The Number of Irreducible Polynomials of Degree n over \mathbb{F}_{q} with Given Trace and Constant Terms

B. Omidi Koma
School of Mathematics and Statistics, Carleton University bomidi@math.carleton.ca

Joint work with
D. Panario and Q. Wang

Fq9, July 2009

Definitions

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial of degree n over \mathbb{F}_{q}, where $q=p^{\omega}$ with p a prime number. We define:
$N(n, q)$: the number of irreducible polynomials of degree n over \mathbb{F}_{q}.
$N(n, c, q)$: the number of irreducible polynomials of degree n with given constant term $a_{0}=c$.
$N_{\gamma}(n, q)$: the number of irreducible polynomials of degree n and trace $a_{n-1}=\gamma$.
$N_{\gamma}(n, c, q)$: the number of irreducible polynomials of degree n, trace $a_{n-1}=\gamma$, and constant term $a_{0}=c$.

Previous results

Carlitz (1952) and Kuz'min (1990) give the number of irreducible polynomials with the first coefficient prescribed and the first two coefficients prescribed (over $\mathbb{F}_{p^{3}}$), respectively.

Fitzgerald and Yucas (2003) consider the number of irreducible polynomials of odd degree n over \mathbb{F}_{2} with the first three coefficients prescribed.

The number of irreducible polynomials of even degree n over \mathbb{F}_{2} with the first three coefficients prescribed is considered by Yucas and Mullen (2004).

Let $n=p^{\kappa} \psi$ where $p \nmid \psi$. For $\gamma \neq 0$, Yucas (2006) shows that

$$
N_{\gamma}(n, q)=\frac{1}{n q} \sum_{d \mid \psi} \mu(d) q^{n / d}
$$

For the case $\gamma=0$, Yucas (2006) proves that

$$
N_{0}(n, q)=\frac{1}{n q} \sum_{d \mid \psi} \mu(d) q^{n / d}-\frac{\varepsilon}{n} \sum_{d \mid \psi} \mu(d) q^{n / d p}
$$

where $\varepsilon=0$ if $\kappa=0$, and $\varepsilon=1$ if $\kappa>0$.
Moreover Yucas (2006) gives the number $N(n, c, q)$.
There is no general formula for the number $N_{\gamma}(n, c, q)$ but there are some proven bounds.

Wan (1997) gives the bound

$$
\left|N_{\gamma}(n, c, q)-\frac{q^{n-1}}{n(q-1)}\right| \leq \frac{3}{n} q^{\frac{n}{2}} .
$$

For a nonzero trace, Moisio (2008) provides

$$
\left|N_{\gamma}(n, c, q)-\frac{q^{n}-1}{n q(q-1)}\right|<\frac{2}{q-1} q^{\frac{n}{2}} .
$$

Also for zero trace, Moisio (2008) gives

$$
\left|N_{0}(n, c, q)-\frac{q^{n-1}-1}{n(q-1)}\right|<\frac{2}{q-1} q^{\frac{n}{2}} .
$$

In this work we improve these bounds on $N_{\gamma}(n, c, q)$ for some particular cases. We show with concrete examples.

Relation between different nonzero traces

Lemma

Let γ and δ be two nonzero traces. If c is a constant from \mathbb{F}_{q}^{\times}, then

$$
N_{\gamma}(n, c, q)=N_{\delta}\left(n, c\left(\frac{\delta}{\gamma}\right)^{n}, q\right)
$$

Proof. Use the bijection $\varphi: P_{\gamma}(n, c, q) \rightarrow P_{\delta}\left(n, c\left(\frac{\delta}{\gamma}\right)^{n}, q\right)$.
Let $\mathbb{F}_{q}=\left\{a_{0}=0, a_{1}=1, a_{2}, \ldots, a_{q-1}\right\}$, and $c=a_{j} \in \mathbb{F}_{q}^{\times}$, for some j in $\{1,2, \ldots, q-1\}$. Also $\gamma=a_{i}$, where $0 \leq i \leq q-1$.

