Zeta functions in Number Theory and Combinatorics

Winnie Li

Pennsylvania State University, U.S.A. and National Center for Theoretical Sciences, Taiwan

1. Riemann zeta function

The Riemann zeta function is

$$\begin{aligned} \zeta(s) &= \sum_{n \ge 1} n^{-s} = \prod_{\substack{p \text{ prime}}} (1 + p^{-s} + p^{-2s} + \cdots) \\ &= \prod_{\substack{p \text{ prime}}} \frac{1}{1 - p^{-s}} \quad \text{for } \Re s > 1. \end{aligned}$$

- $\zeta(s)$ has a meromorphic continuation to the whole *s*-plane;
- It satisfies a functional equation relating $\zeta(s)$ to $\zeta(1-s)$;
- It vanishes at s = -2, -4, ..., called trivial zeros of ζ .

Riemann Hypothesis: all nontrivial zeros of $\zeta(s)$ lie on the line of symmetry $\Re(s) = \frac{1}{2}$.

2. Zeta functions of varieties

 $V{:}$ smooth irred. proj. variety of dim. d defined over \mathbb{F}_q The zeta function of V is

$$Z(V, u) = \exp(\sum_{n \ge 1} \frac{N_n}{n} u^n) = \prod_{\substack{v \text{ closed } \text{pts}}} \frac{1}{(1 - u^{\deg v})}$$
$$= \frac{P_1(u) P_3(u) \cdots P_{2d-1}(u)}{P_0(u) P_2(u) \cdots P_{2d}(u)}.$$

Here $N_n = \#V(\mathbb{F}_{q^n})$ and each $P_i(u)$ is a polynomial in $\mathbb{Z}[u]$ with constant term 1.

RH: the roots of $P_i(u) \neq 1$ have absolute value $q^{-i/2}$. For a curve, RH says all zeros of $Z(V; q^{-s})$ lie on $\Re s = \frac{1}{2}$.

Proved by Hasse and Weil for curves, and Deligne for varieties in general.

3. The Ihara zeta function of a graph

- $\bullet \; X$: connected undirected finite graph
- Want to count tailless geodesic cycles.

Figure 1: without tail

- A cycle has a starting point and an orientation.
- A cycle is *primitive* if it is not obtained by repeating a cycle (of shorter length) more than once.

Figure 2: with tail

• Two cycles are *equivalent* if one is obtained from the other by shifting the starting point.

The Ihara zeta function of X is defined as

$$Z(X;u) = \prod_{[C]} \frac{1}{1 - u^{l(C)}} = \exp\bigg(\sum_{n \ge 1} \frac{N_n}{n} u^n\bigg),$$

where [C] runs through all equiv. classes of primitive geodesic and tailless cycles C, l(C) is the length of C, and N_n is the number of geodesic tailless cycles of length n.

4. Properties of zeta functions of regular graphs

Ihara (1968): Let X be a finite (q + 1)-regular graph with n vertices. Then its zeta function Z(X, u) is a rational function of the form

$$Z(X;u) = \frac{(1-u^2)^{\chi(X)}}{\det(I - Au + qu^2 I)} ,$$

where $\chi(X) = n - n(q+1)/2 = -n(q-1)/2$ is the Euler characteristic of X and A is the adjacency matrix of X.

If X is not regular, replace qI by Q, the degree matrix minus the identity matrix on vertices–Bass, Stark-Terras, Hoffman.

- The trivial eigenvalues of X are $\pm (q+1)$, of multiplicity one.
- X is called a Ramanujan graph if the nontrivial eigenvalues λ satisfy the bound

$$|\lambda| \le 2\sqrt{q}.$$

- X is Ramanujan if and only if Z(X, u) satisfies RH, i.e. the nontrivial poles of Z(X, u) all have absolute value $q^{-1/2}$.
- Let $\{X_j\}$ be a family of (q+1)-regular graphs with $|X_j| \to \infty$. Alon-Boppana :

$$\lim \inf_{j \to \infty} \max_{\lambda \neq q+1 \text{ of } X_j} \lambda \ge 2\sqrt{q}.$$

Li, Serre : if X_j contains few short cycles of odd length, $\lim_{j\to\infty} \sup_{\lambda\neq -q-1 \text{ of } X_j} \lambda \leq -2\sqrt{q}.$

5. The Hashimoto edge zeta function of a graph

Endow two orientations on each edge of a finite graph X. The neighbors of $u \to v$ are the directed edges $v \to w$ with $w \neq u$. Associate the edge adjacency matrix A_e .

