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Error-correcting codes

An error-correcting code (or simply a code) is a scheme

for detecting and correcting transmission errors in noisy

communication channels. A code operates by adding re-

dundant information to messages. As the signal alphabet

we use Fq, the finite field with q elements (q prime power).

For integers 1 ≤ k ≤ n, an [n, k] code over Fq is a k-

dimensional linear subspace C of Fnq .



For a,b ∈ Fnq , define the Hamming metric d(a,b) to be

the number of coordinates in which a and b differ. Define

the minimum distance

d(C) = min {d(a,b) : a,b ∈ C, a 6= b}.

Note thatC adds n−k redundant symbols to k information

symbols for error correction. It is well known that C can

correct up to b(d(C) − 1)/2c transmission errors in each

coded message block of length n.



The aim of coding theory is to construct [n, k] codes C over

Fq with large minimum distance d(C) for given n and k,

or with a large relative minimum distance
d(C)
n for a given

information rate k
n.

The above defines a linear code. A general code of length n

is a subset C of Fnq with |C| ≥ 2. The minimum distance

d(C) is defined as before. We have the same result about

the error-correction capability for general codes C.



Global function fields

Let F/Fq be a global function field with full constant field

Fq. This means:

(i) F is an algebraic function field with constant field Fq;
(ii) Fq is algebraically closed in F .

A place of F is an equivalence class of valuations of F .

νP = normalized valuation belonging to the place P .



A divisor of F is a formal sum
∑
P nPP with nP ∈ Z and

all but finitely many nP = 0.

The divisors of F form a free abelian group generated by

the places of F .

The principal divisor of f ∈ F ∗ is

div(f ) =
∑
P

νP (f )P.



F/Fq global function field of genus g.

G divisor of F .

The Riemann-Roch space

L(G) = {f ∈ F ∗ : div(f ) +G ≥ 0} ∪ {0}

is a finite-dimensional vector space over Fq.
Write `(G) = dim(L(G)).

By the Riemann-Roch theorem

`(G) ≥ deg(G) + 1− g,

with equality if deg(G) ≥ 2g − 1.



Def. A place of F/Fq is rational if it has degree 1, i.e., if

its residue class field is Fq.

Put

N(F ) = number of rational places of F ,

g(F ) = genus of F .

Weil bound:

N(F ) ≤ q + 1 + 2g(F )q1/2.



Def. For any prime power q and any integer g ≥ 0, let

Nq(g) = max N(F ),

where max. over all F/Fq with g(F ) = g.

Remark. Nq(g) is also the max. number of Fq-rational

points that a projective, smooth, absolutely irreducible al-

gebraic curve over Fq of genus g can have.



Algebraic-geometry codes

Introduced by Goppa (1977–81). We use the language of

global function fields.

• F/Fq global function field of genus g.

• P1, . . . , Pn distinct rational places of F .

• G divisor of F with Pi /∈ supp(G) for 1 ≤ i ≤ n.



For f ∈ L(G)∗ we have by definition

div(f ) +G ≥ 0,

hence νPi(f ) ≥ 0 for 1 ≤ i ≤ n. This holds trivially for

f = 0 as well. Thus, f lies in the valuation ring OPi of Pi.

The residue class of f modulo the maximal ideal of OPi is

in the residue class field Fq and denoted by f (Pi).

An algebraic-geometry code is defined as the image of the

Fq-linear map

f ∈ L(G) 7→ (f (P1), . . . , f (Pn)) ∈ Fnq .



If g ≤ deg(G) < n, get linear [n, k] code C over Fq with

k = `(G) ≥ deg(G) + 1− g,

d(C) ≥ n− deg(G).

Thus

k + d(C) ≥ n + 1− g.

Note that by the Singleton bound we always have

k + d(C) ≤ n + 1.



Example. Let F = Fq(x) be the rational function field

over Fq. We have genus g = 0 in this case.

Let P∞ be the infinite place of F , i.e., P∞ corresponds to

the negative degree map.

For any integer k ≥ 1, put

Gk = (k − 1)P∞.

Then L(Gk) consists exactly of all polynomials over Fq of

degree ≤ k − 1, and so `(Gk) = k.



Consider the algebraic-geometry code C with G = Gk.

