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Motivation

» Second order nonlinearity is an important cryptographic
property.

» However, the best known algorithm to measure the second
order nonlinearity of an n-variable Boolean function works
forn < 13.

» Therefore, given a Boolean function, it is important to find a
lower bound of its second order nonlinearity.

» As we know that bent functions have the maximum first
order nonlinearity, it is interesting to check their second
order nonlinearity.
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Our Contribution

» We study a new class of cubic Maiorana-McFarland bent
functions which is based on a permutation constructed by
Dobbertin (IEEE-IT 1999).

» First we show that this function can not have an affine
derivative.

» Then we determine a lower bound of the second order
nonlinearity of this function using Carlet’s result (IEEE-IT
2008).
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Boolean Function

» Boolean function f is a mapping :
f:{0,1}" — {0,1}.

» This is an n-variable Boolean function.

» A Boolean function f can also be defined over the finite
field Fon :
f: an — FQ.

» Representing all o € Fon by the co-ordinates with respect
to some basis of Fon, the second representation gives the
first one.



Reed-Muller Code

» The Reed-Muller code, R(r, n), of size 2" and order r is the
set of all n-variable Boolean functions of degree at most r.



r-th order nonlinearity

» Let f be an n-variable Boolean function.

» The r-th order nonlinearity (nl-(f)) of f is the distance from
f to the Reed-Muller code R(r, n).

» For r = 1, we simply denote it as nonlinearity.

» In this work, we are interested in r = 2, that is the second
order nonlinearity.

» The r-th order nonlinearity is an important cryptographic
property for block and stream ciphers.

» For example, there have been some notion of attack by
using nonlinear approximations (r-degree Boolean
function, r > 1) to f. To resist this attack the function needs
to have high r-th order nonlinearity.



Maiorana McFarland Bent functions

» For even n, the maximum nonlinearity of an n-variable
. . n
Boolean function is 271" — 221,

» For even n, the Boolean functions which possess this
maximum nonlinearity are called bent functions.

» Maiorana McFarland is an important class of bent
functions.

» Letn=2t.
» The function f : Fy: x For — Fo given by

f(x,y) = Tr(xm(y))

is a Maiorana-McFarland bent function where 7 : For — Fot
is a permutation and

TH(x)=x+x2+x¥ + . +x".



Derivatives

> Letf:Ian — Fo.

» The derivative of f with respect to a € F.n, is denoted by
D,f and is the Boolean function defined by

Daf(x) = f(x) + f(x + a)

for all x € Fon.



Walsh Spectrum

» The Walsh transform of a Boolean function f : Fon — [F» at
A € Fon is defined as follows:

Wi(n) = 37 (1)),

XEFZn

» Walsh spectrum is the set { W¢(\) : A € Fon}.



Walsh Spectrum of quadratic Boolean functions

» The bilinear form associated to f is defined by
B(x,y) = f(0) + f(x) + f(y) + f(x + y).
» The kernel of B(x, y) is the subspace defined by
E={x €Fan:B(x,y)=0forall y € Fon}.
» For a quadratic Boolean function f, the kernel &, is given

by
& = {a € Fan|D,af = constant}.



Walsh Spectrum of quadratic Boolean functions
(Continued)

» Lemma 1:(Macwilliams and Sloane; Canteaut, Charpin,
Kyureghyan FFA 2008)
If f: Fon — F» is a quadratic Boolean function and B(x, y)
is the quadratic form associated to it, then the Walsh
Spectrum of f depends only on the dimension, k, of the
kernel, &, of B(x, y). The weight distribution of the Walsh
spectrum of fis:

We (M) number of A

0 on _ 2n—k
o(n+k)/2 on—k—1 + (_1 )f(0)2(nfk72)/2
_o(n+k)/2  on—k—-1 _ (_1 )f(0)2(n—k—2)/2
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Known results on Higher order Nonlinearity

» Proposition 1: (Carlet IEEE-IT 2008)
Let f be any n-variable Boolean function and r be a
positive integer smaller than n, then

nly(f) > 2"1 — ;\/2%—2 > " nlr_1(Daf).

aeIan

» If exact values of nl,_1(Dxf) for all a are not known, but
some lower bound is known, then we have the following
corollary.

» Corollary 1: (Carlet IEEE-IT 2008)

Let f be any n-variable function and r be a positive integer
smaller than n. Assume that for some nonnegative
integers M and m, we have nl,_1(D,f) > 2"~1 — M2™ for
every nonzero a € Fon. Then
nl(fy > 2n=1" - 1\/(2n —1)M2m+1 4 2n
~ 21 _ \/MZ%
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The Cubic Maiorana McFarland Function ¢,

» Let n=2t, wheret=2m+1and m> 2.

» We define the cubic Maiorana-McFarland function
¢n: For x For — Fp @8 on(x.y) = TH(x(y?" 1 + y2 +y)),
where y — y2"" 1 4 y3 4 y is a permutation over Fy
(Dobbertin IEEE-IT 1999).



Derivatives of ¢,

Theorem 1: The function ¢, does not possess any derivative in
R(1,n).



Lower bound of second order nonlinearity of ¢,

Theorem 2: The lower bound of the second order nonlinearity
of ¢, is given as

2 5\/(2” 1)2° 1% 4 20
7n+4
21 278

nla(én)

& 1V



Outline of the proof of Theorem 2

» Leta, b € Fo.
» Let k(a, b) denote the dimension of the subspace

Epy = {(C,d) € For x Fot| D¢ g D(ap)(¢n) = constant}.

t+i,0<i<4whenb=0

» k(a,b) =
(a.b) {r+j,o§j§2,0§r§2whenb7é0



Outline of the proof of Theorem 2 (Continued)

> D(ap)(¢n) is always quadratic (by Theorem 1) for
(a,b) #(0,0).

» By Lemma 1,

n+k(a,b)

NI(Dap(én)) = 27" — 2"

» since i < 4,

n+t+4

n/(Da,b(¢n)) > 2n—1 -2z



Outline of the proof of Theorem 2 (Continued)

» Comparing with Corollary 1, we get M = 1 and
m= 42

» This gives

Mh(on) > 271 —y/(2n—1)2%" 2 4 2n




Better lower bound than the general bound

» The general lower bound of the second order nonlinearity
(Carlet IEEE-IT 2008) of an n-variable cubic Boolean
function which does not have any derivative in R(1, n) is

2[)71 o 2/’173'

p on—1 _ %t S on1 _ 2”*%, forall n > 16.



Conclusions and further research

» We have identified a class of Maiorana McFarland bent
functions which do not have any affine derivative.

» We have studied the second order nonlinearity of these
functions.

» Next step is to find a better lower bound of second order
nonlinearity of this class of functions for which we need a
new strategy.
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