Minimum polynomials and the trace form for cyclic extensions

based on work with R. Gow

Rachel Quinlan

$$
\text { July 16, } 2009
$$

School of Mathematics, Statistics and Applied Mathematics National University of Ireland, Galway

Plan

The trace form for cyclic extensions

Minimum polynomials for subspaces
Independence of Characters
Existence

Properties of minimum polynomials
The case of hyperplanes
Further remarks on odd degree
More general properties

The Setup

Let L / K be a cyclic Galois extension of degree n.
Fix a generator σ for the Galois group $\operatorname{Gal}(L / K)$.
The trace function $\operatorname{Tr}_{L / K}: L \longrightarrow K$ is the K-linear mapping defined for $x \in L$ by

$$
\operatorname{Tr}_{L / K}(x)=\sum_{i=0}^{n-1} \sigma^{i}(x)
$$

We denote the kernel of the trace function by T. T is a K-hyperplane of L.
Every K-hyperplane of L is a L^{\times}-translate of T; i.e. can be expressed as $a T$ for some $a \in L^{\times}$.

The Symmetric Trace Form

The trace form on L is the nondegenerate symmetric K-bilinear form $\tau: L \times L \longrightarrow K$ defined for $x, y \in L$ by

$$
\tau(x, y)=\operatorname{Tr}_{L / K}(x y)
$$

If U is a K-subspace of L of dimension k, then the orthogonal complement of U with respect to the trace form is the K-subspace of dimension $n-k$ given by

$$
\begin{aligned}
U^{\perp} & =\{x \in L: \tau(x, u)=0 \forall u \in U\} \\
& =\{x \in L: x u \in T \forall u \in U\}
\end{aligned}
$$

If $\left\{a_{1}, \ldots, a_{k}\right\}$ is a K-basis of U, then

$$
U^{\perp}=a_{1}^{-1} T \cap a_{2}^{-1} T \cap \cdots \cap a_{k}^{-1} T .
$$

Independence of Characters

Let $p(\sigma)$ be a "polynomial" in the generator σ of $\operatorname{Gal}(L / K)$, with coefficients in L:

$$
p(\sigma)=a_{k} \sigma^{k}+a_{k-1} \sigma^{k-1}+\cdots+a_{1} \sigma+a_{0} .
$$

Then $p(\sigma)$ describes a K-linear endomorphism p of L by

$$
p(x):=a_{k} x^{\sigma^{k}}+\cdots+a_{1} x^{\sigma}+a_{0} x .
$$

Theorem (Artin: Independence of Characters)
The elements of Gal (L / K) form a L-basis for the endomorphism ring $\operatorname{End}_{K}(L)$.

Thus every K-endomorphism of L can be uniquely expressed in the following form, with $a_{i} \in L$.

$$
a_{n-1} \sigma^{n-1}+a_{n-2} \sigma^{n-2}+\cdots+a_{1} \sigma+a_{0}
$$

Rank of Endomorphisms

Rank of Endomorphisms

Question Does the representation of $\theta \in \operatorname{End}_{k}(L)$ as a L-polynomial (of degree at most $n-1$ in σ tell us anything about the properties of θ ? For example can we say anything about the rank of θ ?

Theorem (Gow)
The dimension of the kernel of θ is at most equal to $\operatorname{deg} \theta$. This means K-subspace of L of dimension k, and $p(\sigma)$ is the polynomial representation of an endomorphism which annihiliates U, then $\operatorname{deg}(p(\sigma)) \geq k$.

Rank of Endomorphisms

Question Does the representation of $\theta \in \operatorname{End}_{k}(L)$ as a L-polynomial (of degree at most $n-1$ in σ tell us anything about the properties of θ ? For example can we say anything about the rank of θ ?

Theorem (Gow)
The dimension of the kernel of θ is at most equal to $\operatorname{deg} \theta$.
This means: If U is a K-subspace of L of dimension k, and $p(\sigma)$ is the polynomial representation of an endomorphism which annihiliates U, then $\operatorname{deg}(p(\sigma)) \geq k$.

