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General Problems

1 Find conditions that guarantee the solvability of systems of
polynomial equations (Chevalley)

2 For systems of the form

a1X d
1 + · · ·+ anX d

n + G1(X1, · · · ,Xn) = 0

b1X k
1 + · · ·+ bnX k

n + G2(X1, · · · ,Xn) = 0, (1)

determine the minimum number of variables n such that these
systems always have solutions.
(Waring)
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Our Approach

Theorem

Let F (X) =
∑N

i=1 aiX
e1i
1 · · ·X eni

n , ai 6= 0. If
S(F ) =

∑
x1,··· ,xn∈Fq

φ(F (x1, · · · , xn)), then vp(S(F )) ≥ L
p−1 ,

where L = min(j1,...,jN)

{∑N
i=1 σp(ji ) | 0 ≤ ji < q

}
, and (j1, . . . , jN)

is a solution to the system
e11j1 + e12j2 + . . .+ e1N jN ≡ 0 mod q − 1
...

...

en1j1 + en2j2 + . . .+ enN jN ≡ 0 mod q − 1,

(2)

where
∑N

i=1 eli ji 6= 0, for l = 1, · · · , n.

Using this Theorem in our systems we get vp(N) ≥ 0.
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Our Approach

Compute the exact p-divisibility of exponential sums
associated to the systems of polynomials by studying the minimal
solutions to

e11j1 + e12j2 + . . .+ e1N jN ≡ 0 mod q − 1
...

...

en1j1 + en2j2 + . . .+ enN jN ≡ 0 mod q − 1,

(3)

Our Approach: Classify all minimal solutions and count them.

Unique minimal solution (prove this)

All solutions have the same form (prove it and count them)

More than one form of minimal solutions (need more tools...)
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Notation

q = pf

n = a0 + a1p + a2p2 + · · ·+ alp
l where 0 ≤ ai < p

σp(n) =
∑l

i=0 ai .

wp(X e1
1 · · ·X en

n ) = σp(e1) + · · ·+ σp(en).

F (X1, . . . ,Xn) =
∑

i aiX
e1i
1 · · ·X eni

n , ai 6= 0

wp(F ) = maxi wp(aiX
e1i
1 · · ·X eni

n ).
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Chevalley-Warning’s Theorem

Theorem

Let F (X1, . . . ,Xn) be a polynomial of degree d over Fq with n > d.
Then p divides the number of solutions of F = 0, and, in particular,
if F (0, . . . , 0) = 0, then F has a nontrivial solution over Fq.
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Carlitz’s Theorem

Theorem

Let d be a divisor of p − 1, and ai ∈ Fq
∗ for i = 1, · · · , d. If

G (X1, . . . ,Xd) is a polynomial over Fq with deg(G ) < d, then the
equation a1X d

1 + · · ·+ adX d
d + G (X1, . . . ,Xd) = 0 has at least one

solution over Fq.
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Felszeghy’s Theorem

Theorem

a1X d
1 + · · ·+ anX d

n + G (X1, . . . ,Xn) = 0 is solvable over Fp for
n ≥ b p−1

d p−1
d
e
c where deg(G ) < d.
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Previous Results

Theorem

Let di |(p − 1) and ai ∈ Fq
∗. Suppose that

∑t
i=1

1
di

is an integer
and consider

(Xi1 · · ·Xin1
)d1 , (Xin1+1 · · ·Xin2

)d2 , . . . , (Xint−1+1 · · ·Xint
)dt (4)

all with the same degree d > 1, disjoint support, and
1 ≤ ij ≤ n = nt . If G (X1, . . . ,Xn) ∈ Fq[X] with wp(G ) < d, and

F (X1, . . . ,Xn) = a1(Xi1 · · ·Xin1
)d1 + a2(Xin1+1 · · ·Xin2

)d2 + · · ·

+at(Xint−1+1 · · ·Xin)dt + G (X1, . . . ,Xn),

then p
f (
∑t

i=
1
di
−1)

is the exact divisibility of the number of solutions
of F = 0. In particular, F has at least one solution over Fq.

