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Section [0 Introduction
Generalized quadratic APN functions was defined by S.Yoshiara.
Let F' and R be vector spaces over GF'(2).
A function f from F' to R is called almost perfect nonlinear if
t{ex € F| f(x+a)+ f(z) =b } < 2forevery a € F* and every
beR.
Strongly EA-equivalence of two APN functions f and g from F
to R is defined as

glx)=L-f -l(x)+ A(x) (Vo eF)

where £ is a bijective linear mapping on F' and L is a bijective
linear mapping on R and A is an affine mapping from F' to R.
A function f from F' to R is called quadratic if

flety+2)+ fe+y)+f (y+2)+f (o) +f(2)+f(y)+f(2)+F(0) = 0

for all elements z, y, z of F. Define as

by(z,y) = f(x+y) + flz)+ fly) + f(0).



We denote the alternating tensor product of F' by F' A F.
A subspace W of F' A\ F is called a nonpure subspace if

Wn{zAylz,yeF}={0}

Theorem 1 (S.Yoshiara)
Let {e1, e, -+, en} be a basis of F, a map ~y be a linear func-
tion from F' A F onto R such that Ker(y) is a nonpure sub-
space and a map o be an affine map from F to R. Then
the function f = f,, defined by the following formula is a
quadratic APN function.

m m

f(z LEZ‘GZ') = Z LEZ'LE]'(GZ' N 6]')7 + (Z xiei)a.

1=1 0<i<j<n 1=1
Conversely, for every quadratic APN function f from F to
R such that by is surjective, there is a unige pair (v, a) sat-
isfying [ = f,o where v is a linear map from FFNF to R
such that Ker(v) is a nonpure subspace and « is an affine
map from F' to R.

An automorphism g € GL(F) induces an automorphism
g of '\ F' defined as
g(X aije; Nej) =3 a;;g(e;) A gle;).

Put G :={ g | g € GL(F)}. For subspaces Wi, W5 of F' A F,
we define W, is G-equivalent to W; iff Wo = ¢(W;) for an
automorphism g € GL(F).



Theorem 2 (N.N.)

Suppose that f and g are quadratic APN functions from F
to R such that f = f,, and g = f’yl,a/ for ”y,”/ are linear
maps from F AN F to R which kernels are nonpure subspaces
and oz,oz/ are affine maps from F to R. Then f 1is strongly
EA-equivalent to g iff Ker(v) is G-equivalent to Ker(7').

Section 2 Vector spaces of alternating bilinear forms over

GF(2).

Let F' be a m dimensional vector space over GF'(2) whose
basis is {e, e, -, €m}
A mapping B from F' x F to GF(2) satisfying the following
conditions is called an alternating bilinear form over F.

B(x+vy,2) = B(z,2)+ B(y,2), B(z,z)=0(Vx € F).

Then note that B(x,y) = B(y, ).
The set of alternating bilinear forms over F'is a vector space of
dimension m(m — 1)/2 over GF(2). We denote this space by
B(m, 2), and the set of m x m alternating matrices over GF'(2)
by A,,(2).

We have

B(m,2) = A,,(2) = FAF,
B +—— (B(GZ', Gj))iz (ai,j)<—> Z% ai,j(ei VAN Gj).

as vector spaces over GF'(2) by the above correspondences.

The rank(B) for B € B(m,2) means the rank of the matrix

(Bleiye)))-



It is well known that
the value of rank(B) is even for VB € B(m, 2).

nonzero pure vectors of F'AF corespond to elements of B(m, 2)
with rank(B) = 2.

Under this point, we will consider B(m, 2) instead of F' A F.
Its arguments are linear algebras over GF'(2).

Theorem 3 (Delsarte and Goethals)
Let B be any element of B(m,2) and F be the finite field
GF(2™), moreover set m = 2r + 1. Then we have

B(z,y) = Tr(Lp(x)y) where

Lp(r) = é(ﬁz‘xﬂ + (Biz)

and B; € F for1 <1 <.

22T+1—i)

Theorem 4 If m = 2r is enen Then we have
B(z,y) = Tr(Lp(x)y) where

r—1

Lyp(x) = T (B + (Bx)” ) + Ba”

and B; € F for1 <i<r—1, 5, € GF(2").

We note that Lp € End(F'). We write B = B(B4,---,05;)
because B is determined by 3y, - - -, 0. Here we identifies ' A\ F
with B(m, 2). Then a non-pure subspace of F'A F' coresponds to
a subspace W of B(m, 2) satisfying rank(B) > 2 for all nonzero
element B € W.



Let W be non-pure subspace of dimension k of B(m, 2). Put
R := B(m,2)/W. Then dim(R) = (m?* — m)/2 — k, and
the natural homomorphism ¢ from B(m,2) onto R cause a
quadratic APN function f from F' to R as we know
by Theorem 1. We denote this function f by fiy.

