四••

On monomial graphs of girth 8 .

Vasyl Dmytrenko, Felix Lazebnik, Jason Williford

$$
\text { July 17, } 2009
$$

Let $q=p^{e}, f \in \mathbb{F}_{q}[x]$ is a permutation polynomial on $\mathbb{F}_{q}(\mathrm{PP})$ if

$$
c \mapsto f(c)
$$

is a bijection of \mathbb{F}_{q} to \mathbb{F}_{q}.

Examples:

$$
\begin{gathered}
a x+b, a, b \in \mathbb{F}_{q}, a \neq 0, \\
f=x^{p}, \\
f=x^{p^{n}} .
\end{gathered}
$$

Conjecture 2:

Let $q=p^{e}$ be an odd prime power. Then

$$
f=\left(x^{2}+x\right)^{k}-x^{2 k}
$$

is a PP on \mathbb{F}_{q} if and only if $k=p^{a}$.

Conjecture 2:

Let $q=p^{e}$ be an odd prime power. Then

$$
f=\left(x^{2}+x\right)^{k}-x^{2 k}
$$

is a PP on \mathbb{F}_{q} if and only if $k=p^{a}$.
(\Leftarrow) Obvious.

$$
\begin{gathered}
\left(x^{2}+x\right)^{p^{a}}-x^{2 p^{a}}=x^{2 p^{a}}+x^{p^{a}}-x^{2 p^{a}}=x^{p^{a}}, \\
c \mapsto c^{p^{a}} \text { is a bijection on } \mathbb{F}_{q} .
\end{gathered}
$$

Conjecture 2:

Let $q=p^{e}$ be an odd prime power. Then

$$
f=\left(x^{2}+x\right)^{k}-x^{2 k}
$$

is a PP on \mathbb{F}_{q} if and only if $k=p^{a}$.
(\Leftarrow) Obvious.

$$
\begin{gathered}
\left(x^{2}+x\right)^{p^{a}}-x^{2 p^{a}}=x^{2 p^{a}}+x^{p^{a}}-x^{2 p^{a}}=x^{p^{a}}, \\
c \mapsto c^{p^{a}} \text { is a bijection on } \mathbb{F}_{q} .
\end{gathered}
$$

(\Rightarrow) True for all $q<10^{10}$.

Let $n \geq 2, s \geq 1$.
Generalized n-gon of order r is a bipartite $(r+1)$-regular graph of diameter n and girth $2 n$.

Let $n \geq 2, s \geq 1$.
Generalized n-gon of order r is a bipartite $(r+1)$-regular graph of diameter n and girth $2 n$.

- $r=1, n \geq 2$: usual $C_{2 n}$.

Let $n \geq 2, s \geq 1$.
Generalized n-gon of order r is a bipartite $(r+1)$-regular
 graph of diameter n and girth $2 n$.

- $r=1, n \geq 2$: usual $C_{2 n}$.
- $r \geq 2, n=2: K_{r+1, r+1}$.

Let $n \geq 2, s \geq 1$.
Generalized n-gon of order r is a bipartite $(r+1)$-regular graph of diameter n and girth $2 n$.

- $r=1, n \geq 2$: usual $C_{2 n}$.
- $r \geq 2, n=2: K_{r+1, r+1}$.
- $r \geq 2, n \geq 3$:

Let $n \geq 2, s \geq 1$.
Generalized n-gon of order r is a bipartite $(r+1)$-regular graph of diameter n and girth $2 n$.

- $r=1, n \geq 2$: usual $C_{2 n}$.
- $r \geq 2, n=2: K_{r+1, r+1}$.
- $r \geq 2, n \geq 3$:

Tits(59): For $n=3,4,6$, and each prime power r, there exists a generalized n-gon of order r.

Let $n \geq 2, s \geq 1$.
Generalized n-gon of order r is a bipartite $(r+1)$-regular graph of diameter n and girth $2 n$.

- $r=1, n \geq 2$: usual $C_{2 n}$.
- $r \geq 2, n=2: K_{r+1, r+1}$.
- $r \geq 2, n \geq 3$:

Tits(59): For $n=3,4,6$, and each prime power r, there exists a generalized n-gon of order r.

Feit-Higman(64): No other values of n are possible.

- A generalized quadrangle of order $r+1, G Q(r)$, is a bipartite $(r+1)$-regular graph of diameter 4 and girth 8.

- A generalized quadrangle of order $r+1, G Q(r)$, is a bipartite $(r+1)$-regular graph of diameter 4 and girth 8.
- an $(r+1)$-regular graph of girth 8 with the minimum number of vertices
- A generalized quadrangle of order $r+1, G Q(r)$, is a bipartite $(r+1)$-regular graph of diameter 4 and girth 8.
- an $(r+1)$-regular graph of girth 8 with the minimum number of vertices

It is easy to show that each partition of $G Q(r)$ contains $r^{3}+r^{2}+r+1$ vertices.