One minimal solution.
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Previous Results

Example

F = X 7
1 + X 7

2 + · · ·+ X 7
7 +

∑
i<j ai ,jXiXj + X 29i +1

1 + · · ·+ X 29i +1
7 ∈

F29f [X1, . . . ,X7].

Then F = β has at least one solution for any β ∈ F29f .

Result generalizes Carlitz’s result.
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New Result:

∑
r

ar1(X1, . . . ,Xn)dr,1 + G1(X1, . . . ,Xn) = 0∑
r

ar2(X1, . . . ,Xn)dr,2 + G2(X1, . . . ,Xn) = 0

...
...∑

r

art(X1, . . . ,Xn)dr,t + Gt(X1, . . . ,Xn) = 0.
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New Result:

Example

Let 12 | (p − 1) and consider

X 3
1 + X 3

2 + X 3
3 + X 3

4 + X 3
5 + X 3

6 + G1(X1, . . . ,X10) = 0

X 4
7 + X 4

8 + X 4
9 + X 4

10 + G2(X1, . . . ,X10) = 0,

over Fpf , where wp(Gi ) < 3.

Then vp(N) = pf and the system has solution.
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New Result:

Example

Let 6 | (p − 1) and consider

X 3
1 + X 3

2 + X 6
3 + X 6

4 + X 2
1 + · · ·+ X 2

11 = γ1

(X5X6)2 + (X7X8)2 +
∑
i<j

XiXj = γ2

X 3
9 + X 3

10 + X 3
11 + X1 + · · ·+ X11 = γ3.

over Fpf . The system has solution for every (γ1, γ2, γ3) ∈ F2
pf .
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New Result:

Theorem

Consider
∑

r

ar1(X1, . . . , Xn)
dr,1 + G1(X1, . . . , Xn) = 0

∑
r

ar2(X1, . . . , Xn)
dr,2 + G2(X1, . . . , Xn) = 0

.

.

.

.

.

.∑
r

art (X1, . . . , Xn)dr,t + Gt (X1, . . . , Xn) = 0.

where

all ari (X1, . . . ,Xn)dr,i have disjoint support and deg > 1

Gi ∈ Fq [X] ,wp(Gi ) < mini

{
deg

(
ari (X1, . . . ,Xn)dr,i

)}
dr ,i |(p − 1)

Then vp(N) = f
∑

r ,i
1

dr,i
− tf , and the system has solution whenever∑

r
1

dr,i
is an integer for i = 1, . . . , t.
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New Result:

Theorem

Let a, b ∈ Fp
∗, d , k such that gcd(d , k) = 1, dk = p − 1, d even

and n ≥ d + k 6= p.

Let G1(X1, · · · ,Xn), G2(X1, · · · ,Xn) ∈ Fp[X] with
deg G1 < d , deg G2 < k, and consider

aX d
1 + · · ·+ aX d

n + G1(X1, · · · ,Xn) = 0

±bX k
1 ± · · · ± bX k

n + G2(X1, · · · ,Xn) = 0. (5)

Then, the system has solution in Fn
p .

Minimal solutions of the same form but not unique.
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General Coefficients??

Example

Let q = F7, deg G1 < 3, deg G2 < 2, and consider

X 3
1 + 2X 3

2 + X 3
3 + X 3

4 + X 3
5 + G1(X1, . . . ,X5) = 0

X 2
1 + X 2

2 + X 2
3 + X 2

4 + X 2
5 + G2(X1, . . . ,X5) = 0. (6)

If all coefficients were equal, our method would give that 7 6 |N for
any G1,G2. But 7|N
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General Coefficients??

Corollary

Let p ≡ 3 mod 4, d = p−1
2 , n = d + 2, deg G1 < d , deg G2 < 2 and

consider

± aX d
1 ± · · · ± aX d

n + G1(X1, . . . ,Xn) = 0

b1X 2
1 + · · ·+ bnX 2

n + G2(X1, . . . ,Xn) = 0 (7)

Let m be the number of quadratic nonresidue mod p in
(b1, . . . , bn). Then system is solvable if and only if
m = 0, 1, p+1

2 , n, or 1 < m < p+1
2 and

16m2 − 24m + 3 ≡ 0 mod p. Otherwise p divides N.
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New Result:

Corollary

Let β ∈ Fp and N be the number of solutions of the system

aX p−1
1 + · · ·+ aX p−1

p + G1(X1, · · · ,Xp) = 0

±bX1 ± · · · ± bXp + β = 0. (8)

Then, p|N.

