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1. Riemann zeta function

The Riemann zeta function is

ζ(s) =
∑

n≥1

n−s =
∏

p prime

(1 + p−s + p−2s + · · · )

=
∏

p prime

1

1− p−s for <s > 1.

• ζ(s) has a meromorphic continuation to the whole s-plane;

• It satisfies a functional equation relating ζ(s) to ζ(1− s);

• It vanishes at s = −2,−4, ..., called trivial zeros of ζ .

Riemann Hypothesis: all nontrivial zeros of ζ(s) lie on the line
of symmetry <(s) = 1

2.
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2. Zeta functions of varieties

V : smooth irred. proj. variety of dim. d defined over Fq

The zeta function of V is

Z(V, u) = exp(
∑

n≥1

Nn

n
un) =

∏

v closed pts

1

(1− udeg v)

=
P1(u)P3(u) · · ·P2d−1(u)

P0(u)P2(u) · · ·P2d(u)
.

Here Nn = #V (Fqn) and each Pi(u) is a polynomial in Z[u] with
constant term 1.

RH: the roots of Pi(u)( 6= 1) have absolute value q−i/2.
For a curve, RH says all zeros of Z(V ; q−s) lie on <s = 1

2.
Proved by Hasse and Weil for curves, and Deligne for varieties

in general.
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3. The Ihara zeta function of a graph

•X : connected undirected finite graph

•Want to count tailless geodesic cycles.

Figure 1: without tail Figure 2: with tail

• A cycle has a starting point and an orientation.

• A cycle is primitive if it is not obtained by repeating a cycle
(of shorter length) more than once.
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• Two cycles are equivalent if one is obtained from the other by
shifting the starting point.

The Ihara zeta function of X is defined as

Z(X ; u) =
∏

[C]

1

1− ul(C)
= exp

( ∑

n≥1

Nn

n
un

)
,

where [C] runs through all equiv. classes of primitive geodesic and
tailless cycles C, l(C) is the length of C, and Nn is the number
of geodesic tailless cycles of length n.

5



4. Properties of zeta functions of regular graphs

Ihara (1968): Let X be a finite (q + 1)-regular graph with n
vertices. Then its zeta function Z(X, u) is a rational function of
the form

Z(X ; u) =
(1− u2)χ(X)

det(I − Au + qu2I)
,

where χ(X) = n− n(q + 1)/2 = −n(q − 1)/2 is the Euler char-
acteristic of X and A is the adjacency matrix of X .

If X is not regular, replace qI by Q, the degree matrix minus
the identity matrix on vertices–Bass, Stark-Terras, Hoffman.
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• The trivial eigenvalues of X are ±(q + 1), of multiplicity one.

•X is called a Ramanujan graph if the nontrivial eigenvalues λ
satisfy the bound

|λ| ≤ 2
√

q.

•X is Ramanujan if and only if Z(X, u) satisfies RH, i.e. the

nontrivial poles of Z(X, u) all have absolute value q−1/2.

• Let {Xj} be a family of (q+1)-regular graphs with |Xj| → ∞.

Alon-Boppana :

lim inf
j→∞

max
λ6=q+1 of Xj

λ ≥ 2
√

q.

Li, Serre : if Xj contains few short cycles of odd length,

lim sup
j→∞

min
λ6=−q−1 of Xj

λ ≤ −2
√

q.

7



5. The Hashimoto edge zeta function of a graph

Endow two orientations on each edge of a finite graph X . The
neighbors of u → v are the directed edges v → w with w 6= u.

Associate the edge adjacency matrix Ae.

Hashimoto (1989): Nn = TrAn
e so that

Z(X, u) =
1

det(I − Aeu)
.

Combined with Ihara’s Theorem, we have

(1− u2)χ(X)

det(I − Au + qu2I)
=

1

det(I − Aeu)
.
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6. Connections with number theory

When q = pr is a prime power, let F be a local field with the
ring of integers OF and residue field OF/πOF of size q.

T = PGL2(F )/PGL2(OF )

vertices ↔ PGL2(OF )-cosets
vertex adjacency operator A ↔ Hecke operator on

PGL2(OF )

(
1 0
0 π

)
PGL2(OF )

directed edges ↔ I-cosets (I = Iwahori subgroup)
edge adjacency operator Ae ↔ Iwahori-Hecke operator on

I
(

1 0
0 π

)
I
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X = XΓ = Γ\PGL2(F )/PGL2(OF ) = Γ\T for a torsion free
discrete cocompact subgroup Γ of PGL2(F ).

• Ihara (1968): A torsion free discrete cocompact subgroup Γ of
PGL2(F ) is free of rank 1− χ(XΓ).

• Take F = Qp so that q = p, OF = Zp, and let

D`= the definite quaternion algebra over Q ramified only at∞
and prime ` 6= p.