Hashimoto (1989): $N_n = \text{Tr}A_e^n$ so that

$$Z(X, u) = \frac{1}{\det(I - A_e u)}.$$

Combined with Ihara's Theorem, we have

$$\frac{(1-u^2)^{\chi(X)}}{\det(I - Au + qu^2 I)} = \frac{1}{\det(I - A_e u)}$$

6. Connections with number theory

When $q = p^r$ is a prime power, let F be a local field with the ring of integers \mathcal{O}_F and residue field $\mathcal{O}_F/\pi \mathcal{O}_F$ of size q.

$$\mathcal{T} = \mathrm{PGL}_2(F)/\mathrm{PGL}_2(\mathcal{O}_F)$$

vertices \leftrightarrow PGL₂(\mathcal{O}_F)-cosets

vertex adjacency operator $A \leftrightarrow$ Hecke operator on

$$\operatorname{PGL}_2(\mathcal{O}_F) \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \operatorname{PGL}_2(\mathcal{O}_F)$$

directed edges $\leftrightarrow \mathcal{I}$ -cosets ($\mathcal{I} =$ Iwahori subgroup) edge adjacency operator $A_e \leftrightarrow$ Iwahori-Hecke operator on $\mathcal{I}\begin{pmatrix} 1 & 0\\ 0 & \pi \end{pmatrix} \mathcal{I}$ $X = X_{\Gamma} = \Gamma \backslash \mathrm{PGL}_2(F) / \mathrm{PGL}_2(\mathcal{O}_F) = \Gamma \backslash \mathcal{T}$ for a torsion free discrete cocompact subgroup Γ of $PGL_2(F)$.

- Ihara (1968): A torsion free discrete cocompact subgroup Γ of $\mathrm{PGL}_2(F)$ is free of rank $1 \chi(X_{\Gamma})$.
- Take $F = \mathbb{Q}_p$ so that q = p, $\mathcal{O}_F = \mathbb{Z}_p$, and let D_{ℓ} = the definite quaternion algebra over \mathbb{Q} ramified only at ∞ and prime $\ell \neq p$. $\Gamma_{\ell} = D_{\ell}^{\times}(\mathbb{Z}[\frac{1}{p}])$ mod center is a discrete subgroup of $\mathrm{PGL}_2(\mathbb{Q}_p)$ with compact quotient; torsion free if $\ell \equiv 1 \pmod{12}$.
- $X_{\Gamma_{\ell}} = \Gamma_{\ell} \setminus \mathrm{PGL}_2(\mathbb{Q}_p) / \mathrm{PGL}_2(\mathbb{Z}_p)$ is a Ramanujan graph.
- $\frac{\det(I-Au+pu^2I)}{(1-u)(1-pu)}$ from $X_{\Gamma_{\ell}}$ is the numerator of the zeta function of the modular curve $X_0(\ell) \mod p$.

- The class number of the quaternion algebra $D_{\ell} = |X_{\Gamma_{\ell}}| = 1 + g_0(\ell)$, where $g_0(\ell)$ is the genus of $X_0(\ell)$.
- The number of spanning trees in a graph X is called the class number $\kappa(X)$ of the graph.

Hashimoto: For a (q + 1)-regular graph X,

$$\kappa(X)|X| = \frac{\det(I - Au + qu^2 I)}{(1 - u)(1 - qu)}|_{u=1}.$$

• When $X = X_{\Gamma_{\ell}}$, this gives the relation

$$\kappa(X_{\Gamma_\ell})(1+g_0(\ell)) = |Jac_{X_0(\ell)}(\mathbb{F}_p)|.$$

7. The Bruhat-Tits building attached to $\mathbf{PGL}_3(F)$

- $G = PGL_3(F), K = PGL_3(\mathcal{O}_F)$. The Bruhat-Tits building $\mathcal{B}_3 = G/K$ is a 2-dim'l simplicial complex.
- Have a filtration

 $K \supset E$ (parahoric subgroup) $\supset B$ (Iwahoric subgroup)

• vertices \leftrightarrow K-cosets

Each vertex gK has a type $\tau(gK) = \operatorname{ord}_{\pi} \det g \pmod{3}$.

- The type of an edge $gK \to g'K$ is $\tau(g'K) \tau(gK) = 1$ or 2. Call g'K a type 1 or 2 neighbor of gK, accordingly.
- type one edges $\leftrightarrow E$ -cosets
- directed chambers \leftrightarrow *B*-cosets.

Figure 3: the fundamental apartment

- 8. Operators on \mathcal{B}_3
- A_i = the adjacency matrix of type i neighbors of vertices
 (i = 1, 2)
 A₁ and A₂ are Hecke operators on certain K-double cosets.
- L_E = the type one edge adjacency matrix It is a parahoric operator on an *E*-double coset. Its transpose L_E^t is the type two edge adjacency matrix.
- L_B = the adjacency matrix of directed chambers. It is an Iwahori-Hecke operator on a *B*-double coset.