Note that n = p =
∑

di and this improves
Chevalley-Warning’s (and Katz’s) theorem.
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New Result:

Theorem

Let a ∈ Fp
∗, p > 3, and d = p−1

2 . Suppose deg G < d and let N
be the number of solutions of the system

aX d
1 + · · ·+ aX d

d+1 + G (X1, · · · ,Xd+1) = 0

X1 + · · ·+ Xd+1 + β = 0. (9)

Then vp(N) = 0 and the system has solution in Fp
n for all β ∈ Fp.

Note that dk 6= p − 1.

Two different forms of solutions.
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p-divisibility and Number of Solutions

Theorem

Let q = pf , F1(X), · · · ,Ft(X) ∈ Fq[X] and N be the number of
common zeros of F1, · · · ,Ft . Then,

N = p−tf
∑

x∈Fq
n
,y∈Fq

t

φ(y1F1(x) + · · ·+ ytFt(x)).

To determine solvability:

Exact p-divisibility: If vp(N) = a, then N 6= 0
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Bound on p-divisibility:

Theorem

Let F (X) =
∑N

i=1 aiX
e1i
1 · · ·X eni

n , ai 6= 0. If
S(F ) =

∑
x1,··· ,xn∈Fq

φ(F (x1, · · · , xn)), then vp(S(F )) ≥ L
p−1 ,

where L = min(j1,...,jN)

{∑N
i=1 σp(ji ) | 0 ≤ ji < q

}
, and (j1, . . . , jN)

is a solution to the system
e11j1 + e12j2 + . . .+ e1N jN ≡ 0 mod q − 1
...

...

en1j1 + en2j2 + . . .+ enN jN ≡ 0 mod q − 1,

(10)

where
∑N

i=1 eli ji 6= 0, for l = 1, · · · , n.

Using this Theorem in our systems we get vp(N) ≥ 0.
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Our approach

S(F ) =

q−1∑
j1=0

· · ·
q−1∑
jN=0

[
N∏

i=1

c(ji )

][∑
t∈T n

tj1e1+···+jNeN

][
N∏

i=1

a′
ji
i

]

vp(T ) = vp

([
N∏

i=1

c(ji )

][∑
t

tj1e1+···+jNeN

][
N∏

i=1

a′
ji
i

])
(11)

=
N∑

i=1

σp(ji )

p − 1
+ fs,

Problem: There can be many (j1, . . . , jN) that produce solutions
with minimal p-divisibility.
Our solution: To classify all minimal solutions and count them.
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Goal:

To compute exact divisibility of the exponential sum by:

Finding all minimal solutions

Determining if they give similar terms in the sum

Counting the number of similar terms in each group

Computing the exact value of the terms
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Case gcd(d , k) = 1, dk = p − 1 and n = d + k :

Theorem

Let a, b ∈ Fp
∗, d , k such that gcd(d , k) = 1, dk = p − 1, d even

and n ≥ d + k 6= p.

Let G1(X1, · · · ,Xn), G2(X1, · · · ,Xn) ∈ Fp[X] with
deg G1 < d , deg G2 < k, and consider

aX d
1 + · · ·+ aX d

n + G1(X1, · · · ,Xn) = 0

±bX k
1 ± · · · ± bX k

n + G2(X1, · · · ,Xn) = 0. (12)

Then, the system has solution in Fn
p .
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Case gcd(d , k) = 1, dk = p − 1 and n = d + k :

X d
1 + · · ·+ X d

n = α

X k
1 + · · ·+ X k

n = β.

Associated system of modular equations:

dh1 + ks1 ≡ 0 mod p − 1
...

