϑ−m = δ

where δ is sufficiently small.

Lemma 2 =⇒ δ > 0

Recalling (5), we derive

τ2k = qke2πiδ

Applying Lemma 4, we obtain the desired result

with c1 and c2 depending on ϑ.

For each q, there are only finitely many choices for

ϑ =⇒ c1, c2 can be taken to depend only on q. ut
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Concluding the Proof

We see from Lemma 5 that Lemma 3 applies

to the discrepancy ∆(N) of the points {ϑn}, n =

1,2, . . . , N with ϕ(t) = c1(t+ 1)c2, thus

∆(N) = O
(
N−κ

)
where κ depends only on q.

Recalling that

Tβ,γ(N) = N |I(β, γ)|+O (∆(N)) ,

and that

|I(β, γ)| = λ(β, γ)

we conclude the proof.
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Comments

Kloosterman Sums

Similar results.

No new ideas required.

Curves of Higher Genus

For an ordinary curve C/IFq, the problem splits:

• Studing the cardinalities of C(IFqn);

• Studing the cardinalities of the Jacobians J(C(IFqn));

Same techniques apply but become more involved.

The bottle neck is proving the multiplicative in-

dependence of Frobenius roots.

E. Kowalski (2008): statistical results for certain

families of curves.

Genus two curves which are ordinary and have ab-

solutely simple Jacobians have been settled.