9. Ramanujan complexes

The spectrum of the adjacency operator on the (q + 1)-regular tree is $[-2\sqrt{q}, 2\sqrt{q}]$. A (q + 1)-regular Ramanujan graph has its nontrivial eigenvalues fall in the spectrum of its universal cover.

The building \mathcal{B}_3 is (q + 1)-regular and simply connected; it is the universal cover of its finite quotients. The operators A_1 and A_2 on \mathcal{B}_3 have the same spectrum

$$\Omega := \{ q(z_1 + z_2 + z_3) : z_j \in S^1, \ z_1 z_2 z_3 = 1 \}.$$

A finite quotient X of \mathcal{B}_3 is called Ramanujan if the eigenvalues of A_1 and A_2 on X fall in Ω . Spectrally optimal.

Similar definition for Ramanujan complexes arising from the building \mathcal{B}_n attached to $PGL_n(F)$.

Margulis (1988), Lubotzky-Phillips-Sarnak (1988), Mestre-Oesterlé (1986), Pizer (1990), Morgenstern (1994) : explicit constructions of infinite families of (q+1)-regular Ramanujan graphs for $q = p^a$

Li (2004): obtained infinite families of (q + 1)-regular Ramanujan complexes by taking quotients of \mathcal{B}_n by discrete cocompact torsion-free subgroups of G.

Lubotzky-Samuels-Vishne (2005): Not all such subgroups yield Ramanujan complexes.

Explicit constructions of Ramanujan complexes given by Lubotzky-Samuels-Vishne (2005) and Sarveniazi (2007).

10. Finite quotients of \mathcal{B}_3

The finite complexes we consider are $X_{\Gamma} = \Gamma \backslash G / K = \Gamma \backslash \mathcal{B}_3$, where Γ is a torsion free cocompact discrete subgroup of G and $\operatorname{ord}_{\pi} \det \Gamma \subset 3\mathbb{Z}$ so that Γ identifies vertices of the same type.

Division algebras of degree 3 yield many such Γ 's.

Goal: Define a suitable zeta function, which counts geodesic cycles up to homotopy in X_{Γ} , and which has the following properties:

- It is a rational function with a closed form expression;
- It provides topological and spectral information of the complex;
- The complex is Ramanujan if and only if its zeta satisfies RH. Joint work with Ming-Hsuan Kang

11. Zeta function of the complex X_{Γ}

The zeta function of X_{Γ} is defined to be

$$Z(X_{\Gamma}, u) = \prod_{[\mathfrak{C}]} \frac{1}{1 - u^{l(\mathfrak{C})}} = \exp(\sum_{n \ge 1} \frac{N_n u^n}{n}),$$

where $[\mathfrak{C}]$ runs through the equiv. classes of primitive tailless geodesic cycles in X_{Γ} consisting of only type one edges or type two edges, $l(\mathfrak{C})$ is the length of the cycle C, and N_n is the number of tailless geodesic cycles of length n.

Observe that

$$Z(X_{\Gamma}, u) = \frac{1}{\det(I - L_E u)} \frac{1}{\det(I - L_E^t u^2)}$$

12. Main results for 2-dim'l complex zeta functions Main Theorem (Kang-L.)

(1) $Z(X_{\Gamma}, u)$ is a rational function given by

$$\begin{split} Z(X_{\Gamma},u) &= \frac{(1-u^3)^{\chi(X_{\Gamma})}}{\det(I-A_1u+qA_2u^2-q^3u^3I)\det(I+L_Bu)},\\ where \ \chi(X_{\Gamma}) &= \#V-\#E+\#C \ is \ the \ Euler \ characteristic \ of \\ X_{\Gamma}. \end{split}$$

(2) X_{Γ} is a Ramanujan complex if and only if $Z(X_{\Gamma}, u)$ satisfies RH.

Remarks. (1) Ramanujan complexes defined in terms of the eigenvalues of A_1 and A_2 can be rephrased as

(i) the nontrivial zeros of $det(I - A_1u + qA_2u^2 - q^3u^3I)$ have absolute value q^{-1} .

Kang-L-Wang showed that this has two more equivalent statements:

(ii) the nontrivial zeros of $det(I - L_E u)$ have absolute values q^{-1} and $q^{-1/2}$;

(iii) the nontrivial zeros of det $(I - L_B u)$ have absolute values 1, $q^{-1/2}$ and $q^{-1/4}$.

(2) The zeta identity can be reformulated in terms of operators:

$$\frac{(1-u^3)^{\chi(X_{\Gamma})}}{\det(I-A_1u+qA_2u^2-q^3u^3I)} = \frac{\det(I+L_Bu)}{\det(I-L_Eu)\det(I-L_E^tu^2)},$$

compared with the identity for graphs:

$$\frac{(1-u^2)^{\chi(X)}}{\det(I - Au + qu^2 I)} = \frac{1}{\det(I - A_e u)}$$

(3) By regarding A_1 and A_2 as operators acting on $L^2(\Gamma \setminus G/K)$, L_E on $L^2(\Gamma \setminus G/E)$ and L_B on $L^2(\Gamma \setminus G/B)$, Kang-L-Wang gave a representation theoretic proof of (2).

