On the Second Order Nonlinearity of a Cubic Maiorana-McFarland Bent Function

Sumanta Sarkar ${ }^{1}$ Sugata Gangopadhyay ${ }^{2}$

${ }^{1}$ INRIA Paris-Rocquencourt, FRANCE
${ }^{2}$ Indian Institute of Technology, Roorkee, INDIA

Finite Fields and their Applications 2009
July 13 - July 17, 2009

Outline

Introduction
Motivation
Our Contribution

Background
Related Definitions
Known Results on Higher order Nonlinearity

Main Work
The Cubic Maiorana McFarland Function ϕ_{n}

Conclusions and further research

Outline

Introduction

Motivation

Our Contribution

Background
Related Definitions
Known Results on Higher order Nonlinearity

Main Work
The Cubic Maiorana McFarland Function ϕ_{n}

Conclusions and further research

Motivation

- Second order nonlinearity is an important cryptographic property.
- However, the best known algorithm to measure the second order nonlinearity of an n-variable Boolean function works for $n \leq 13$.
- Therefore, given a Boolean function, it is important to find a lower bound of its second order nonlinearity.
- As we know that bent functions have the maximum first order nonlinearity, it is interesting to check their second order nonlinearity.

Outline

Introduction

Motivation

Our Contribution

Background
 Related Definitions
 Known Results on Higher order Nonlinearity

Main Work
The Cubic Maiorana McFarland Function ϕ_{n}

Conclusions and further research

Our Contribution

- We study a new class of cubic Maiorana-McFarland bent functions which is based on a permutation constructed by Dobbertin (IEEE-IT 1999).
- First we show that this function can not have an affine derivative.
- Then we determine a lower bound of the second order nonlinearity of this function using Carlet's result (IEEE-IT 2008).

Outline

Introduction
 Motivation
 Our Contribution

Background
Related Definitions
Known Results on Higher order Nonlinearity

Main Work
The Cubic Maiorana McFarland Function ϕ_{n}

Conclusions and further research

Boolean Function

- Boolean function f is a mapping :

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

- This is an n-variable Boolean function.
- A Boolean function f can also be defined over the finite field $\mathbb{F}_{2^{n}}$:

$$
f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}
$$

- Representing all $\alpha \in \mathbb{F}_{2^{n}}$ by the co-ordinates with respect to some basis of $\mathbb{F}_{2^{n}}$, the second representation gives the first one.

Reed-Muller Code

- The Reed-Muller code, $\mathcal{R}(r, n)$, of size 2^{n} and order r is the set of all n-variable Boolean functions of degree at most r.

r-th order nonlinearity

- Let f be an n-variable Boolean function.
- The r-th order nonlinearity $\left(n I_{r}(f)\right)$ of f is the distance from f to the Reed-Muller code $\mathcal{R}(r, n)$.
- For $r=1$, we simply denote it as nonlinearity.
- In this work, we are interested in $r=2$, that is the second order nonlinearity.
- The r-th order nonlinearity is an important cryptographic property for block and stream ciphers.
- For example, there have been some notion of attack by using nonlinear approximations (r-degree Boolean function, $r>1$) to f. To resist this attack the function needs to have high r-th order nonlinearity.

Maiorana McFarland Bent functions

- For even n, the maximum nonlinearity of an n-variable Boolean function is $2^{n-1}-2^{\frac{n}{2}-1}$.
- For even n, the Boolean functions which possess this maximum nonlinearity are called bent functions.
- Maiorana McFarland is an important class of bent functions.
- Let $n=2 t$.
- The function $f: \mathbb{F}_{2^{t}} \times \mathbb{F}_{2^{t}} \rightarrow \mathbb{F}_{2}$ given by

$$
f(x, y)=\operatorname{Tr}_{1}^{t}(x \pi(y))
$$

is a Maiorana-McFarland bent function where $\pi: \mathbb{F}_{2^{t}} \rightarrow \mathbb{F}_{2^{t}}$ is a permutation and

$$
\operatorname{Tr}_{1}^{t}(x)=x+x^{2}+x^{2^{2}}+\ldots+x^{2^{n-1}}
$$

Derivatives

- Let $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$.
- The derivative of f with respect to $a \in \mathbb{F}_{2^{n}}$, is denoted by $D_{a} f$ and is the Boolean function defined by

$$
D_{a} f(x)=f(x)+f(x+a)
$$

for all $x \in \mathbb{F}_{2^{n}}$.