Theorem 5 (Delsarte and Goethals)
Let W be a non-pure subspace of B(m,2). Then we have
dim(W) < (m? — 3m)/2.

We call W is a maximal non-pure subspace if the equality in
Theorem 5 holds.

Let W be a maximal non-pure subspace of B(m, 2).
Then fy is a quadratic APN function on F' because that R is
isomorphic to F.
Note that (m* —m)/2 — (m? —3m)/2 = m.

Theorem 6 (Delsarte and Goethals)
Let m = 2r + 1 be an odd positive integer. Then

W (B =0):={B(b,B2,--,8) € B(m,2) | =0}
is a mazximal non-pure subspace of B(m,2).

Note that a quadratic APN function fyy(3,—0) on F'is a strogly
EA-equivalent to Gold functions.
(by S.Yoshiara)



Theorem 7 (N.N.)
Let m = 2r + 1 be an odd positive integer. Then

W(62 — O) = {B<517527 T 757“) S B<m7 2) | 62 — O}
is a mazximal non-pure subspace of B(m,2).

We note that W (3; = 0) contains at least a nonzero pure vector
for ¢ > 2.

[ believe that the quadratic APN function fyy(3,—0) is strongly
EA-inequivalent to fy(,—o) though the proof is not complete yet
untill now.

Section 3 Pure vectors and the number of solutions of linear
equations related to B(m, 2)

We have a necessary and suficient conditions such that B =
B(B1, Ba, -+ -, Br) is puer as follows.

Theorem 8 (N.N.)
Let m = 2r + 1 be an odd positive integer. Suppose that

B # 0.
Then rank(B = B(8y, B2, -+, 0:)) =2, (i.e.B is pure)

if and only if B # 0 and
Bof3; + B1Biy = By B for 2 <t <r—1

r+1
and (3,07 + BB, = 267



Theorem 9 (N.N.)

Let m = 2r be an even positive integer. Suppose that B; # 0.
Then rank(B = B(fy, B2, -+, 0:)) =2, (i.e.B is pure)

iof and only iof B # 0 and

BofB2 + 1B}, = (2B for 2<t<r—1

and (282 + G158, = 8267

Let’s consider the equation Lp(z) = 0 for
B = B(f,+-,8,) € B(m,2). Put X := 2% Then

/61X+/82X2_|_. . ._|_/6TX2T_1_|_/BET+1X2T_|_ 227‘ 1X22T 2 22TX227‘ 1 _ 0
form=2r+1
and

r— r— 1
BiX + o X? 4o+ B X2 + B, X7

221“ 2 227‘ 3 227‘ 1 221“ 2

67"—1X2T -+ 5 + 1 X

for m = 2r.

=0

We note that dim(Im(Lg)) = rank(B). Therefore the dimen-
sion of the space S of solutions of the above equation agree with

dim(Ker(Lg)) = m — rank(B).
Let m =2r + 1. Then
rankB = 2 <= dim(S) = 2r — 1,

rankB = 4 <= dim(S) = 2r — 3,
., rankB = 2r <= dim(S) = 1.



Let m = 2r. Then

rankB = 2 <= dim(S) = 2r — 2,

rankB = 2r <= dim(S) = 0.

Examples

Let B(z, ) be a alternating bilinear form overGF(2%) = GF(2)()

where 65 = 0 + 1,

ande; =1,ea=0,e3=0%es =03 e5 = 0% e = 0°.
(Remark) At the linear eqution

(Eq): 51X + BoX? 4 B3 X'+ 5,°X° + 52X 10 = 0
the number of solutions of (Eq) above in GF(2%) is just 1,4 or

16.

(1):B = B(1,6°,0%)

(B(eiyej)) =

o O = = O

0

(Eq(1)) -

_— O /) O O =

_ O = O O =

rank(B) = 2 and dim(S(Fq(1))) = 4.

(All solutions of (Fq(1)) are contained in GF(25)).

o O O = = O

o O O O O
o O = = O

0

0

X+99X2+918X4+918X8+X16:O




(2):B = B(1,1,0),

(Blei,ej)) =

_ = O R~k O
O = = = O O

O O O O O O
O O O~ O O
_ O O = O O
_ O O = O O

(Eq(2)): X+X*+ X%+ X% =0
rank(B) = 4 and dim(S(Fq(2))) = 2.
(Just 4 solutions of (Eq(2)) are contained in GF(2°)).

(3):B = B(1,1,67),

(Blei,ej)) =

O = O O O

O = O = O O
O O O O = O

O O O = = O
_ O O = O =
O O O = =

0

(Eq(3)): X+X*+X'+ X%+ X" =0

rank(B) = 6 and dim(S(Fq(3))) = 0.
(Only one (x=0) solutions of (Eq(2)) are contained in GF'(2°)).
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