The rational places P1, . . . , Pn of F correspond to distinct

elements a1, . . . , an of Fq, thus must assume n ≤ q. We

also assume 1 ≤ k ≤ n. The code C is the image of the

injective Fq-linear map

f ∈ L(Gk) 7→ (f (a1), . . . , f (an)) ∈ Fnq .

This is called a Reed-Solomon code. It is a linear [n, k]

code over Fq with k + d(C) = n + 1, and so it meets the

Singleton bound.



Asymptotic theory of codes

C code over Fq.
n(C) = length of C,

|C| = size of C,

d(C) = minimum distance of C.

Def. Uq = set of pairs (δ, R) ∈ [0, 1]2 such that ∃ sequence

C1, C2, . . . of codes over Fq with n(Ci) → ∞ as i → ∞
and

δ = lim
i→∞

d(Ci)

n(Ci)
, R = lim

i→∞

logq |Ci|
n(Ci)

.



Known: ∃ function αq on [0, 1] such that

Uq = {(δ, R) : 0 ≤ R ≤ αq(δ), 0 ≤ δ ≤ 1}.

αq is nonincreasing with αq(0) = 1 and αq(δ) = 0 for

(q − 1)/q ≤ δ ≤ 1.

The values of αq(δ) for 0 < δ < (q − 1)/q are not known.



Basic problem of coding theory:

find good lower bounds on αq in the interval (0, (q−1)/q).

For 0 < δ < 1 define the q-ary entropy function by

Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ).

Put

RGV(q, δ) = 1−Hq(δ).

Gilbert-Varshamov bound (1950s):

αq(δ) ≥ RGV(q, δ) ∀δ ∈
(

0,
q − 1

q

)
.



The TVZ bound

For any q put

A(q) = lim sup
g→∞

Nq(g)

g
.

From Weil bound get A(q) ≤ 2q1/2.



Ihara (1981): A(q) ≥ q1/2 − 1 for squares q.

Vlăduţ-Drinfeld (1983): A(q) ≤ q1/2 − 1 ∀q.

Garcia-Stichtenoth (1995): if q is a square, then A(q) =

q1/2 − 1 can be achieved by an explicit tower of global

function fields.

Serre (1983): A(q) ≥ c log q for all q with abs. constant

c > 0.

Xing-Yeo (2007): A(2) ≥ 97
376 = 0.2579 . . . .



Tsfasman-Vlăduţ-Zink bound (1982). ∀δ ∈ [0, 1]

αq(δ) ≥ RAG(q, δ) := 1− 1

A(q)
− δ.

Sketch of proof. From def. of A(q) get sequence F1, F2, . . .

of global function fields over Fq such that gi := g(Fi) and

ni := N(Fi) satisfy

lim
i→∞

gi = ∞, lim
i→∞

ni
gi

= A(q).

Obtain sequence C1, C2, . . . of AG codes with

ki + di ≥ ni + 1− gi

and n(Ci) = ni →∞ as i→∞. Divide by ni.



Pass to a subsequence, if necessary, and let i→∞. Then

we get (δ, R) ∈ Uq with

R + δ ≥ 1− 1

A(q)
.

Thus

αq(δ) ≥ R ≥ 1− 1

A(q)
− δ. QED

Big triumph of AG codes: for suitable q we have

RAG(q, δ) > RGV(q, δ)

on a subinterval of (0, (q−1)/q) containing (q−1)/(2q−1).

Tsfasman-Vlăduţ-Zink (1982): for all squares q ≥ 49.



Zink (1985), Bezerra-Garcia-Stichtenoth (2005): for all suf-

ficiently large cubes q.

H.N.-Xing (1998): for sufficiently large composite non-

squares q.

The proofs are based on A(q) = q1/2 − 1 (TVZ) and on

lower bounds on A(q).

H.N.-Xing, Rational Points on Curves over Finite Fields:

Theory and Applications, Cambridge Univ. Press, 2001.



Improving the TVZ bound globally

Local improvements on the TVZ bound, i.e., improvements

on small intervals of δ-values, were already obtained by

Vlăduţ (1987), Elkies (2001), and Xing (2001). Global

improvements, i.e., improvements for all δ ∈ [0, 1], were

achieved only recently.



Xing (2003): ∀δ ∈ [0, 1]

αq(δ) ≥ 1− 1

A(q)
− δ +

∞∑
i=2

logq

(
1 +

q − 1

q2i

)
.

