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Diffie-Hellman protocol: given a finite abelian

group, A, written additively, and an element

x ∈ A, then it is often difficult to compute abx

from knowledge of ax and bx without knowing

the integers a and b. This is the basis of many

public-key cryptographic systems used today.

For various applications, it is useful to have

multi-person generalizations of this protocol.

Assume that A is cyclic of prime order, `, that

x is a generator, and that we have an efficiently

computable bilinear pairing:
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(, ) : A×A → Z/`Z.

Then three people, say Andrea, Bill and Car-

los, can exchange information by each choos-

ing a random integer a, b and c, respectively,

broadcasting, respectively, ax, bx and cx, and

computing, respectively,

a(bx, cx), b(ax, cx), c(ax, bx),

all of which are equal to abc(x, x). Several peo-

ple have used the Weil and Tate pairings on el-

liptic curves as examples of such bilinear pair-

ings.
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In this talk, we are aiming at an n-linear gen-

eralization, which would, among other things,

give us an (n+1)-person Diffie-Hellman proto-

col. It also has applications to identity based

encryption and broadcast encryption.

Let E be an elliptic curve over a finite field F
with chosen algebraic closure F. We fix a prime

number ` different from the characteristic of F
and denote by E[`] the set of points P of E

defined over F such that `P = 0. Then we

have the Weil pairing:

E[`]× E[`] → µ`,

which is bilinear, alternating and nondegener-

ate.
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Recall how this may be defined explicitly. Given

Pi ∈ E[`] (i=1,2), represent them by divisors

Di and functions fi whose divisors have dis-

joint supports such that `Di = div(fi), Weil

reciprocity says that we have:

f
div(f2)
1 = f

div(f1)
2 ,

and hence

f
D2
1

f
D1
2

is an `-th root of unity.
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Let F be an algebraic closure of F and put

G = Gal(F/F). Assume that F contains the

`-th roots of unity µ`.

Then we also have the Tate pairing:

E[`]G × E[`]G → µ`,

where, for a G-module M , MG denotes the

coinvariants of M , which is the largest quo-

tient module upon which G acts trivially.

These groups are isomorphic to each other via

the map:

E[`]G ∼= E(F)[`] → E(F) → E(F)/`E(F) ∼= E[`]G.
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The last isomorphism comes from taking G-

cohomology of the exact sequence:

0 → E[`] → E(F) `→ E(F) → 0.

and using Lang’s theorem, which says that

H1(G, E(F)) = 0. Suppose E(F)[`] is cyclic

of order `. Then E[`]G and E[`]G are both

one-dimensional. Using these identifications,

the Tate pairing can be viewed as a symmetric

pairing on E(F)[`] and is very efficient to com-

pute. Let ϕ be the geometric Frobenius and

let N = ϕ − 1. Note that E[`]G = ker N and

E[`]G = cokerN . Then N2 = 0 and N induces

an isomorphism:

E[`]G
∼= coker N ∼= ker N ∼= E[`]G,
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which is the inverse of the isomorphism men-

tioned above. It is sometimes called a distor-

tion map. This interpretation will help us in a

multidimensional generalization of this pairing.

Note the analogy with the monodromy theory

of semi-stable elliptic curves over a p-adic field

with multiplicative reduction. In that theory,

N is the monodromy operator.



Let A be a principally polarized abelian vari-
ety of dimension g over a finite field F. We
fix a prime number ` and denote by V = A[`]
the set of points P of A defined over F such
that `P = 0. The principal polarization allows
us to identify Pic0(A)[`] with A[`]. Actually,
we could simply work with an abelian variety
that is if the form Pic0(X) for some smooth
projective variety X over F. There is a well-
known 2g-multilinear, alternating, nondegen-
erate form:

A[`]× · · · ×A[`] → µ
⊗g
`

that may be defined using the étale cohomol-
ogy of abelian varieties. More precisely, we
have:

2g∧
H1(AF, µ`)

∼= H2g(AF, µ
⊗2g
` ) ∼= µ

⊗g
` .

Here µ
⊗g
` is µ` twisted g-times. That is G acts

on the tensor product diagonally.
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This is a well-known generalization of the Weil

pairing on elliptic curves. We now make the

assumption that N = ϕ − 1 acts on A[`] in a

maximally nilpotent way. That is, N2g = 0,

but N2g−1 6= 0. Then we can produce the

same situation as we did for elliptic curves.

Set d = 2g − 1 so that Nd+1 = 0.
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There is a unique filtration V·

V = Vd ⊃ Vd−2 ⊃ ... ⊃ V−d

such that N(Vi) ⊆ Vi−2 and, letting GriV =

Vi/Vi−2, then N i induces an isomorphism:

GriV → Gr−iV.

