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Prehistory: the Gleason theorem

We consider the real Hilbert space H with the scalar product (·, ·) and the
quantum logic of all projections (i.e., self-adjoint idempotents) in the set of
all linear operators on H. Two projections, P and Q, are said to be
orthogonal iff PQ = QP = 0. A function µ on the set of all projections
with non-negative real values is said to be a measure iff

µ

(∑
n

Pn

)
=
∑
n

µ(Pn) (∗)

for any sequence or finite set (Pn) of pairwise orthogonal projections.

Theorem 0 (A.M. Gleason, 1957). Any measure (dim(H) ≥ 3) admits the
representation
µ(P) = tr(TP) (1)
where T is a unique positive nuclear operator in H.
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The representation (1) fails if µ is a signed measure (with values in
(−∞,+∞)) and H is finite-dimensional. A construction of
counterexamples uses existence of a function on the real line which is
additive but not linear.

The crucial case is dim(H) = 3. The proof uses triples P1, P2, P3 of
pairwise orthogonal one-dimensional projections. Any such triple gives an
equation
µ(P1) + µ(P2) + µ(P3) = µ(Id) (2)
connecting the values of µ.
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History: signed measures on idempotents

Theorem 1 (DM, 1989). Let us consider the quantum logic P(H) of all
continuous linear idempotents on H (dim(H) = ∞). Then any finitely
additive signed measure which is σ-additive on every σ-subalgebra of P(H)
admits the representation
µ(P) = tr(TP) (1)
where T is a unique nuclear operator in H.
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One of ideas of the proof is to use the classical Gleason theorem.

Namely, we present the set P(H) of all idempotents as the union

P(H) =
⋃
A

ΠA(H)

where ΠA(H) is the set of all idempotents which are self-adjoint w.r.t.
a scalar product A.

Thus, for any scalar product A we have (1) with some T = TA. So, the
idea of the proof is to glue all the TA by using

ΠA(H) ∩ ΠB(H) 6= ∅.
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Why we need extensions of the field of rationals?

The idempotent version of the Gleason theorem may be reformulated for
Banach spaces (which do not have scalar products) and even for linear
topological spaces.

Unfortunately, in such general setting we cannot use the classical Gleason
theorem. In fact, in the finite-dimensional case this theorem is not true for
signed measures and in the infinite-dimensional case the topology is not
defined by a scalar product.

So, we need some analogs of the Gleason theorem which would be proved
independently from the Gleason theorem for Hilbert spaces.

This brings us to the case of linear spaces over the field Q of rationals.
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Theorem 2

Theorem 2 (DM, 1995). Any Q-valued measure on the set of all rational
idempotent n × n-matrices (dim(H) ≥ 3) admits the representation
µ(P) = tr(TP) (1)
where T is a unique rational n × n-matrix.

The first variant of the proof used computer calculations. Now I proved this
theorem without computing by using some symmetrization construction.
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How to prove without computing?

Let I0, I1, I2, . . . , Is be commuting involutions on the set of idempotents
and ν = ν(ε1, . . . , εs) defined by

ν(P) = µ(P) +
∑

i≤s εiµ(Ii (P)) +
∑

i<j≤s εiεjµ(Ii Ij(P)) +∑
i<j<k≤s εiεjεkµ(Ii Ij Ik(P)) + . . .

where εi = ±1.

Every ν is either invariant or changes the sign of Ii (P), and
µ = 1/2s ·

∑
εi

ν(ε1, . . . , εs).
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But we need an analog of this theorem for Q-valued signed measures on
finite-dimensional linear spaces over extensions of Q, especially over R.

In this direction we have no success.
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The Gleason theorem and a problem for finite fields

Problem. Let Fpk be a finite field and P(Fpk ) the set of all idempotent
Fpk -valued n × n-matrices. Consider a function µ on P(Fpk ) with values in
the prime field Fp satisfying

µ

(∑
i≤n

Pi

)
=
∑
i≤n

µ(Pi )

for any finite set of pairwise orthogonal projections Pi . Does µ admit an
additive extension to the set of all Fpk -valued n × n-matrices (n ≥ 3) with
trace belonging to Fp?

Remark. The case n > 3 reduces to the case n = 3.
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Theorem 3 (DM, 1995). The problem has the affirmative solution in the
case when Fpk is prime (i.e., k = 1).

The case p = 2 is trivial. We have 28 idempotents and 28 triples of
pairwise orthogonal one-dimensional idempotents.

Theorem 4 (DM, 1998). The problem has the affirmative solution in the
case pk = 4.

The first proof used computer calculations. Now I proved this theorem
without computing by using some symmetrization construction. (The
construction of the proof of Theorem 2 is not convenient in this case since
we cannot divide by 2.)
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My students (Khomutova, Skvortsov) constructed programms for the cases
pk = 8, pk = 9. The calculation gives the affirmative answer in these cases,
too. Unfortunately, I cannot verify the computing, so I am not sure.
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