...

dhn + ksn ≡ 0 mod p − 1

h1 + · · ·+ hn + hn+1 ≡ 0 mod p − 1

s1 + · · ·+ sn + sn+1 ≡ 0 mod p − 1.

(h1, · · · , hn : s1, · · · , sn : hn+1, sn+1)
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Case gcd(d , k) = 1, dk = p − 1 and n = d + k :

All solutions with minimal p-divisibility have the form: d︷ ︸︸ ︷
k , · · · , k ,

k︷ ︸︸ ︷
0, · · · , 0 :

d︷ ︸︸ ︷
0, · · · , 0,

k︷ ︸︸ ︷
d , · · · , d : 0, 0


They produce

(n
d

)
similar terms T with vp(T ) = 2.

N = p−2

(
n

d

)
p2N ′, p 6 |N ′.

If n = d + k 6= p, then p 6 |
(n
d

)
and vp(N) = 0.
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Case d = p−1
2 :

aX d
1 + · · ·+ aX d

d+1 + G (X1, · · · ,Xd+1) = 0

X1 + · · ·+ Xd+1 + β = 0. (13)

Associated system of modular equations:

dh1 + e11t1 + · · ·+ e1NtN + s1 ≡ 0 mod p − 1
...

... (14)

dhd+1 + ed+11t1 + · · ·+ ed+1NtN + sd+1 ≡ 0 mod p − 1

h1 + · · ·+ hd+1 + t1 + · · ·+ tN ≡ 0 mod p − 1

s1 + · · ·+ sd+1 + l ≡ 0 mod p − 1.

(h1, · · · , hd+1 : s1, · · · , sd+1 : t1, · · · , tN : l)
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Case d = p−1
2 :

Minimal solutions have two forms:

(0, 2, · · · , 2 : p − 1, 0, · · · , 0 : 0, · · · , 0 : 0)

(1, 1, 2, · · · , 2 : d , d , 0, · · · , 0 : 0, · · · , 0 : 0)

They produce d + 1 similar terms T1 and
(d+1

2

)
similar terms T2

with vp(Ti ) = 2.

Problems!!!!
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Case d = p−1
2 :

To prove that vp(N) = 0, we need to compute the values of :

c(0)2d+3+Nc(2)dc(p − 1)(p − 1)d+3(a′)2d

= c(2)dc(p − 1)(p − 1)d+3(a′)2d ,

c(0)d−1+Nc(1)2c(2)d−1c(d)2(p − 1)d+3(a′)2d

= c(1)2c(2)d−1c(d)2(p − 1)d+3(a′)2d

and

vθ(F ) = vθ

(
(d + 1)c(2)dc(p − 1)(p − 1)d+3(a′)2d

+

(
d + 1

2

)
c(1)2c(2)d−1c(d)2(p − 1)d+3(a′)2d

)
.
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Case d = p−1
2 :

We prove that vp(N) = 0 by proving that

(d + 1)c(2)dc(p − 1)(p − 1)d+3

θ2(p−1)

+

(d+1
2

)
c(1)2c(2)d−1c(d)2(p − 1)d+3

θ2(p−1)
6≡ 0 mod θ.
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Case d = p−1
2 :

Lemma

There is a unique polynomial C (X ) =
∑q−1

j=0 c(j)X j ∈ K (ξ)[X ] of
degree q − 1 such that

C (t) = ξTrK/Qp (t), for all t ∈ T .

Moreover, the coefficients of C (X ) satisfy

c(0) = 1

(q − 1)c(q − 1) = −q

(q − 1)c(j) = g(j) for 0 < j < q − 1,

where g(j) is the Gauss sum,

g(j) =
∑
t∈T ∗

t−jξTrK/Qp (t).
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Case d = p−1
2 :

Theorem (Stickelberger)

For 0 ≤ j < q − 1,

g(j)ρp(j)

θσp(j)
≡ −1 mod θ.
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Conclusion

We computed exact divisibility of exponential sums to determine
that very general families of systems of polynomial equations
always have solutions over finite fields. The solvability of these
type of systems could not be determined before by other methods.
Our results extend and generalize well know theorems such as
Chevalley’s and Carlitz’s theorems.
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