Table: Distribution of polynomials of degree n over a finite field \mathbb{F}_{q}.

Tr Cons	a_{1}	\cdots	a_{j}	\cdots	a_{q-1}	Row Total
a_{0}	$y_{0,1}$	\cdots	$y_{0, j}$	\cdots	$y_{0, q-1}$	$N_{0}(n, q)$
a_{1}	$x_{1,1}$	\cdots	$x_{1, j}$	\cdots	$x_{1, q-1}$	$N_{1}(n, q)$
\vdots	\vdots		\vdots		\vdots	\vdots
a_{i}	$x_{i, 1}$	\cdots	$x_{i, j}$	\cdots	$x_{i, q-1}$	$N_{i}(n, q)$
\vdots	\vdots		\vdots			\vdots
a_{q-1}	$x_{q-1,1}$	\cdots	$x_{q-1, j}$	\cdots	$x_{q-1, q-1}$	$N_{q-1}(n, q)$
Column Total	$N(n, 1, q)$	\cdots	$N(n, j, q)$	\cdots	$N(n, q-1, q)$	$N(n, q)$

If we add all the entries of any column $c=a_{j}$, then

$$
y_{0, j}+\sum_{i=1}^{q-1} x_{i, j}=N(n, j, q)
$$

Let $R_{j}=\{1,2, \ldots, k\}$ be the set of indices i in the column a_{j} such that no $x_{i, j}$ is repeated. Then $R_{j} \subseteq\{1,2, \ldots, q-1\}$, and

$$
y_{0, j}+\sum_{i \in R_{j}} A_{i, j} x_{i, j}=N(n, j, q),
$$

where $A_{i, j}$ is the number of times $x_{i, j}$ appears in the entries of column a_{j}.

Let $x_{r, j}=\max \left\{x_{i, j}: i \in R_{j}\right\}$. Then we have the following bounds.

Our bounds for $N_{\gamma}(n, c, q)$

Lemma

If $c=a_{j}$ is a given constant from \mathbb{F}_{q}^{\times}, for some $1 \leq j \leq q-1$, then

$$
\begin{aligned}
\frac{N(n, j, q)}{q-1} & -\frac{q^{n-1}-1}{n(q-1)^{2}}-\frac{2 q^{\frac{n}{2}}}{(q-1)^{2}} \leq x_{r, j} \\
& \leq \frac{N(n, j, q)}{A_{r, j}}-\frac{q^{n-1}-1}{n(q-1) A_{r, j}}+\frac{2 q^{\frac{n}{2}}}{(q-1) A_{r, j}} .
\end{aligned}
$$

Definition

Let q and n be two positive integers, and $q^{n}-1=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{t}^{e_{t}}$, where p_{t} is the largest prime factor of $q^{n}-1$. The pair (q, n) is said to be a lps (or largest prime survives) pair of integers, if $p_{t} \nmid q^{m}-1$, for $m<n$.

Theorem

Suppose that (q, n) is a lps pair of integers, and $c=a_{j} \in \mathbb{F}_{q}^{\times}$be such that $\rho=\operatorname{ord}(c)$, for some $1 \leq j \leq q-1$. If p_{t} is the largest prime in the factorization of $q^{n}-1$, then

$$
\begin{aligned}
& \frac{\left(1-\frac{1}{p_{t}}\right)\left(q^{n}-1\right)-q^{n-1}-2 n q^{\frac{n}{2}}+1}{n(q-1)^{2}} \leq x_{r, j} \\
& \quad \leq \frac{1}{A_{r, j}}\left(\frac{q^{n}-1}{n \rho}-\frac{q^{n-1}-1}{n(q-1)}+\frac{2 q^{\frac{n}{2}}}{q-1}\right) .
\end{aligned}
$$

Table: Different lower bounds for $x_{r, j}$.