(4) Similar connections to zeta functions of modular surfaces.

13. Comparison between graphs and 2-dimensional complexes

Let Γ be a discrete torsion-free cocompact subgroup of $PGL_n(F)$. $X_{\Gamma} = \Gamma \backslash PGL_n(F) / PGL_n(\mathcal{O}_F)$

Case n = 2.

- every element in Γ has two eigenvalues in F;
- the primitive equivalence classes [C] of geodesic tailless cycles \leftrightarrow the primitive conjugacy classes $[\gamma]$ of Γ ;
- $l(C) = \operatorname{ord}_{\pi} b$, where 1, b are eigenvalues of γ with $\operatorname{ord}_{\pi} b \ge 0$.

Case n = 3.

- Every element in Γ has one or three eigenvalues in F;
- Γ contains elements having only one eigenvalue in F;
- A primitive conjugacy class $[\gamma]$ contains finitely many primitive [C], and a non-primitive conjugacy class $[\gamma]$ may also contain finitely many primitive [C];
- l(C) = m + n, where $\gamma \in Kdiag(1, \pi^n, \pi^{m+n})K$, $n, m \ge 0$.

14. Zeta functions of finite quotients of $PGL_n(F)$

- $G = PGL_n(F)$, $K = PGL_n(\mathcal{O}_F)$. The Bruhat-Tits building $\mathcal{B}_n = G/K$ is an (n-1)-dimensional simplicial complex, simply connected and (q+1)-regular.
- $\bullet~G$ acts transitively on simplices of the same dimension.
- vertices of $\mathcal{B}_n \leftrightarrow K$ -cosets.
- $A_i, i = 1, ..., n 1$ (Hecke) operators on vertices.
- A k-simplex together with a choice of one of its vertices is called a directed k-simplex.
- For $0 \le k \le n-1$, let $v(k) = diag(1, ..., 1, \pi, ..., \pi)K$, where π occurs k times.

• A standard directed k-dim'l simplex has vertices $v(0), v(i_1), ..., v(i_k)$, where $0 < i_1 < \cdots < i_k < n$, and chosen vertex v(0). The gap vector $\mathbf{a} = (i_1 - 0, i_2 - i_1, ..., i_k - i_{k-1})$ is called its type.

The stabilizer of these vertices is the subgroup $P_{\mathbf{a}}$ of K.

- Directed k-simplices of type $\mathbf{a} \leftrightarrow P_{\mathbf{a}}$ -cosets.
- For each type \mathbf{a} , there is an adjacency matrix $A_{\mathbf{a}}$ on directed k-simplices of type \mathbf{a} ; $A_{\mathbf{a}}$ is also expressed as an operator on certain $P_{\mathbf{a}}$ -double coset.
- For $\mathbf{a} = (a_1, ..., a_k)$, set $l(\mathbf{a}) = k$, $|\mathbf{a}| = a_1 + \cdots + a_k$, and its primitive part $pr(\mathbf{a}) = (a_1, ..., a_s)$ to be the shortest initial segment such that \mathbf{a} is $pr(\mathbf{a})$ repeated k/s times.

Theorem (Ming-Hsuan Kang)

Let Γ be a discrete torsion-free cocompact subgroup of $PGL_n(F)$ and $X_{\Gamma} = \Gamma \setminus \mathcal{B}_n$. The following zeta identity on X_{Γ} holds:

$$\frac{(1-u^n)^{\chi(X_{\Gamma})}}{\det(\sum_{i=0}^n (-1)^i q^{i(i-1)/2} A_i u^i)} = \prod_{[\mathbf{a}]} \det(I - A_{\mathbf{a}}((-1)^{l(\mathbf{a})+l(pr(\mathbf{a}))} u)^{|pr(\mathbf{a})|})^{(-1)^{l(\mathbf{a})}}$$

Here $\chi(X_{\Gamma})$ is the Euler characteristic of X_{Γ} , $A_0 = A_n = I$, and **a** runs through all types up to cyclic permutations. Ex. For n = 4 the identity is

$$= \frac{(1-u^4)^{\chi(X_{\Gamma})}}{\det(I-A_1u+qA_2u^2-q^3A_3u^3+q^6Iu^4)} \\ = \frac{\det(I+A_{(1,1)}u)\det(I-A_{(1,2)}u^3)}{\det(I-A_{(1)}u)\det(I-A_{(2)}u^2)\det(I-A_{(3)}u^3)\det(I-A_{(1,1,1)}u)}.$$