Walsh Spectrum

- The Walsh transform of a Boolean function $f: \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2}$ at $\lambda \in \mathbb{F}_{2^{n}}$ is defined as follows:

$$
W_{f}(\lambda)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{f(x)+\operatorname{Tr}(\lambda x)}
$$

- Walsh spectrum is the set $\left\{W_{f}(\lambda): \lambda \in \mathbb{F}_{2^{n}}\right\}$.

Walsh Spectrum of quadratic Boolean functions

- The bilinear form associated to f is defined by

$$
B(x, y)=f(0)+f(x)+f(y)+f(x+y)
$$

- The kernel of $B(x, y)$ is the subspace defined by

$$
\mathcal{E}_{f}=\left\{x \in \mathbb{F}_{2^{n}}: B(x, y)=0 \text { for all } y \in \mathbb{F}_{2^{n}}\right\}
$$

- For a quadratic Boolean function f, the kernel \mathcal{E}_{f}, is given by

$$
\mathcal{E}_{f}=\left\{a \in \mathbb{F}_{2^{n}} \mid D_{a} f=\text { constant }\right\} .
$$

Walsh Spectrum of quadratic Boolean functions (Continued)

- Lemma 1:(Macwilliams and Sloane; Canteaut, Charpin, Kyureghyan FFA 2008)
If $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is a quadratic Boolean function and $B(x, y)$ is the quadratic form associated to it, then the Walsh Spectrum of f depends only on the dimension, k, of the kernel, \mathcal{E}_{f}, of $B(x, y)$. The weight distribution of the Walsh spectrum of f is:

$W_{f}(\lambda)$	number of λ
0	$2^{n-2^{n-k}}$
$2^{(n+k) / 2}$	$2^{n-k-1}+(-1)^{f(0)} 2^{(n-k-2) / 2}$
$-2^{(n+k) / 2}$	$2^{n-k-1}-(-1)^{f(0)} 2^{(n-k-2) / 2}$

Outline

Introduction
 Motivation
 Our Contribution

Background
Related Definitions
Known Results on Higher order Nonlinearity

Main Work
 The Cubic Maiorana McFarland Function ϕ_{n}

Conclusions and further research

Known results on Higher order Nonlinearity

- Proposition 1: (Carlet IEEE-IT 2008)

Let f be any n-variable Boolean function and r be a positive integer smaller than n, then

$$
n l_{r}(f) \geq 2^{n-1}-\frac{1}{2} \sqrt{2^{2 n}-2 \sum_{a \in \mathbb{F}_{2^{n}}} n l_{r-1}\left(D_{a} f\right)}
$$

- If exact values of $n l_{r-1}\left(D_{a} f\right)$ for all a are not known, but some lower bound is known, then we have the following corollary.
- Corollary 1: (Carlet IEEE-IT 2008)

Let f be any n-variable function and r be a positive integer smaller than n. Assume that for some nonnegative integers M and m, we have $n I_{r-1}\left(D_{a} f\right) \geq 2^{n-1}-M 2^{m}$ for every nonzero $a \in \mathbb{F}_{2^{n}}$. Then

$$
\begin{aligned}
n l_{r}(f) & \geq 2^{n-1}-\frac{1}{2} \sqrt{\left(2^{n}-1\right) M 2^{m+1}+2^{n}} \\
& \approx 2^{n-1}-\sqrt{M} 2^{\frac{n+m-1}{2}}
\end{aligned}
$$

Outline

Introduction

Motivation
Our Contribution

Background
Related Definitions
Known Results on Higher order Nonlinearity

Main Work
The Cubic Maiorana McFarland Function ϕ_{n}

Conclusions and further research

The Cubic Maiorana McFarland Function ϕ_{n}

- Let $n=2 t$, where $t=2 m+1$ and $m \geq 2$.
- We define the cubic Maiorana-McFarland function $\phi_{n}: \mathbb{F}_{2^{t}} \times \mathbb{F}_{2^{t}} \rightarrow \mathbb{F}_{2}$ as $\phi_{n}(x, y)=\operatorname{Tr}_{1}^{t}\left(x\left(y^{2^{m+1}+1}+y^{3}+y\right)\right)$, where $y \mapsto y^{2^{m+1}+1}+y^{3}+y$ is a permutation over $\mathbb{F}_{2^{t}}$ (Dobbertin IEEE-IT 1999).

Derivatives of ϕ_{n}

Theorem 1: The function ϕ_{n} does not possess any derivative in $\mathcal{R}(1, n)$.