	Degree n	
\mathbb{F}_{q}	4	11
\mathbb{F}_{4}	$(0,0,1.74)$	$(31216.48,31030.21,31257.89)$
\mathbb{F}_{5}	$(0,0,3.94)$	$(220040.28,220107.19,221072.5)$
\mathbb{F}_{7}	$(0,4.14,8.24)$	$(4267800.61,4272351.16,4277440.6)$
\mathbb{F}_{8}	$(0,7.16,14.07)$	$(13919422.13,13931249.46,13940889.49)$
\mathbb{F}_{9}	$(0,10.66,19.62)$	$(39574237.19,39600149.44,39605439.16)$
\mathbb{F}_{11}	$(0,19.18,30.25)$	$(235649092.99,235740989.11,235783942.58)$
\mathbb{F}_{13}	$(0,29.7,40.51)$	$(1044017409.66,1044270464.84,1044301207.22)$

In each entry (a, b, c), a represents the lower bound obtained by Wan, b by Moisio, and c ours.

Remarks

(1) Our lower bound is always better than Moisio's lower bound for all good pair of integers (n, q).
(2) Our upper bound is better than Moisio's upper bound, if $A_{r, j}=m=q-1$. We show that this is the case if n is a multiple of $q-1$.

The special case n being a multiple of $q-1$

In some special cases, Moisio (2008) has found $N_{\gamma}(n, c, q)$.
If $\operatorname{gcd}(p, n, q-1)=1$ then

$$
N_{0}(n, c, q)=\frac{1}{n(q-1)} \sum_{d \mid n} \mu\left(\frac{n}{d}\right)\left(q^{d-1}-1\right)
$$

and if $n=p^{k}$, for some integer k, then

$$
N_{0}(n, c, q)=\frac{1}{n(q-1)}\left(q^{n-1}-q^{\frac{n}{p}}\right) .
$$

We consider now the special case when n is a multiple of $q-1$.

Theorem

Let $n=a(q-1)$, for some integer a, and $c \in \mathbb{F}_{q}^{\times}$be primitive.
Then

$$
N(n, c, q) \leq \frac{q^{n}-1}{a(q-1)^{2}}
$$

In addition, if q and n are such that $p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}} \nmid q^{m}-1$, for m multiple of $q-1$ and $m<n$, where $q^{n}-1=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}} p_{k+1}^{e_{k+1}} \ldots p_{t}^{e_{t}}$, then $N(n, c, q)=\frac{q^{n}-1}{a(q-1)^{2}}$.

Moreover, for any nonprimitive constant $c^{\prime} \in \mathbb{F}_{q}^{\times}$, we have $N\left(n, c^{\prime}, q\right) \leq \frac{q^{n}-1}{a(q-1)^{2}}$.

Therefore when $n=a(q-1)$ the maximum value of $N(n, j, q)$ occurs, when $c=a_{j} \in \mathbb{F}_{q}^{\times}$is primitive.

Theorem

Let γ and δ be two nonzero traces. If $n=a(q-1)$, and c is a constant from \mathbb{F}_{q}^{\times}, then

$$
N_{\gamma}(n, c, q)=N_{\delta}(n, c, q)
$$

When $n=a(q-1)$ and the constant term is fixed, we have the same number of irreducible polynomials for any different nonzero traces.

Table: The number of polynomials of degree $n=a(q-1)$ over a finite field \mathbb{F}_{q}

Tr Const	a_{1}	\cdots	a_{j}	\cdots	a_{q-1}	Total
a_{0}	y_{1}	\cdots	y_{j}	\cdots	y_{q-1}	$N_{0}(n, q)$
a_{1}	x_{1}	\cdots	x_{j}	\cdots	x_{q-1}	$N_{1}(n, q)$
\vdots	\vdots		\vdots		\vdots	\vdots
a_{i}	x_{1}	\cdots	x_{j}	\cdots	x_{q-1}	$N_{i}(n, q)$
\vdots	\vdots		\vdots		\vdots	\vdots
a_{q-1}	x_{1}	\cdots	x_{j}	\cdots	x_{q-1}	$N_{q-1}(n, q)$
Total	$N(n, 1, q)$	\cdots	$N(n, j, q)$	\cdots	$N(n, q-1, q)$	$N(n, q)$

In the table, we have the same rows for different nonzero $\gamma \in \mathbb{F}_{q}^{\times}$. Let A_{j} be the number of repeated entries of the column a_{j}, where $1 \leq j \leq q-1$.