The proof is nonconstructive.

H.N.-Özbudak (2004): ∀δ ∈ [0, 1]

αq(δ) ≥ 1− 1

A(q)
− δ + logq

(
1 +

1

q3

)
.

It is an easy exercise to verify that the NÖ bound is always

better than the Xing bound.



The proof of the NÖ bound is constructive on an interval

of the form [0, cq] with cq → 1 as q →∞.

Stichtenoth-Xing (2005): NÖ bound by simpler construc-

tion. Consider

φ : f ∈ L(G) 7→ (f (P1), . . . , f (Pn)) ∈ Fnq
in the definition of an AG code. Nonlinearity is created in

two ways:



(i) φ is restricted to a subset S of L(G) which is not nec-

essarily an Fq-linear subspace;

(ii) if Pi is in the support of an aux. divisor, the coordinate

f (Pi) is changed to 0.

The code is C = ψ(S) ⊆ Fnq , where ψ is the modified

version of φ.

The NÖ bound is obtained by using a sequence of function

fields with gi →∞ and ni/gi → A(q).



Further improvements

H.N.-Özbudak (Finite Fields Appl., 2007)

• F/Fq global function field.

• P1, . . . , Pn distinct rational places of F .

• G divisor of F with Pi /∈ supp(G) for 1 ≤ i ≤ n.



In addition to φ : L(G) → Fnq , consider

φ1 : f ∈ L(G) 7→ (f ′(P1), . . . , f
′(Pn)) ∈ Fnq ,

where f ′(Pi) is the coefficient of the linear term in the local

expansion of f at Pi.

Let B(c; r) ⊆ Fnq be the Hamming ball with center c and

radius r. The code is

C = φ1(φ
−1(B(c; r))) ⊆ Fnq .



A major effort in the construction is expended on finding a

distinguished divisor G of F which has a prescribed degree

and satisfies

L(G−D) = {0}
for a (large) finite family of positive divisors D of F .

This divisor is then used in the above construction together

with suitable choices of c and r. As usual, the construction

is applied to a sequence of function fields with gi →∞ and

ni/gi → A(q).



The final result is

αq(δ) ≥ 1− 1

A(q)
− δ + logq

(
1 +

q − 1

q4

)
+ hq(δ)

with a complicated nonnegative function hq.

This yields local improvements on the old NÖ bound from

2004.

Example 1. q = 64, δ ≈ 0.2988. The new NÖ bound

beats the old NÖ bound by about 1.6 · 10−6 and the GV

bound by about 2.6 · 10−3.

Example 2. q = 49, δ ≈ 0.6089. The new NÖ bound



beats the old NÖ bound by about 5 · 10−10 and the GV

bound by about 2 · 10−3.

Example 3. q = 221, δ ≈ 0.0104. The new NÖ bound

beats the old NÖ bound by about 1.3 · 10−18 and the GV

bound by about 3.2 · 10−8.

Maharaj (2007): refined the Stichtenoth-Xing approach

and obtained several local improvements on the new NÖ

bound.



H.N.-Özbudak (SIAM J. on Discrete Math., 2007)

Combined for the first time three major tools:

(i) distinguished divisors;

(ii) local expansions of arbitrary length;

(iii) averaging arguments.

This leads to local improvements on all previous bounds, at

the cost of considerable complications in the analysis. This

approach yields also improved bounds in the asymptotic

theory of linear codes.



Yang-Qi (to appear)

Extend method in H.N.-Özbudak (Finite Fields Appl., 2007).

The basic approach is the same, but instead of φ1 they work

with the map

φ2 : f ∈ L(G) 7→ (f ′′(P1), . . . , f
′′(Pn)) ∈ Fnq ,

where f ′′(Pi) is the coefficient of the quadratic term in the

local expansion of f at Pi.

This yields

αq(δ) ≥ 1− 1

A(q)
−δ+logq

(
1 +

2

q3

)
+logq

(
1 +

q − 1

q6

)
for sufficiently large q and certain ranges of δ.



Problem. The proofs of the TVZ bound and its im-

provements use only rational places of suitable global func-

tion fields. We know general constructions of AG codes

(NXL, XNL) that use places of higher degrees as well. Do

these constructions lead to improvements on the bounds

discussed here?