Lower bound of second order nonlinearity of ϕ_{n}

Theorem 2: The lower bound of the second order nonlinearity of ϕ_{n} is given as

$$
\begin{aligned}
n l_{2}\left(\phi_{n}\right) & \geq 2^{n-1}-\frac{1}{2} \sqrt{\left(2^{n}-1\right) 2^{\frac{n+t}{2}+3}+2^{n}} \\
& \approx 2^{n-1}-2^{\frac{7 n+4}{8}}
\end{aligned}
$$

Outline of the proof of Theorem 2

- Let $a, b \in \mathbb{F}_{2^{t}}$.
- Let $k(a, b)$ denote the dimension of the subspace

$$
\begin{gathered}
\mathcal{E}_{\phi_{n}}=\left\{(c, d) \in \mathbb{F}_{2^{t}} \times \mathbb{F}_{2^{t} \mid} \mid D_{(c, d)} D_{(a, b)}\left(\phi_{n}\right)=\text { constant }\right\} . \\
\\
k(a, b)=\left\{\begin{array}{l}
t+i, 0 \leq i \leq 4 \text { when } b=0 \\
r+j, 0 \leq j \leq 2,0 \leq r \leq 2 \text { when } b \neq 0
\end{array}\right.
\end{gathered}
$$

Outline of the proof of Theorem 2 (Continued)

- $D_{(a, b)}\left(\phi_{n}\right)$ is always quadratic (by Theorem 1) for $(a, b) \neq(0,0)$.
- By Lemma 1,

$$
n l\left(D_{a, b}\left(\phi_{n}\right)\right)=2^{n-1}-2^{\frac{n+k(a, b)}{2}} .
$$

- since $i \leq 4$,

$$
n l\left(D_{a, b}\left(\phi_{n}\right)\right) \geq 2^{n-1}-2^{\frac{n+t+4}{2}}
$$

Outline of the proof of Theorem 2 (Continued)

- Comparing with Corollary 1, we get $M=1$ and $m=\frac{n+t}{2}+2$.
- This gives

$$
\begin{aligned}
n l_{2}\left(\phi_{n}\right) & \geq 2^{n-1}-\frac{1}{2} \sqrt{\left(2^{n}-1\right) 2^{\frac{n+t}{2}+3}+2^{n}} \\
& \approx 2^{n-1}-2^{\frac{7 n+4}{8}}
\end{aligned}
$$

Better lower bound than the general bound

- The general lower bound of the second order nonlinearity (Carlet IEEE-IT 2008) of an n-variable cubic Boolean function which does not have any derivative in $\mathcal{R}(1, n)$ is

$$
2^{n-1}-2^{n-\frac{3}{2}}
$$

$-2^{n-1}-2^{\frac{7 n+4}{8}}>2^{n-1}-2^{n-\frac{3}{2}}$, for all $n>16$.

Conclusions and further research

- We have identified a class of Maiorana McFarland bent functions which do not have any affine derivative.
- We have studied the second order nonlinearity of these functions.
- Next step is to find a better lower bound of second order nonlinearity of this class of functions for which we need a new strategy.

Bibliography

- C. Bracken, E. Byrne, N. Markin and Gary McGuire. "Determining the Nonlinearity of a New Family of APN Functions". In AAECC, LNCS 4851, springer, pages 72-79, 2007.
- A. Canteaut and P. Charpin.
"Decomposing Bent Functions". In IEEE Transactions on Information Theory, Vol. 49(8), pp. 2004-2019, 2003.
- CCK08 A. Canteaut, P. Charpin and G. M. Kyureghyan. "A new class of monomial bent functions". In Finite Fields and their Applications, Vol. 14, pp. 221-241, 2008.
- C. Carlet.
"Recursive Lower Bounds on the Nonlinearity Profile of Boolean Functions and Their Applications". In IEEE Transactions on Information Theory, Vol. 54(3), pp. 1262-1272, March 2008.
- H. Dobbertin.
"Almost Perfect Nonlinear Power Functions on $\operatorname{GF}\left(2^{n}\right)$: The Welch Case". In IEEE Transactions on Information Theory, Vol. 45, No. 4, May 1999.
- X.-D. Hou.
"Cubic bent functions". In Discrete Mathematics, Vol 189, pp 149-161.
- F. J. MacWilliams, N. J. A. Sloane,
"The theory of Error Correcting Codes", North-Holland, Amsterdam, 1977.

THANK YOU
ムロ〉4司