Therefore $A_{j}=q-1$.

For each column related to constant c, we have

$$
y_{c}+(q-1) x_{c}=N(n, c, q),
$$

and we have the following bounds for x_{c}.

Theorem

If $n=a(q-1)$ and $c \in \mathbb{F}_{q}^{\times}$is a primitive constant, then we have

$$
\left|x_{c}-\frac{q^{n}-q^{n-1}}{a(q-1)^{3}}\right| \leq \frac{2}{(q-1)^{2}} q^{\frac{n}{2}} .
$$

Table: Bounds for x_{c}, for different finite fields \mathbb{F}_{q}, when $n=q-1$.

q	Wan	Moisio	Our Bounds	Max/Min
4	$[0,9.78]$	$[0,5.39]$	$[0,4.407]$	1
5	$[0,26.56]$	$[0,16]$	$[3.109,12.484]$	$[7,8]$
7	$[295.36,638.36]$	$[401.78,531.94]$	$[438.273,495.439]$	$[466,471]$
8	$[4729.24,5970.52]$	$[5126.36,5573.38]$	$[5261.212,5438.537]$	5344
9	$[72273.52,74938.92]$	$[73877.78,75590]$	$[74426.342,75041.436]$	74691
11	$[23,531,161,23,627,792]$	$[23,563,189,23,595,764]$	$[23,574,645,23,584,308]$	$[23,578,887,23,580,368]$

Each entry $[x, y]$ of the table, represents the corresponding [lower bound, upper bound].

Theorem

Suppose (q, n) is a lps pair, and $n=a(q-1)$, for some integer a. Let $c^{\prime} \in \mathbb{F}_{q}^{\times}$be a nonprimitive constant. If p_{t} is the largest prime in the factorization of $q^{n}-1$, then we have

$$
\begin{gathered}
\frac{\left(1-\frac{1}{p_{t}}\right)\left(q^{n}-1\right)-q^{n-1}-2 a(q-1) q^{\frac{n}{2}}+1}{a(q-1)^{3}} \leq x_{c^{\prime}} \\
\leq \frac{q^{n}-q^{n-1}+2 a(q-1) q^{\frac{n}{2}}}{a(q-1)^{3}} .
\end{gathered}
$$

Table: Bounds for $x_{c^{\prime}}$, for different finite fields \mathbb{F}_{q}, with $n=q-1$.

q	Wan	Moisio	Our Bounds	Min/Max
4	$[0,9.78]$	$[0,5.39]$	$[0,3.56]$	2
5	$[0,26.56]$	$[0,16]$	$[3.94,10.94]$	$[7,8]$
7	$[295.36,638.36]$	$[401.78,531.94]$	$[435.139,485.917]$	$[458,471]$
8	$[4729.24,5970.52]$	$[5126.36,5573.38]$	$[5272.626,5408.986]$	$[5337,5360]$
9	$[72273.52,74938.92]$	$[73877.78,75590]$	$[74093.32,74938.922]$	$[74700,74754]$
11	$[23,531,161,23,627,792]$	$[23,563,189,23,595,764]$	$[23,574,323,23,582,697]$	$[23,578,378,23,579,568]$

Conclusions and future work

The overall goal of this project is to find the exact value of $N_{\gamma}(n, c, q)$, for any trace γ, constant c, and degree n. This seems to be a hard problem.

Bounds on $N_{\gamma}(n, c, q)$ have been given and we improve those bounds for some special cases. Moisio uses Kloosterman sums to find $N_{\gamma}(n, c, q)$ in some special cases different than ours (for example, for $n=p^{k}>2$, and $\gamma c \neq 0$).

For the future, we plan to study $N_{\gamma}(n, c, q)$ for other special cases of n, c and γ.