Minimum polynomials

Lemma

If A is a square matrix with entries in L, having the property that each row (except the first) is the image under σ of the previous one, then $\operatorname{det}(A)=0$ if and only if the elements of the first row of A are linearly dependent over K.

Theorem

Let U be a K-subspace of L of dimension k. Then there exists a polynomial $m_{U}(\sigma)$ of degree k whose kernel is U.

Proof: Write $U=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Write

$$
m_{U}(\sigma)=\left|\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{k} & 1 \\
\sigma\left(a_{1}\right) & \sigma\left(a_{2}\right) & \ldots & \sigma\left(a_{k}\right) & \sigma \\
\vdots & \vdots & & \vdots & \vdots \\
\sigma^{k}\left(a_{1}\right) & \sigma^{k}\left(a_{2}\right) & \ldots & \sigma^{k}\left(a_{k}\right) & \sigma^{k}
\end{array}\right| .
$$

Minimum
polynomials and the trace form for cyclic extensions

Rachel Quinlan

Minimum polynomials (continued)

Note Composition of K-endomorphisms of L corresponds to the following skew multiplication of polynomials in σ

$$
\left(\sum a_{i} \sigma^{i}\right) \circ\left(\sum b_{j} \sigma^{j}\right)=\sum a_{i} b_{j}^{\sigma^{i}} \sigma^{i+j}
$$

Lemma

Suppose $U \subseteq$ ker $p(\sigma)$ for some subspace U of L of dimension k. Then

$$
p(\sigma)=q(\sigma) \circ m_{U}(\sigma)
$$

Corollary

All polynomials of degree k that annihilate U are left L^{\times}-multiples of each other.

We refer to these as minimum polynomials for U.

Special Case : hyperplanes

Suppose $U=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle=a^{-1} T$ is a K-hyperplane in L. So $a=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle^{\perp}$.
Two minimum polynomials for U :

$$
m_{U}(\sigma)=\left|\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{n-1} & 1 \\
\sigma\left(a_{1}\right) & \sigma\left(a_{2}\right) & \ldots & \sigma\left(a_{n-1}\right) & \sigma \\
\vdots & \vdots & & \vdots & \vdots \\
\sigma^{n-1}\left(a_{1}\right) & \sigma^{n-1}\left(a_{2}\right) & \ldots & \sigma^{n-1}\left(a_{n-1}\right) & \sigma^{n-1}
\end{array}\right| .
$$

Special Case : hyperplanes

Suppose $U=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle=a^{-1} T$ is a K-hyperplane in L. So $a=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle^{\perp}$.
Two minimum polynomials for U :

$$
m_{U}(\sigma)=\left|\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{n-1} & 1 \\
\sigma\left(a_{1}\right) & \sigma\left(a_{2}\right) & \ldots & \sigma\left(a_{n-1}\right) & \sigma \\
\vdots & \vdots & & \vdots & \vdots \\
\sigma^{n-1}\left(a_{1}\right) & \sigma^{n-1}\left(a_{2}\right) & \ldots & \sigma^{n-1}\left(a_{n-1}\right) & \sigma^{n-1}
\end{array}\right| .
$$

- $m_{U}^{\prime}(\sigma)=a^{\sigma^{n-1}} \sigma^{n-1}+a^{\sigma^{n-2}} \sigma^{n-2}+\cdots+a^{\sigma} \sigma+a$

$$
\text { These two polynomials must be } L^{\times} \text {-multiples of each other. }
$$

If n is odd, it follows that a is a K^{\times}-multiple of the constant term of $m_{U}(\sigma)$. Thus in this case

Special Case : hyperplanes

Suppose $U=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle=a^{-1} T$ is a K-hyperplane in L. So $a=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle^{\perp}$.
Two minimum polynomials for U :

$$
m_{U}(\sigma)=\left|\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{n-1} & 1 \\
\sigma\left(a_{1}\right) & \sigma\left(a_{2}\right) & \ldots & \sigma\left(a_{n-1}\right) & \sigma \\
\vdots & \vdots & & \vdots & \vdots \\
\sigma^{n-1}\left(a_{1}\right) & \sigma^{n-1}\left(a_{2}\right) & \ldots & \sigma^{n-1}\left(a_{n-1}\right) & \sigma^{n-1}
\end{array}\right| .
$$

