On the Distribution of the Number of Points
 on Elliptic Curves in a Tower of Extentions of Finite Fields

Omran Ahmadi and Igor Shparlinski
Claude Shannon Institute and Macquarie University

Introduction

Sizes of many algebraic geometry objects are distributed in accordance with the Sato-Tate density:

$$
\mu_{S T}(\beta, \gamma)=\frac{2}{\pi} \int_{\beta}^{\gamma} \sqrt{1-\alpha^{2}} d \alpha
$$

Two most famous examples:
Elliptic Curves and Kloosterman Sums

Elliptic Curves

By the Hasse theorem, for an elliptic curve E / \mathbb{F}_{q} :

$$
\begin{equation*}
\frac{\# E\left(\mathbb{F}_{q}\right)-q-1}{2 q^{1 / 2}} \in[-1,1] . \tag{1}
\end{equation*}
$$

Sato-Tate conjecture:
If E is defined over Q and q runs through primes $p \leq x$ then the number of the ratios (1) (for reductions of E modulo p) which belong to $[\beta, \gamma]$ is $\sim \mu_{S T}(\beta, \gamma) \pi(x)$.

2
R. Taylor (2007):

The Sato-Tate conjecture holds for all non-CM elliptic curves with a non-integral j-invariant.
B. J. Birch (1968):

An analogue of the Sato-Tate conjecture in the dual case when the finite field \mathbb{F}_{q} is fixed and the ratios (1) are taken over all elliptic curves \mathbb{E} over \mathbb{F}_{q}.
S. Baier and L. Zhao (2007); W. D. Banks and I.S. (2008); I.S. (2009):

A series of works showing that similar type of behavior also holds in mixed situations (when both the field and the curve vary) over various families of curves.

3

Kloosterman Sums

For $a \in \mathbb{F}_{q}^{*}$ and a fixed nonprincipal additive character ψ of \mathbb{F}_{q} we define the Kloosterman sum

$$
K_{q}(a)=\sum_{x \in \mathbb{I}_{q}^{*}} \psi\left(\left(x+a x^{-1}\right)\right)
$$

By the Weil theorem:

$$
\frac{K_{q}(a)}{2 q^{1 / 2}} \in[-1,1] .
$$

An analogue of the Sato-Tate conjecture can and has been formulated.

Unfortunately the result and method of R. Taylor does not apply to Kloosterman sums.

However an analogue of the result of Birch was obtained by N. M. Katz (1988) and put in a quantitative form by H. Niederreiter (1991).

There are also function field analogues by C.-L. Chai and W.-C. W. Li (2004).

4

Our Results

Set-up

We fix an ordinary elliptic curve E over \mathbb{F}_{q} and consider analogue of the ratios (1) taken in the consecutive extensions of \mathbb{F}_{q} :

$$
\begin{equation*}
\frac{\# E\left(\mathbb{F}_{q^{n}}\right)-q^{n}-1}{2 q^{n / 2}} \in[-1,1], \quad n=1,2, \ldots . \tag{2}
\end{equation*}
$$

We show, that, surprisingly enough, distribution of the ratios (2) is not governed by $\mu_{S T}(\beta, \gamma)$ but rather by a different distribution function

$$
\lambda(\beta, \gamma)=\frac{1}{\pi} \int_{\beta}^{\gamma}\left(\sqrt{1-\alpha^{2}}\right)^{-1} d \alpha
$$

Supersingular elliptic curves:
$\# E\left(\mathbb{F}_{q^{n}}\right)=q^{n}+1 \quad$ and $\quad \# E\left(\mathbb{F}_{q^{n}}\right)=\left(q^{n / 2}-1\right)^{2}$ for odd and even n, respectively.

5

Precise Formulation

Put

$$
\alpha_{n}=\frac{\# E\left(\mathbb{F}_{q^{n}}\right)-q^{n}-1}{2 q^{n / 2}}
$$

and define
$T_{\beta, \gamma}(N)=\#\left\{n=1, \ldots, N: \frac{\# E\left(\mathbb{F}_{q^{n}}\right)-q^{n}-1}{2 q^{n / 2}} \in[\beta, \gamma]\right\}$
Theorem 1 There is a constant $\eta>0$ depending only on q such that uniformly over $-1 \leq \beta \leq \gamma \leq 1$ we have

$$
T_{\beta, \gamma}(N)=\lambda(\beta, \gamma) N+O\left(N^{1-\eta}\right)
$$

6
Frobenius Angles

Our method is based on the explicit formula

$$
\begin{equation*}
\# E\left(\mathbb{F}_{q^{n}}\right)=q^{n}+1-\tau^{n}-\bar{\tau}^{n} \tag{3}
\end{equation*}
$$

where $\bar{\tau}$ means the complex conjugate of τ.

The Frobenius eigenvalues $\tau, \bar{\tau}$ satisfy

$$
\begin{equation*}
|\tau|=|\bar{\tau}|=q^{1 / 2} \tag{4}
\end{equation*}
$$

We write (4) as

$$
\begin{equation*}
\tau=q^{1 / 2} e^{\pi i \vartheta} \quad \text { and } \quad \bar{\tau}=q^{1 / 2} e^{-\pi i \vartheta} \tag{5}
\end{equation*}
$$

with some $\vartheta \in[0,1]$ which we call the Frobenius angle.