In fact,

GriV
∼= (Gr−iV )∗

where * denotes the dual vector space. This

analysis generalizes the well-known duality:

Gr−dV = V G ∼= (VG)∗ = GrdV.
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(1) For all i ∈ I, GriV is of F`-dimension one

and G acts trivially on this space.

(2) A non-trivial 2g-linear alternating pairing

on V taking values in µ` induces a non-trivial

multilinear pairing:

GrdV ×Grd−2V × ...×Gr−dV → µ
⊗g
` .

(3) Moreover if <, >: V × V → µ` is a non-

degenerate bilinear pairing, then the bilinear

pairing induces a perfect pairing between Gri

and Gr−i, and the (2g)-linear pairing GrdV ×
...×Gr−dV → µ

⊗g
` sending vi ∈ Vi to ζ

∏
bi, where

ζbi =< vi, v−i >, is identical, up to a constant

factor, to the multilinear pairing in (2).
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We have put µ
⊗g
` to emphasize the twist, g. In

fact, by a famous theorem of Quillen, we have

a canonical isomorphism:

K2g−1(F)[`] ∼= µ
⊗g
` .

A better way to do this would be to define a

multilinear map:

A[`]× · · · ×A[`] → K2g−1(F)

in an explicit way as for the Weil pairing above

on elliptic curves. We are working on this now,

but it does not appear to be easy, even for

g = 2.
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Does there exist an abelian variety with the de-

sired properties? Let α1, · · ·α2g be the eigen-

values of ϕ,arranged in such a way that α2j =

α2j−1 for j = 1, · · · , g and all of these `-adic

units are congruent to 1 mod `. By a theorem

of Honda and Tate, there is an isogeny class of

abelian varieties with such numbers as eigen-

values of ϕ. We need to find one with A(F)[`]
of order `. From a probabilistic point of view,

this appears unlikely, even for g = 1, and yet

we know that it is possible in that case. It

would be nice if we could find a Jacobian of a

curve, but we doubt that this is possible.
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This problem can be approached by using Bloch’s

higher Chow groups. We briefly recall their

definition. Consider the n-simplex ∆n, which

we view as being embedded into an (n + 1)-

dimensional affine space with coordinates x0, · · · , xn

via the equation:

n∑

i=0

xi = 1.

There are faces ∆r of this simplex given by

setting some coordinates equal to 0. Given

an algebraic variety X, Bloch takes the group

Zm(X, n) of cycles of codimension m on the

product X×∆n that meet each X×∆r properly

(that is, the intersection is of the expected

codimension).
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One gets a complex by taking boundary maps

given by the alternating sum of the intersec-

tions of a cycle with the X×∆n−1, for each of

the embeddings of ∆n−1 into ∆n. He then de-

fines CHm(X, n) as the homology of this com-

plex. With appropriate indexing, these groups

are isomorphic to Voevodsky’s motivic coho-

mology groups:

CHm(X, n) ∼= H2m−n(X,Z(m)).

For n = 0, we get the usual Chow groups of

codimension m-cycles modulo rational equiva-

lence.
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Each of these definitions has its advantages

and disadvantages. Voevodsky’s groups have

excellent functorial properties, since they are

defined as derived functors, but they are not

so easy to compute directly. Bloch’s groups

have the nice presentations described above,

but there are technical difficulties with prov-

ing moving lemmas to establish the key exact

sequences.
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Also, if K is a field, then CH2(K,3) ∼= H1(K,Z(2)) ∼=
K3(K)ind, where ind denotes indecomposable

K3, which is the quotient of the Quillen K-

theory group by the Milnor K-theory group.

If K is a finite field or an algebraic closure

thereof, the Milnor K3 is trivial.

Thus K3 of a finite field F may be described in

this way as the homology of the complex:

Z2(F×∆4) → Z2(F×∆3) → Z2(F×∆2).
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One can also do motivic cohomology with Z/`Z-
coefficients by taking the cycle groups in Bloch’s

higher Chow groups with Z/`Z-coefficients. We

then have that H1(X,Z/`Z(1)) ∼= Pic(X)[`] for

X smooth and proper over a separably closed

field of characteristic prime to `.

If X is smooth and proper of dimension g, we

have a trace map:

H2g(X,Z/`Z(2g)) → H0(F,Z/`Z(g)).

We then consider the cup-product pairing fol-

lowed by the trace:

2g∧

i=1

H1(X,Z/`Z(1)) → H2g(X,Z/`Z(2g)) → H0(F,Z/`Z(g)).
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Cup-product in motivic cohomology can be de-

scribed in “functorial” terms and the group

on the right is canonically isomorphic to µ
⊗g
` ,

but the description in terms of Bloch’s higher

Chow groups should allow us to describe the

pairing more explicitly.

For g = 1, we can recover the explicit descrip-

tion of the Weil pairing, but even this is not so

obvious. However, this appears to be the best

known framework for generalization of the ex-

plicit description of the Weil pairing.
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