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1. Riemann zeta function

The Riemann zeta function is

(s)=> n*= J] O+p*+p > +--+)

n>1 P prime
1
= H for ks > 1.
Lt 1—p°
P prime

e ((s) has a meromorphic continuation to the whole s-plane;
e [t satisfies a functional equation relating ((s) to (1 — s);

e [t vanishes at s = —2, —4, ..., called trivial zeros of (.

Riemann Hypothesis: all nontrivial zeros of ((s) lie on the line
of symmetry R(s) = %



2. Zeta functions of varieties

V. smooth irred. proj. variety of dim. d defined over FF

The zeta function of V is
Z(V,u) = exp(y —u") = 1] 1oy

n>1 v closed pts
Py(u) Py(u) - - - Pyg—1(u)
Po(u)Po(u) - - - Paglu)
Here Ny = #V (Fyn) and each P;(u) is a polynomial in Zu| with
constant term 1.

RH: the roots of P;(u)(s 1) have absolute value ¢~%/2.
For a curve, RH says all zeros of Z(V;q™?) lie on Rs = %

Proved by Hasse and Weil for curves, and Deligne for varieties
in general.




3. The Ihara zeta function of a graph
e X : connected undirected finite graph

e Want to count tailless geodesic cycles.
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Figure 1: without tail Figure 2: with tail

e A cycle has a starting point and an orientation.

e A cycle is primative if it is not obtained by repeating a cycle
(of shorter length) more than once.
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e T'wo cycles are equivalent if one is obtained from the other by
shifting the starting point.

The Thara zeta function of X is defined as

1 Np
Z<X;U)ZH1_UZ(C) _GXP(ZWU ),

C nzl

where [C] runs through all equiv. classes of primitive geodesic and
tailless cycles C, [(C') is the length of C', and Ny, is the number
of geodesic tailless cycles of length n.



4. Properties of zeta functions of regular graphs

[hara (1968): Let X be a finite (¢ + 1)-regular graph with n
vertices. Then its zeta function Z (X, u) is a rational function of
the form

(11— u2)X(X)
det(f — Au + qu2l)”’

Z(X;u)

where x(X)=n—n(qg+1)/2 = —n(q — 1)/2 is the Euler char-
acteristic of X and A is the adjacency matrix of X.

If X is not regular, replace g/ by (), the degree matrix minus
the identity matrix on vertices—Bass, Stark-Terras, Hoffman.



e The trivial eigenvalues of X are +(q + 1), of multiplicity one.

e X is called a Ramanujan graph if the nontrivial eigenvalues A
satisty the bound

A <24/q.
e X is Ramanujan if and only if Z(X,u) satisfies RH, i.e. the

nontrivial poles of Z (X, u) all have absolute value q_l/ 2.

e Let { X} be a family of (¢+1)-regular graphs with | X ;| — oo.
Alon-Boppana

lim inf max A > 2./q.
Jj—00 Afq+lof X; Vi

Li, Serre : if X; contains few short cycles of odd length,

lim sup min A< —2,/q.
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5. The Hashimoto edge zeta function of a graph

Endow two orientations on each edge of a finite graph X. The
neighbors of u — v are the directed edges v — w with w # w.
Associate the edge adjacency matrix Ae.

Hashimoto (1989): N,, = TrA so that
1

Zcxﬂozzdaml—f%uy

Combined with Thara’s Theorem, we have

(1 — u2)X(X) 1
det(I — Au+ qul)  det(I — Acu)




6. Connections with number theory

When ¢ = p" is a prime power, let F' be a local field with the
ring of integers Op and residue field Op/mOp of size q.

T = PGLyo(F)/PGLy(Op)

vertices <« PGLo(Op)-cosets
vertex adjacency operator A <« Hecke operator on

PGLy(Op) (é 2) PGL2(OF)

directed edges <« Z-cosets (Z = Iwahori subgroup)
edge adjacency operator A, «  Iwahori-Hecke operator on
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X = Xp = I'\PGLy(F)/PGlLg(Of) = I'\T for a torsion free
discrete cocompact subgroup I of PG Lo(F).

e [hara (1968): A torsion free discrete cocompact subgroup I' of
PGLg(F) is free of rank 1 — x(Xp).

o Take F' = QQp so that ¢ = p, Op = Zj, and let

Dy= the definite quaternion algebra over (Q ramified only at oo
and prime ¢ # p.