- $m_{U}^{\prime}(\sigma)=a^{\sigma^{n-1}} \sigma^{n-1}+a^{\sigma^{n-2}} \sigma^{n-2}+\cdots+a^{\sigma} \sigma+a$

$$
\text { These two polynomials must be } L^{\times} \text {-multiples of each other. }
$$

If n is odd, it follows that a is a K^{\times}-multiple of the constant term of $m_{U}(\sigma)$. Thus in this case

Special Case : hyperplanes

Suppose $U=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle=a^{-1} T$ is a K-hyperplane in L. So $a=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle^{\perp}$.
Two minimum polynomials for U :

$$
m_{U}(\sigma)=\left|\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{n-1} & 1 \\
\sigma\left(a_{1}\right) & \sigma\left(a_{2}\right) & \ldots & \sigma\left(a_{n-1}\right) & \sigma \\
\vdots & \vdots & & \vdots & \vdots \\
\sigma^{n-1}\left(a_{1}\right) & \sigma^{n-1}\left(a_{2}\right) & \ldots & \sigma^{n-1}\left(a_{n-1}\right) & \sigma^{n-1}
\end{array}\right| .
$$

- $m_{U}^{\prime}(\sigma)=a^{\sigma^{n-1}} \sigma^{n-1}+a^{\sigma^{n-2}} \sigma^{n-2}+\cdots+a^{\sigma} \sigma+a$

These two polynomials must be L^{\times}-multiples of each other.
If n is odd, it follows that a is a K^{\times}-multiple of the constant term of $m_{U}(\sigma)$. Thus in this case

Minimum
polynomials and the trace form for cyclic extensions

Rachel Quinlan

Minimum

Special Case : hyperplanes

Suppose $U=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle=a^{-1} T$ is a K-hyperplane in L. So $a=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle^{\perp}$.
Two minimum polynomials for U :

$$
m_{U}(\sigma)=\left|\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{n-1} & 1 \\
\sigma\left(a_{1}\right) & \sigma\left(a_{2}\right) & \ldots & \sigma\left(a_{n-1}\right) & \sigma \\
\vdots & \vdots & & \vdots & \vdots \\
\sigma^{n-1}\left(a_{1}\right) & \sigma^{n-1}\left(a_{2}\right) & \ldots & \sigma^{n-1}\left(a_{n-1}\right) & \sigma^{n-1}
\end{array}\right| .
$$

- $m_{U}^{\prime}(\sigma)=a^{\sigma^{n-1}} \sigma^{n-1}+a^{\sigma^{n-2}} \sigma^{n-2}+\cdots+a^{\sigma} \sigma+a$

These two polynomials must be L^{\times}-multiples of each other.
If n is odd, it follows that a is a K^{\times}-multiple of the constant term of $m_{U}(\sigma)$. Thus in this case

$$
\left\langle a_{1}, \ldots, a_{n-1}\right\rangle^{\perp}=\langle | \sigma^{i}\left(a_{j}\right)| \rangle_{1 \leq i, j \leq n-1}
$$

Further properties for odd degree extensions

Suppose that n is odd and let $U=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ be a subspace of L of dimension $k<n-1$. Then

$$
U^{\perp}=\left\{\left|\begin{array}{cccccc}
a_{1}^{\sigma} & \ldots & a_{k}^{\sigma} & x_{k+1}^{\sigma} & \ldots & x_{n-1}^{\sigma} \\
a_{1}^{\sigma^{2}} & \ldots & a_{k}^{\sigma^{2}} & x_{k+1}^{\sigma^{2}} & \cdots & x_{n-1}^{\sigma^{2}} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{1}^{\sigma^{n-1}} & \ldots & a_{k}^{\sigma^{n-1}} & x_{k+1}^{\sigma^{n-1}} & \ldots & x_{n-1}^{\sigma^{n-1}}
\end{array}\right|\right\}_{x_{j} \in L}
$$

Note If $k=n-2$, this is saying that the image of a minimum polynomial for U is a L^{\times}-translate of $\sigma^{-1}\left(U^{\perp}\right)$.

