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The Setup

Let L/K be a cyclic Galois extension of degree n.

Fix a generator σ for the Galois group Gal(L/K ).

The trace function TrL/K : L −→ K is the K -linear mapping

defined for x ∈ L by

TrL/K (x) =
n−1∑
i=0

σi (x).

We denote the kernel of the trace function by T .

T is a K -hyperplane of L.

Every K -hyperplane of L is a L×-translate of T ; i.e. can be

expressed as aT for some a ∈ L×.
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The Symmetric Trace Form

The trace form on L is the nondegenerate symmetric

K -bilinear form τ : L× L −→ K defined for x , y ∈ L by

τ(x , y) = TrL/K (xy).

If U is a K -subspace of L of dimension k, then the

orthogonal complement of U with respect to the trace form

is the K -subspace of dimension n − k given by

U⊥ = {x ∈ L : τ(x , u) = 0 ∀u ∈ U}
= {x ∈ L : xu ∈ T ∀u ∈ U}

If {a1, . . . , ak} is a K -basis of U, then

U⊥ = a−1
1 T ∩ a−1

2 T ∩ · · · ∩ a−1
k T .
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Independence of Characters

Let p(σ) be a “polynomial” in the generator σ of Gal(L/K ),

with coefficients in L :

p(σ) = akσk + ak−1σ
k−1 + · · ·+ a1σ + a0.

Then p(σ) describes a K -linear endomorphism p of L by

p(x) := akxσk
+ · · ·+ a1x

σ + a0x .

Theorem (Artin : Independence of Characters)

The elements of Gal(L/K ) form a L-basis for the

endomorphism ring EndK (L).

Thus every K -endomorphism of L can be uniquely expressed

in the following form, with ai ∈ L.

an−1σ
n−1 + an−2σ

n−2 + · · ·+ a1σ + a0.
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Rank of Endomorphisms

Question Does the representation of θ ∈ Endk(L) as a

L-polynomial (of degree at most n − 1 in σ tell us anything

about the properties of θ? For example can we say anything

about the rank of θ?

Theorem (Gow)

The dimension of the kernel of θ is at most equal to deg θ.

This means : If U is a K -subspace of L of dimension k, and

p(σ) is the polynomial representation of an endomorphism

which annihiliates U, then deg(p(σ)) ≥ k.
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Minimum polynomials

Lemma

If A is a square matrix with entries in L, having the property

that each row (except the first) is the image under σ of the

previous one, then det(A) = 0 if and only if the elements of

the first row of A are linearly dependent over K.

Theorem

Let U be a K-subspace of L of dimension k. Then there

exists a polynomial mU(σ) of degree k whose kernel is U.

Proof: Write U = 〈a1, . . . , ak〉. Write

mU(σ) =

∣∣∣∣∣∣∣∣∣∣
a1 a2 . . . ak 1

σ(a1) σ(a2) . . . σ(ak) σ
...

...
...

...

σk(a1) σk(a2) . . . σk(ak) σk

∣∣∣∣∣∣∣∣∣∣
.
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Minimum polynomials (continued)

Note Composition of K -endomorphisms of L corresponds to

the following skew multiplication of polynomials in σ(∑
aiσ

i
)
◦

(∑
bjσ

j
)

=
∑

aib
σi

j σi+j

Lemma

Suppose U ⊆ ker p(σ) for some subspace U of L of

dimension k. Then

p(σ) = q(σ) ◦mU(σ).

Corollary

All polynomials of degree k that annihilate U are left

L×-multiples of each other.

We refer to these as minimum polynomials for U.
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Special Case : hyperplanes

Suppose U = 〈a1, . . . , an−1〉 = a−1T is a K -hyperplane in L.

So a = 〈a1, . . . , an−1〉⊥.

Two minimum polynomials for U :

I

mU(σ) =

∣∣∣∣∣∣∣∣∣
a1 a2 . . . an−1 1

σ(a1) σ(a2) . . . σ(an−1) σ
...

...
...

...

σn−1(a1) σn−1(a2) . . . σn−1(an−1) σn−1

∣∣∣∣∣∣∣∣∣ .

I m′
U(σ) = aσn−1

σn−1 + aσn−2
σn−2 + · · ·+ aσσ + a

These two polynomials must be L×-multiples of each other.

If n is odd, it follows that a is a K×-multiple of the constant

term of mU(σ). Thus in this case

〈a1, . . . , an−1〉⊥ =
〈∣∣σi (aj)

∣∣〉
1≤i , j≤n−1

.
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Further properties for odd degree extensions

Suppose that n is odd and let U = 〈a1, . . . , ak〉 be a

subspace of L of dimension k < n − 1. Then

U⊥ =



∣∣∣∣∣∣∣∣∣∣
aσ
1 . . . aσ

k xσ
k+1 . . . xσ

n−1

aσ2

1 . . . aσ2

k xσ2

k+1 . . . xσ2

n−1
...

...
...

...

aσn−1

1 . . . aσn−1

k xσn−1

k+1 . . . xσn−1

n−1

∣∣∣∣∣∣∣∣∣∣


xj∈L

Note If k = n − 2, this is saying that the image of a

minimum polynomial for U is a L×-translate of σ−1(U⊥).
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Another Construction
Let U = 〈a1, . . . , ak〉 be a subspace of L of dimension k.

A minimum polynomial for the orthogonal complement U⊥

of U is given by

mU⊥(σ) =
n−k∑
i=0

∣∣∣∣∣∣∣∣∣∣∣∣

σi (a1) . . . σi (ak)

σn−k+1(a1) . . . σn−k+1(ak)

σn−k+2(a1) . . . σn−k+2(ak)
...

...
...

σn−1(a1) . . . σn−1(ak)

∣∣∣∣∣∣∣∣∣∣∣∣
σi .

If x ∈ L, then

mU⊥(x) = σn−k



∣∣∣∣∣∣∣∣∣∣∣∣

Tr(a1x) Tr(a2x) . . . Tr(akx)

σ(a1) σ(a2) . . . σ(ak)

σ2(a1) σ2(a2) . . . σ2(ak)
...

...
...

σk−1(a1) σk−1(a2) . . . σk−1(ak)

∣∣∣∣∣∣∣∣∣∣∣∣
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Last slide before conference dinner

Note U ∼ V means that the subspaces U and V of L are

L×-translates of each other.

If U = 〈a1, . . . , ak〉, write A for the k × k matrix whose (i , j)

entry is σi−1(aj). Let mi denote the minor of the entry in

the (1, i)-position of A, and let U∗ denote the space

generated by the mi .

Let mU and mU⊥ be minimum polynomials for U and U⊥.

Then

1. mU(L) ∼ (U∗)⊥

2. mU⊥(L) ∼ σn−k(U∗)

3. U∗∗ ∼ σk(U)

4. U⊥ is a L×-translate of the image of a minimum

polynomial for the space σ−k(U∗)
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