Ly=D/ (Z[]l?]) mod center is a discrete subgroup of PGLo(Q))

with compact quotient; torsion free if £ =1 (mod 12).
o X1, =T'/\PGLy(Qp)/PGLy(Zp) is a Ramanujan graph.

det(I—Au+pu?l)
(1—u)(1—pu)
of the modular curve X(¢) mod p.

from X, is the numerator of the zeta tunction
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e The class number of the quaternion algebra Dy
= |X7,| = 1+ go(£), where go({) is the genus of Xg(£).

e The number of spanning trees in a graph X is called the class
number k(X)) of the graph.

Hashimoto: For a (g 4+ 1)-regular graph X
det(I — Au + qu?I)
(1 —u)(l —qu)

R(X)|X] = lu=1-

e When X = Xr,, this gives the relation

R(XT,)(1+ go(£)) = [Jacx, ) (Fp)l.
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7. The Bruhat-Tits building attached to PGL;3(F)

e G = PGLs(F), K = PGL3(Of). The Bruhat-Tits building
Bs = G/K is a 2-dim’l simplicial complex.

e Have a filtration
K D E (parahoric subgroup) D B (Iwahoric subgroup)
e vertices < K-cosets
Fach vertex g K has a type 7(gK) = ordy det g (mod 3).

e The type of an edge gK — ¢'K is 7(¢/ K) — 7(gK) = 1 or 2.
Call ¢’ K a type 1 or 2 neighbor of gK, accordingly.

e type one edges «» E-cosets
e directed chambers < B-cosets.
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8. Operators on B3

e A, = the adjacency matrix of type ¢ neighbors of vertices
(2=1,2)

A1 and A9 are Hecke operators on certain K-double cosets.

e L. = the type one edge adjacency matrix
It is a parahoric operator on an E-double coset.

[ts transpose L% is the type two edge adjacency matrix.

e [.p = the adjacency matrix of directed chambers.

It is an Iwahori-Hecke operator on a B-double coset.
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9. Ramanujan complexes

The spectrum of the adjacency operator on the (¢ 4+ 1)-regular
tree is [—2,/q, 24/q]. A (¢ + 1)-regular Ramanujan graph has its
nontrivial eigenvalues fall in the spectrum of its universal cover.

The building B3 is (¢ 4+ 1)-regular and simply connected; it is
the universal cover of its finite quotients. The operators A7 and
As on B3 have the same spectrum

Q:={q(z1 +20+23) : 25 € St 212028 = 1}.

A finite quotient X of B3 is called Ramanujan if the eigenvalues
of A1 and A9 on X fall in €2. Spectrally optimal.

Similar definition for Ramanujan complexes arising from the

building B, attached to PG Ly, (F).
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Margulis (1988), Lubotzky-Phillips-Sarnak (1988), Mestre-Oesterlé
(1986), Pizer (1990), Morgenstern (1994) : explicit constructions
of infinite families of (¢ 4+ 1)-regular Ramanujan graphs for ¢ = p®

[Li (2004): obtained infinite families of (¢ + 1)-regular Ramanu-

jan complexes by taking quotients of B, by discrete cocompact
torsion-free subgroups of G.

Lubotzky-Samuels-Vishne (2005): Not all such subgroups yield
Ramanujan complexes.

Explicit constructions of Ramanujan complexes given by Lubotzky-
Samuels-Vishne (2005) and Sarveniazi (2007).
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10. Finite quotients of B3

The finite complexes we consider are Xp = I'NG/K = '\ B3,

where I' is a torsion free cocompact discrete subgroup of G and
ordr det I' C 37 so that I' identifies vertices of the same type.

Division algebras of degree 3 yield many such I's.

Goal: Define a suitable zeta function, which counts geodesic cycles
up to homotopy in Xp, and which has the following properties:

e [t is a rational function with a closed form expression;
e [t provides topological and spectral information of the complex:

e The complex is Ramanujan if and only if its zeta satisfies RH.

Joint work with Ming-Hsuan Kang
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11. Zeta function of the complex Xt

The zeta function of Xt is defined to be

1 Nyu™
Z(Xp,u) =] = oxp() ),
1 — ul(®) n
2 nz]
where [€] runs through the equiv. classes of primitive tailless
geodesic cycles in Xp consisting of only type one edges or type
two edges, [(€) is the length of the cycle C, and Ny, is the number

of tailless geodesic cycles of length n.

Observe that
Z(Xr,u)

1 1
 det(I — Lgu)det(I — L%uz)'
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12. Main results for 2-dim’l complex zeta functions

Main Theorem (Kang-L.)
(1) Z(X,u) is a rational function given by

(1 — u3)X(XT)
det(] — Aju + gAsu? — ¢ull) det(I + Lgu)’

where x(Xp) = #V — #E + #C' is the Euler characteristic of
Xp.