Another Construction

 of U is given by$$
m_{U^{\perp}}(\sigma)=\sum_{i=0}^{n-k}\left|\begin{array}{ccc}
\sigma^{i}\left(a_{1}\right) & \ldots & \sigma^{i}\left(a_{k}\right) \\
\sigma^{n-k+1}\left(a_{1}\right) & \ldots & \sigma^{n-k+1}\left(a_{k}\right) \\
\sigma^{n-k+2}\left(a_{1}\right) & \ldots & \sigma^{n-k+2}\left(a_{k}\right) \\
\vdots & \vdots & \vdots \\
\sigma^{n-1}\left(a_{1}\right) & \cdots & \sigma^{n-1}\left(a_{k}\right)
\end{array}\right| \sigma^{i}
$$

Another Construction

Let $U=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ be a subspace of L of dimension k. A minimum polynomial for the orthogonal complement U^{\perp}
polynomials and the trace form for cyclic extensions

Rachel Quinlan of U is given by

$$
m_{U^{\perp}}(\sigma)=\sum_{i=0}^{n-k}\left|\begin{array}{ccc}
\sigma^{i}\left(a_{1}\right) & \ldots & \sigma^{i}\left(a_{k}\right) \\
\sigma^{n-k+1}\left(a_{1}\right) & \ldots & \sigma^{n-k+1}\left(a_{k}\right) \\
\sigma^{n-k+2}\left(a_{1}\right) & \ldots & \sigma^{n-k+2}\left(a_{k}\right) \\
\vdots & \vdots & \vdots \\
\sigma^{n-1}\left(a_{1}\right) & \cdots & \sigma^{n-1}\left(a_{k}\right)
\end{array}\right| \sigma^{i}
$$

If $x \in L$, then

$$
m_{U \perp}(x)=\sigma^{n-k}\left(\left|\begin{array}{cccc}
\operatorname{Tr}\left(a_{1} x\right) & \operatorname{Tr}\left(a_{2} x\right) & \ldots & \operatorname{Tr}\left(a_{k} x\right) \\
\sigma\left(a_{1}\right) & \sigma\left(a_{2}\right) & \ldots & \sigma\left(a_{k}\right) \\
\sigma^{2}\left(a_{1}\right) & \sigma^{2}\left(a_{2}\right) & \ldots & \sigma^{2}\left(a_{k}\right) \\
\vdots & \vdots & & \vdots \\
\sigma^{k-1}\left(a_{1}\right) & \sigma^{k-1}\left(a_{2}\right) & \ldots & \sigma^{k-1}\left(a_{k}\right)
\end{array}\right|\right)
$$

Last slide before conference dinner

Note $U \sim V$ means that the subspaces U and V of L are L^{\times}-translates of each other.

If $U=\left\langle a_{1}, \ldots, a_{k}\right\rangle$, write A for the $k \times k$ matrix whose (i, j) entry is $\sigma^{i-1}\left(a_{j}\right)$. Let m_{i} denote the minor of the entry in the ($1, i$)-position of A, and let U^{*} denote the space generated by the m_{i}.
Let m_{U} and $m_{U^{\perp}}$ be minimum polynomials for U and U^{\perp}. Then

1. $m_{U}(L) \sim\left(U^{*}\right)^{\perp}$
2. $m_{U \perp}(L) \sim \sigma^{n-k}\left(U^{*}\right)$
3. $U^{* *} \sim \sigma^{k}(U)$
4. U^{\perp} is a L^{\times}-translate of the image of a minimum polynomial for the space $\sigma^{-k}\left(U^{*}\right)$