Note: Sometimes $\pi \vartheta$ is called the Frobenius angle.

Lemma 2 If E is ordinary, then Frobenius angle ϑ is irrational.

Proof. if $\vartheta=r / s$ then $\tau^{2 s}=\bar{\tau}^{2 s}=q^{s} . \quad \Longrightarrow$ None of them can be a p-adic unit. This contradicts the definition of ordinary curve.

7

Reformulation

We see from (3) and (5) that

$$
\alpha_{n}=\cos (\pi \vartheta n)
$$

Consider the interval

$$
\mathcal{I}(\beta, \gamma)=\left[\pi^{-1} \arccos \gamma, \pi^{-1} \arccos \beta\right]
$$

Then $T_{\beta, \gamma}(N)$ counts the number of fractional parts $\{\vartheta n\} \in \mathcal{I}(\beta, \gamma)$

$$
T_{\beta, \gamma}(N)=\#\{n=1, \ldots, N:\{\vartheta n\} \in \mathcal{I}(\beta, \gamma)\}
$$

We use tools from the theory of uniformly distributed sequences to estimate $T_{\beta, \gamma}(N)$.

8

Background on the Uniform Distribution

For an N-element finite set $\mathcal{A} \subseteq[0,1]$, we define its discrepancy as

$$
\Delta(\mathcal{A})=\sup _{\gamma \in[0,1]}\left|\frac{\#\{\alpha \in \mathcal{A}: \alpha<\gamma\}}{N}-\gamma\right|,
$$

Let $\|z\|$ be the distance between a real z and the closest integer.

Lemma 3 Suppose that ϑ is irrational and for some function $\varphi(t)$ such that $\varphi(t) / t$ is monotonically increasing for real $t \geq 1$ we have

$$
\|k \vartheta\| \geq \frac{1}{\varphi(|k|)}, \quad k \in \mathbf{Z}, \quad k \neq 0
$$

Then the discrepancy $D(N)$ of the sequence

$$
\{\vartheta n\}, \quad n=1, \ldots, N,
$$

satisfies

$$
D(N) \ll \frac{\log N \log \varphi^{-1}(N)}{\varphi^{-1}(N)},
$$

where $\varphi^{-1}(t)$ is the inverse function of $\varphi(t)$.

9
Linear Forms in Logarithms

We present a classical result of A. Baker (1966) in a more convenient multiplicative form

Lemma 4 For arbitrary algebraic numbers ξ_{1}, \ldots, ξ_{s} there are constants $C_{1}>0$ and $C_{2}>1$ such that the inequality

$$
\begin{aligned}
O<\mid \xi_{1}^{k_{1}} & \ldots \xi_{s}^{k_{s}}-1 \mid \\
& \leq C_{1}\left(\max \left\{\left|k_{1}\right|, \ldots,\left|k_{s}\right|\right\}+1\right)^{-C_{2}}
\end{aligned}
$$

has no solution in $\left(k_{1}, \ldots, k_{s}\right) \in \mathbf{Z}^{s} \backslash(0, \ldots, 0)$.

10
Diophantine Properties of Frobenius Angles

We are now ready to establish a necessary result which is needed for an application of Lemma 3.

Lemma 5 There are constants $c_{1}>0$ and $c_{2}>1$ depending only on q such that

$$
\|k \vartheta\| \geq c_{1}|k|^{-c_{2}}
$$

for any non-zero integer k.

11
Proof. Assume that for some integer m we have

$$
k \vartheta-m=\delta
$$

where δ is sufficiently small.

Lemma $2 \Longrightarrow \delta>0$

Recalling (5), we derive

$$
\tau^{2 k}=q^{k} e^{2 \pi i \delta}
$$

Applying Lemma 4, we obtain the desired result with c_{1} and c_{2} depending on ϑ.

For each q, there are only finitely many choices for $\vartheta \Longrightarrow c_{1}, c_{2}$ can be taken to depend only on $q . \quad \square$

12

Concluding the Proof

We see from Lemma 5 that Lemma 3 applies to the discrepancy $\Delta(N)$ of the points $\{\vartheta n\}, n=$ $1,2, \ldots, N$ with $\varphi(t)=c_{1}(t+1)^{c_{2}}$, thus

$$
\Delta(N)=O\left(N^{-\kappa}\right)
$$

where κ depends only on q.

Recalling that

$$
T_{\beta, \gamma}(N)=N|\mathcal{I}(\beta, \gamma)|+O(\Delta(N)),
$$

and that

$$
|\mathcal{I}(\beta, \gamma)|=\lambda(\beta, \gamma)
$$

we conclude the proof.

13
 Comments

Kloosterman Sums
Similar results.
No new ideas required.

Curves of Higher Genus
For an ordinary curve $\mathcal{C} / \mathbb{F}_{q}$, the problem splits:

- Studing the cardinalities of $\mathcal{C}\left(\mathbb{F}_{q_{n}}\right)$;
- Studing the cardinalities of the Jacobians $J\left(\mathcal{C}\left(\mathbb{F}_{q_{n}}\right)\right)$;

Same techniques apply but become more involved.

The bottle neck is proving the multiplicative independence of Frobenius roots.
E. Kowalski (2008): statistical results for certain families of curves.

Genus two curves which are ordinary and have absolutely simple Jacobians have been settled.