Z(XDU)

(2) X1 is a Ramanujan complex if and only if Z(Xp,u) sat-
isfies RH.
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Remarks. (1) Ramanujan complexes defined in terms of the
eigenvalues of Ay and As can be rephrased as

(i) the nontrivial zeros of det(I — Aju + gAsu® — ¢>u’I) have
absolute value ¢~ 1.

Kang-L-Wang showed that this has two more equivalent state-
ments:

(ii) the nontrivial zeros of det(I — Lgu) have absolute values
g~ ! and q_1/2;

(iii) the nontrivial zeros of det(I — L gu) have absolute values 1,
i~ 1/2 and =1/
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(2) The zeta identity can be reformulated in terms of operators:

(1 — u3)X(Xr) B det(I + L pu)
det(I — Ayu+ qAsu? — 3ul)  det(I — L) det(I — L'u?)

compared with the identity for graphs:

(1 — u2)X(X) 1
det( — Au + qu2l) det(] — Aeu)

(3) By regarding A1 and As as operators acting on L*(I'\G /K,
Lp on LA(I'\G/E) and Lg on L*(I'\G/B), Kang-L-Wang gave

a representation theoretic proof of (2).

(4) Similar connections to zeta functions of modular surfaces.
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13. Comparison between graphs and 2-dimensional
complexes

Let I" be a discrete torsion-free cocompact subgroup of PG Ly, (F').
Xp =T\PGLp(F)/PGLp(OF)

Case n = 2.

e every element in I' has two eigenvalues in F';

e the primitive equivalence classes |C] of geodesic tailless cycles
« the primitive conjugacy classes |y] of I';

¢ [(C) = ordyb, where 1,b are eigenvalues of v with ord;b > 0.
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Case n = 3.
e Livery element in I' has one or three eigenvalues in F’;
e [' contains elements having only one eigenvalue in F’;

e A primitive conjugacy class || contains finitely many primitive
|C'], and a non-primitive conjugacy class |y] may also contain
finitely many primitive [C];

¢ [(C) =m +n, where v € Kdiag(1, 7", 7™M K, n,m > 0.
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14. Zeta functions of finite quotients of PG L, (F)

e G = PGLy(F), K = PGL,(Op). The Bruhat-Tits building
B, = G/K is an (n—1)-dimensional simplicial complex, simply
connected and (g + 1)-regular.

e (5 acts transitively on simplices of the same dimension.
e vertices of B, «» K-cosets.
e A;, i =1,....,n — 1 (Hecke) operators on vertices.

e A k-simplex together with a choice of one of its vertices is called
a directed k-simplex.

elor 0 <k <n-—1,let v(k)=diag(l,...,1,7m,...,m) K, where
7 occurs k times.
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e A standard directed k-dim’l simplex has vertices v(0), v(¢1), ...,
v(1), where 0 < 41 < --- < 4. < n, and chosen vertex v(0).
The gap vector a = (i; — 0,79 — 41, ..., 13 — 1._1) is called its
type.

The stabilizer of these vertices is the subgroup Py of K.

e Directed k-simplices of type a «» Pa-cosets.

e [or each type a, there is an adjacency matrix Ag on directed
k-simplices of type a; Ag is also expressed as an operator on
certain Pa-double coset.

e for a = (ay,...,ax), set l(a) = k, |a| = a; + -+ + a;, and
its primitive part pr(a) = (ay, ..., as) to be the shortest initial
segment such that a is pr(a repeated k/s times.
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Theorem (Ming-Hsuan Kang)

Let T" be a discrete torsion-free cocompact subgroup of PG Ly, (F)
and Xp = I'\By,. The following zeta identity on X holds:

(1 — u)X(XT)
et (S —1)g DA
— Hdet(] _ Aa((_l)l(a)ﬂ(m(a»u)Ipr(a>|)(—1>l(a).
al
Here x(Xr) s the Euler characteristic of Xy, Ag = Ap = 1,
and a runs through all types up to cyclic permutations.
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Ex. For n = 4 the identity is

(1 — uX(X1)
det(I — Aju + qAsu? — g3 Asu3 + ¢ Tu?)
_ det(] + A(l,l)u) det([ — A<172>’LL3)
det(f — Appyu) det( — A(2>u2) det (] — A(3>u3) det(] — A(l,l,l)u).
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