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Motivation

I Second order nonlinearity is an important cryptographic
property.

I However, the best known algorithm to measure the second
order nonlinearity of an n-variable Boolean function works
for n ≤ 13.

I Therefore, given a Boolean function, it is important to find a
lower bound of its second order nonlinearity.

I As we know that bent functions have the maximum first
order nonlinearity, it is interesting to check their second
order nonlinearity.
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Our Contribution

I We study a new class of cubic Maiorana-McFarland bent
functions which is based on a permutation constructed by
Dobbertin (IEEE-IT 1999).

I First we show that this function can not have an affine
derivative.

I Then we determine a lower bound of the second order
nonlinearity of this function using Carlet’s result (IEEE-IT
2008).
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Boolean Function

I Boolean function f is a mapping :

f : {0,1}n → {0,1}.

I This is an n-variable Boolean function.
I A Boolean function f can also be defined over the finite

field F2n :
f : F2n → F2.

I Representing all α ∈ F2n by the co-ordinates with respect
to some basis of F2n , the second representation gives the
first one.



Reed-Muller Code

I The Reed-Muller code, R(r ,n), of size 2n and order r is the
set of all n-variable Boolean functions of degree at most r .



r -th order nonlinearity

I Let f be an n-variable Boolean function.
I The r -th order nonlinearity (nlr (f )) of f is the distance from

f to the Reed-Muller code R(r ,n).
I For r = 1, we simply denote it as nonlinearity.
I In this work, we are interested in r = 2, that is the second

order nonlinearity.
I The r -th order nonlinearity is an important cryptographic

property for block and stream ciphers.
I For example, there have been some notion of attack by

using nonlinear approximations (r -degree Boolean
function, r > 1) to f . To resist this attack the function needs
to have high r -th order nonlinearity.



Maiorana McFarland Bent functions

I For even n, the maximum nonlinearity of an n-variable
Boolean function is 2n−1 − 2

n
2−1.

I For even n, the Boolean functions which possess this
maximum nonlinearity are called bent functions.

I Maiorana McFarland is an important class of bent
functions.

I Let n = 2t .
I The function f : F2t × F2t → F2 given by

f (x , y) = Tr t
1(xπ(y))

is a Maiorana-McFarland bent function where π : F2t → F2t

is a permutation and

Tr t
1(x) = x + x2 + x22

+ . . .+ x2n−1
.



Derivatives

I Let f : F2n → F2.
I The derivative of f with respect to a ∈ F2n , is denoted by

Daf and is the Boolean function defined by

Daf (x) = f (x) + f (x + a)

for all x ∈ F2n .



Walsh Spectrum

I The Walsh transform of a Boolean function f : F2n 7→ F2 at
λ ∈ F2n is defined as follows:

Wf (λ) =
∑

x∈F2n

(−1)f (x)+Tr(λx).

I Walsh spectrum is the set {Wf (λ) : λ ∈ F2n}.



Walsh Spectrum of quadratic Boolean functions

I The bilinear form associated to f is defined by

B(x , y) = f (0) + f (x) + f (y) + f (x + y).

I The kernel of B(x , y) is the subspace defined by

Ef = {x ∈ F2n : B(x , y) = 0 for all y ∈ F2n}.

I For a quadratic Boolean function f , the kernel Ef , is given
by

Ef = {a ∈ F2n |Daf = constant}.



Walsh Spectrum of quadratic Boolean functions
(Continued)

I Lemma 1:(Macwilliams and Sloane; Canteaut, Charpin,
Kyureghyan FFA 2008)
If f : F2n → F2 is a quadratic Boolean function and B(x , y)
is the quadratic form associated to it, then the Walsh
Spectrum of f depends only on the dimension, k , of the
kernel, Ef , of B(x , y). The weight distribution of the Walsh
spectrum of f is:

Wf (λ) number of λ

0 2n − 2n−k

2(n+k)/2 2n−k−1 + (−1)f (0)2(n−k−2)/2

−2(n+k)/2 2n−k−1 − (−1)f (0)2(n−k−2)/2
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Known results on Higher order Nonlinearity
I Proposition 1: (Carlet IEEE-IT 2008)

Let f be any n-variable Boolean function and r be a
positive integer smaller than n, then

nlr (f ) ≥ 2n−1 − 1
2

√
22n − 2

∑
a∈F2n

nlr−1(Daf ).

I If exact values of nlr−1(Daf ) for all a are not known, but
some lower bound is known, then we have the following
corollary.

I Corollary 1: (Carlet IEEE-IT 2008)
Let f be any n-variable function and r be a positive integer
smaller than n. Assume that for some nonnegative
integers M and m, we have nlr−1(Daf ) ≥ 2n−1 −M2m for
every nonzero a ∈ F2n . Then

nlr (f ) ≥ 2n−1 − 1
2

√
(2n − 1)M2m+1 + 2n

≈ 2n−1 −
√

M2
n+m−1

2 .
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The Cubic Maiorana McFarland Function φn

I Let n = 2t , where t = 2m + 1 and m ≥ 2.
I We define the cubic Maiorana-McFarland function
φn : F2t × F2t → F2 as φn(x , y) = Tr t

1(x(y2m+1+1 + y3 + y)),

where y 7→ y2m+1+1 + y3 + y is a permutation over F2t

(Dobbertin IEEE-IT 1999).



Derivatives of φn

Theorem 1: The function φn does not possess any derivative in
R(1,n).



Lower bound of second order nonlinearity of φn

Theorem 2: The lower bound of the second order nonlinearity
of φn is given as

nl2(φn) ≥ 2n−1 − 1
2

√
(2n − 1)2

n+t
2 +3 + 2n

≈ 2n−1 − 2
7n+4

8 .



Outline of the proof of Theorem 2

I Let a,b ∈ F2t .
I Let k(a,b) denote the dimension of the subspace

Eφn = {(c,d) ∈ F2t × F2t |D(c,d)D(a,b)(φn) = constant}.

I k(a,b) =

{
t + i , 0 ≤ i ≤ 4 when b = 0
r + j , 0 ≤ j ≤ 2,0 ≤ r ≤ 2 when b 6= 0



Outline of the proof of Theorem 2 (Continued)

I D(a,b)(φn) is always quadratic (by Theorem 1) for
(a,b) 6= (0,0).

I By Lemma 1,

nl(Da,b(φn)) = 2n−1 − 2
n+k(a,b)

2 .

I since i ≤ 4,

nl(Da,b(φn)) ≥ 2n−1 − 2
n+t+4

2 .



Outline of the proof of Theorem 2 (Continued)

I Comparing with Corollary 1, we get M = 1 and
m = n+t

2 + 2.
I This gives

nl2(φn) ≥ 2n−1 − 1
2

√
(2n − 1)2

n+t
2 +3 + 2n

≈ 2n−1 − 2
7n+4

8 .



Better lower bound than the general bound

I The general lower bound of the second order nonlinearity
(Carlet IEEE-IT 2008) of an n-variable cubic Boolean
function which does not have any derivative in R(1,n) is

2n−1 − 2n− 3
2 .

I 2n−1 − 2
7n+4

8 > 2n−1 − 2n− 3
2 , for all n > 16.



Conclusions and further research

I We have identified a class of Maiorana McFarland bent
functions which do not have any affine derivative.

I We have studied the second order nonlinearity of these
functions.

I Next step is to find a better lower bound of second order
nonlinearity of this class of functions for which we need a
new strategy.
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