Equicharacteristic Galois representations of local function fields

Carl A. Miller

University of Michigan, Ann Arbor

The 9th International Conference on Finite Fields and Their Applications Dublin, Ireland

Preliminaries

Let k be an algebraically closed field of characteristic p > 0. (Example: $\overline{\mathbb{F}_p}$.)

Let K = k((t)) (the field of Laurent series over k).

Let $\mathcal{G}_K = \operatorname{Gal}(K^{sep}/K)$.

We are concerned with \mathcal{G}_{K} -representations over the fields $\mathbb{F}_{p^{r}}$ $(r \geq 1)$.

Examples of representations

(1) Suppose $p \neq 2$. Let $L = K[X]/(X^2 - t)$. Then $\operatorname{Gal}(L/K) \cong \mathbb{Z}/2\mathbb{Z}$. Let V be a one-dimensional \mathbb{F}_p -vector space on which $\operatorname{Gal}(L/K)$ acts by negation.

V is a basic example of a "tame" representation of \mathcal{G}_K . (A representation $\rho: G \to \operatorname{Aut}(W)$ is tame if $p \nmid |\operatorname{im} \rho|$.)

(2) Let n and r be positive integers such that $n \mid (p^r - 1)$. Choose an nth root $t^{1/n} \in K^{sep}$. The set

$$T_{n,r} := \{ ct^{1/n} \mid c \in \mathbb{F}_{p^r} \} \subseteq K^{sep}$$

forms a one-dimensional representation of \mathcal{G}_K .

(Note: $V \cong T_{2,1}$.)

Examples of representations (cont.)

(3) Choose a positive integer N which is coprime to p. Let $R = K[X]/(X^p - X - t^{-N})$.

R is a field. [R:K] = p.

Let $\gamma \colon R \to R$ be the map which takes X to X + 1. Note that $(X+1)^p - (X+1) - t^{-N} = X^p + 1 - X - 1 - t^{-N} = X^p - X - t^{-N}$, therefore γ is a field automorphism. γ generates an automorphism group of size p.

 $\operatorname{Gal}(R/K) \cong \mathbb{Z}/p\mathbb{Z}.$

Let $W_N = (\mathbb{F}_p)^2$, with an action by $\operatorname{Gal}(R/K)$ given by $\gamma(\mathbf{e}_1) = \mathbf{e}_1,$ $\gamma(\mathbf{e}_2) = \mathbf{e}_2 + \mathbf{e}_1.$

 W_N is a "wild" representation of \mathcal{G}_K .

The minimal root index

The minimal root index (" \mathfrak{C} ") measures the "ramification" of an $\mathbb{F}_{p^r}[\mathcal{G}_K]$ -module.

The definition of the minimal root index: Suppose that W is an $\mathbb{F}_{p^r}[\mathcal{G}_K]$ -module, (with $r \ge 1$). Let $\mathcal{W} = \left(W \otimes_{\mathbb{F}_{p^r}} K^{sep}\right)^{\mathcal{G}_K}$ Let F^r denote the Frobenius endomorphism, $F^r : W \otimes K^{sep} \to W \otimes K^{sep},$ $w \otimes s \mapsto w \otimes s^{(p^r)}.$ Let $\mathcal{W}_0 \subseteq \mathcal{W}$ denote the largest k[[t]]-submodule such that the following two conditions are satisfied: • $F^r(\mathcal{W}_0) \subseteq \mathcal{W}_0$, and • The intersection of the submodules $\mathcal{W}_i := k[[t]] \left(F^{ri}(\mathcal{W}_0)\right) \subseteq \mathcal{W}$ is zero. (i = 1, 2, 3, ...)Then, $\mathfrak{C}(W) := \frac{\dim_k \mathcal{W}_0/\mathcal{W}_1}{p^r - 1}.$

Some properties:

- (1) \mathfrak{C} is additive over direct sums.
- (2) \mathfrak{C} is invariant under base change. $(-\mapsto -\otimes \mathbb{F}_{p^{rs}})$
- (3) For any m, n, r, with m < n and $n \mid (p^r 1)$,

$$\mathfrak{C}(T_{n,r}^{\otimes m}) = 1 - \frac{m}{n}.$$

(Note: Properties (1)-(3) are sufficient to determine \mathfrak{C} for any tame representation.)

(4) \mathfrak{C} is superadditive over exact sequences.

The minimal root index (cont.)

(5) The minimal root index of the wild representation W_N (from Example (3)) is

 $\mathfrak{C}(W_N) = 1 + \lceil N/p^r \rceil.$

Motivation

Theorem:

Let $X \to \operatorname{Spec} k$ be a smooth projective curve of genus g. Let $U \subseteq X$ be an open subcurve. Let \mathcal{H} be a constructible étale sheaf of \mathbb{F}_p -modules on Xwhich is locally constant on U and zero outside of U. Then,

$$\sum_{i=0}^{1} (-1)^{i} h^{i}(X, \mathcal{H}) \ge (1-g) \operatorname{rank}(\mathcal{H}) - \sum_{x \in |X \setminus U|} \mathfrak{C}(\mathcal{H}_{(x)}),$$

where $\mathcal{H}_{(x)}$ denotes the pullback of \mathcal{H} via any morphism Spec $k((t)) \to X$ determined by a local parameter at x.

Ref: Equicharacteristic étale cohomology in dimension one, C. Miller. http://arxiv.org/abs/0906.4093

A Conjecture

Let L/K be a finite Galois extension. Let U be the regular representation of Gal(L/K). Let $D_{L/K}$ denote the <u>different</u> of the field extension L/K. Then I conjecture that

$$\mathfrak{C}(U) = \frac{D_{L/K}}{2} + 1.$$

Is this true?