Γ` = D×
` (Z[1p]) mod center is a discrete subgroup of PGL2(Qp)

with compact quotient; torsion free if ` ≡ 1 (mod 12).

•XΓ`
= Γ`\PGL2(Qp)/PGL2(Zp) is a Ramanujan graph.

• det(I−Au+pu2I)
(1−u)(1−pu)

from XΓ`
is the numerator of the zeta function

of the modular curve X0(`) mod p.
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• The class number of the quaternion algebra D`
= |XΓ`

| = 1 + g0(`), where g0(`) is the genus of X0(`).

• The number of spanning trees in a graph X is called the class
number κ(X) of the graph.

Hashimoto: For a (q + 1)-regular graph X ,

κ(X)|X| =
det(I − Au + qu2I)

(1− u)(1− qu)
|u=1.

•When X = XΓ`
, this gives the relation

κ(XΓ`
)(1 + g0(`)) = |JacX0(`)

(Fp)|.
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7. The Bruhat-Tits building attached to PGL3(F )

• G = PGL3(F ), K = PGL3(OF ). The Bruhat-Tits building
B3 = G/K is a 2-dim’l simplicial complex.

• Have a filtration

K ⊃ E (parahoric subgroup) ⊃ B (Iwahoric subgroup)

• vertices ↔ K-cosets

Each vertex gK has a type τ (gK) = ordπ det g (mod 3).

• The type of an edge gK → g′K is τ (g′K)− τ (gK) = 1 or 2.
Call g′K a type 1 or 2 neighbor of gK, accordingly.

• type one edges ↔ E-cosets

• directed chambers ↔ B-cosets.
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Figure 3: the fundamental apartment
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8. Operators on B3

• Ai = the adjacency matrix of type i neighbors of vertices
(i = 1, 2)

A1 and A2 are Hecke operators on certain K-double cosets.

• LE = the type one edge adjacency matrix

It is a parahoric operator on an E-double coset.

Its transpose Lt
E is the type two edge adjacency matrix.

• LB = the adjacency matrix of directed chambers.

It is an Iwahori-Hecke operator on a B-double coset.
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9. Ramanujan complexes

The spectrum of the adjacency operator on the (q + 1)-regular
tree is [−2

√
q, 2

√
q]. A (q + 1)-regular Ramanujan graph has its

nontrivial eigenvalues fall in the spectrum of its universal cover.

The building B3 is (q + 1)-regular and simply connected; it is
the universal cover of its finite quotients. The operators A1 and
A2 on B3 have the same spectrum

Ω := {q(z1 + z2 + z3) : zj ∈ S1, z1z2z3 = 1}.
A finite quotient X of B3 is called Ramanujan if the eigenvalues

of A1 and A2 on X fall in Ω. Spectrally optimal.

Similar definition for Ramanujan complexes arising from the
building Bn attached to PGLn(F ).
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Margulis (1988), Lubotzky-Phillips-Sarnak (1988), Mestre-Oesterlé
(1986), Pizer (1990), Morgenstern (1994) : explicit constructions
of infinite families of (q +1)-regular Ramanujan graphs for q = pa

Li (2004): obtained infinite families of (q + 1)-regular Ramanu-
jan complexes by taking quotients of Bn by discrete cocompact
torsion-free subgroups of G.

Lubotzky-Samuels-Vishne (2005): Not all such subgroups yield
Ramanujan complexes.

Explicit constructions of Ramanujan complexes given by Lubotzky-
Samuels-Vishne (2005) and Sarveniazi (2007).
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10. Finite quotients of B3

The finite complexes we consider are XΓ = Γ\G/K = Γ\B3,
where Γ is a torsion free cocompact discrete subgroup of G and
ordπ det Γ ⊂ 3Z so that Γ identifies vertices of the same type.

Division algebras of degree 3 yield many such Γ’s.

Goal: Define a suitable zeta function, which counts geodesic cycles
up to homotopy in XΓ, and which has the following properties:

• It is a rational function with a closed form expression;

• It provides topological and spectral information of the complex;

• The complex is Ramanujan if and only if its zeta satisfies RH.

Joint work with Ming-Hsuan Kang
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11. Zeta function of the complex XΓ

The zeta function of XΓ is defined to be

Z(XΓ, u) =
∏

[C]

1

1− ul(C)
= exp(

∑

n≥1

Nnun

n
),

where [C] runs through the equiv. classes of primitive tailless
geodesic cycles in XΓ consisting of only type one edges or type
two edges, l(C) is the length of the cycle C, and Nn is the number
of tailless geodesic cycles of length n.

Observe that

Z(XΓ, u) =
1

det(I − LEu)

1

det(I − Lt
Eu2)

.
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12. Main results for 2-dim’l complex zeta functions

Main Theorem (Kang-L.)

(1) Z(XΓ, u) is a rational function given by

Z(XΓ, u) =
(1− u3)χ(XΓ)

det(I − A1u + qA2u2 − q3u3I) det(I + LBu)
,

where χ(XΓ) = #V −#E + #C is the Euler characteristic of
XΓ.

(2) XΓ is a Ramanujan complex if and only if Z(XΓ, u) sat-
isfies RH.
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Remarks. (1) Ramanujan complexes defined in terms of the
eigenvalues of A1 and A2 can be rephrased as

(i) the nontrivial zeros of det(I − A1u + qA2u
2 − q3u3I) have

absolute value q−1.

Kang-L-Wang showed that this has two more equivalent state-
ments:

(ii) the nontrivial zeros of det(I − LEu) have absolute values

q−1 and q−1/2;

(iii) the nontrivial zeros of det(I−LBu) have absolute values 1,

q−1/2 and q−1/4.

20



(2) The zeta identity can be reformulated in terms of operators:

(1− u3)χ(XΓ)

det(I − A1u + qA2u2 − q3u3I)
=

det(I + LBu)

det(I − LEu) det(I − Lt
Eu2)

,

compared with the identity for graphs:

(1− u2)χ(X)

det(I − Au + qu2I)
=

1

det(I − Aeu)
.

(3) By regarding A1 and A2 as operators acting on L2(Γ\G/K),
LE on L2(Γ\G/E) and LB on L2(Γ\G/B), Kang-L-Wang gave
a representation theoretic proof of (2).

(4) Similar connections to zeta functions of modular surfaces.
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13. Comparison between graphs and 2-dimensional
complexes

Let Γ be a discrete torsion-free cocompact subgroup of PGLn(F ).
XΓ = Γ\PGLn(F )/PGLn(OF )

Case n = 2.

• every element in Γ has two eigenvalues in F ;

• the primitive equivalence classes [C] of geodesic tailless cycles
↔ the primitive conjugacy classes [γ] of Γ;

• l(C) = ordπb, where 1, b are eigenvalues of γ with ordπb ≥ 0.
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Case n = 3.

• Every element in Γ has one or three eigenvalues in F ;

• Γ contains elements having only one eigenvalue in F ;

• A primitive conjugacy class [γ] contains finitely many primitive
[C], and a non-primitive conjugacy class [γ] may also contain
finitely many primitive [C];

• l(C) = m + n, where γ ∈ Kdiag(1, πn, πm+n)K, n,m ≥ 0.
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14. Zeta functions of finite quotients of PGLn(F )

• G = PGLn(F ), K = PGLn(OF ). The Bruhat-Tits building
Bn = G/K is an (n−1)-dimensional simplicial complex, simply
connected and (q + 1)-regular.

• G acts transitively on simplices of the same dimension.

• vertices of Bn ↔ K-cosets.

• Ai, i = 1, ..., n− 1 (Hecke) operators on vertices.

• A k-simplex together with a choice of one of its vertices is called
a directed k-simplex.

• For 0 ≤ k ≤ n− 1, let v(k) = diag(1, ..., 1, π, ..., π)K, where
π occurs k times.
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• A standard directed k-dim’l simplex has vertices v(0), v(i1), ...,
v(ik), where 0 < i1 < · · · < ik < n, and chosen vertex v(0).
The gap vector a = (i1 − 0, i2 − i1, ..., ik − ik−1) is called its
type.

The stabilizer of these vertices is the subgroup Pa of K.

• Directed k-simplices of type a ↔ Pa-cosets.

• For each type a, there is an adjacency matrix Aa on directed
k-simplices of type a; Aa is also expressed as an operator on
certain Pa-double coset.

• For a = (a1, ..., ak), set l(a) = k, |a| = a1 + · · · + ak, and
its primitive part pr(a) = (a1, ..., as) to be the shortest initial
segment such that a is pr(a) repeated k/s times.
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Theorem (Ming-Hsuan Kang)

Let Γ be a discrete torsion-free cocompact subgroup of PGLn(F )
and XΓ = Γ\Bn. The following zeta identity on XΓ holds:

(1− un)χ(XΓ)

det(
∑n

i=0(−1)iqi(i−1)/2Aiui)

=
∏

[a]

det(I − Aa((−1)l(a)+l(pr(a))u)|pr(a)|)(−1)l(a)
.

Here χ(XΓ) is the Euler characteristic of XΓ, A0 = An = I,
and a runs through all types up to cyclic permutations.
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Ex. For n = 4 the identity is

(1− u4)χ(XΓ)

det(I − A1u + qA2u2 − q3A3u3 + q6Iu4)

=
det(I + A(1,1)u) det(I − A(1,2)u

3)

det(I − A(1)u) det(I − A(2)u
2) det(I − A(3)u

3) det(I − A(1,1,1)u)
.
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