- a bipartite graph of girth 8 with each partition having $r^{3}+r^{2}+r+1$ vertices and with maximum number of edges. Neuwirth(01), Hoory (02)
- A generalized quadrangle of order $r+1, G Q(r)$, is a bipartite $(r+1)$-regular graph of diameter 4 and girth 8.
- an $(r+1)$-regular graph of girth 8 with the minimum number of vertices

It is easy to show that each partition of $G Q(r)$ contains $r^{3}+r^{2}+r+1$ vertices.

- a bipartite graph of girth 8 with each partition having $r^{3}+r^{2}+r+1$ vertices and with maximum number of edges. Neuwirth(01), Hoory (02)
- a finite geometry (points and lines) with $r+1$ points on every line, $r+1$ lines passing through every point, and such that for every point x not on a line L there

\|••

```
Back
```

Full Screen

Close
GQ(2): "Doily"

NO $G Q(r)$ is known if r is not a prime power.

- $G Q(q)$ exists for every prime power q.
- For all but few small even prime powers q, there exist non-isomorphic $G Q(q)$.

NO $G Q(r)$ is known if r is not a prime power.

- $G Q(q)$ exists for every prime power q.
- For all but few small even prime powers q, there exist non-isomorphic $G Q(q)$.
- For odd prime power q, there exist only one generalized 4-gon.

Example of $G Q(q)$
Here are two description of the $G Q(q), q$ odd, by Benson(66).

The first model.

$$
\mathbf{Q}_{4}=\left\{\left(x_{0}, \ldots, x_{4}\right) \in \mathbb{F}_{q}^{5}: x_{0}^{2}+x_{1} x_{2}+x_{3} x_{4}=0\right\}
$$

Points and Lines: these are 1- and 2-dimensional totally isotropic subspaces of \mathbf{Q}_{4}, respectively. The adjacency (incidence) is defined by containment. The obtained $G Q$ is denoted by $\mathbf{Q}(4, q)$.

It is known that all nonsingular quadrics in $P G(4, q)$ are projectively equivalent.

The second model. Consider the following bilinear form on \mathbb{F}_{q}^{4} :

$$
\mathbf{x} \cdot \mathbf{y}=y_{1} x_{0}-y_{0} x_{1}+y_{3} x_{2}-y_{2} x_{3}=0
$$

Then $x \cdot y=-y \cdot x$, and so $x \cdot x=0$.
Points and Lines: these are 1- and 2-dimensional totally isotropic subspaces in the symplectic geometry on \mathbb{F}_{q}^{4}. The adjacency (incidence) is defined by containment. The obtained $G Q$ is denoted by $\mathbf{W}(q)$.

Again, all non-degenerate anti-symmetric bilinear forms on $P G(3, q)$ are projectively equivalent.

The second model. Consider the following bilinear form on \mathbb{F}_{q}^{4} :

$$
\mathbf{x} \cdot \mathbf{y}=y_{1} x_{0}-y_{0} x_{1}+y_{3} x_{2}-y_{2} x_{3}=0
$$

Then $x \cdot y=-y \cdot x$, and so $x \cdot x=0$.
Points and Lines: these are 1- and 2-dimensional totally isotropic subspaces in the symplectic geometry on \mathbb{F}_{q}^{4}. The adjacency (incidence) is defined by containment. The obtained $G Q$ is denoted by $\mathbf{W}(q)$.

Again, all non-degenerate anti-symmetric bilinear forms on $P G(3, q)$ are projectively equivalent.

As incidence geometries, $\mathbf{Q}(4, q)$ and $\mathbf{W}(q)$ are dual of each other. (Benson (70)).
Their point-line incidence bipartite graphs are isomorphic.
None of them is self-dual (Thas(73)).

QUESTION:

Given and ODD prime power q, is there a $G Q(q)$ such that

$$
G Q(q) \neq \mathbf{Q}(4, q), \quad(\text { or } \mathbf{W}(q)) ?
$$

A Turán-type problem.

What is the greatest number of edges a graph with v vertices can have if its girth at least 8 ?

$$
\Theta\left(v^{1+1 / 3}\right), \text { when } v \rightarrow \infty .
$$

What is the greatest number of edges a graph with v vertices can have if it contains no 6 -cycle?

$$
\Theta\left(v^{1+1 / 3}\right), \text { when } v \rightarrow \infty .
$$

The asymptotic lower bounds are provided by generalized 4 -gons (or their subgraphs).
$G Q(q)$ contains

$$
1+q+q^{2}+q^{3}
$$

vertices in each partition.
Let $x y$ be an edge of $G Q(q)$. Remove it and all vertices that are at distance at most 3 from both x and y.

Let $A G Q(q)$ denote the remaining graph, called an an affine part of $G Q(q)$.

Then

1. $A G Q(q)$ is a bipartite q-regular graph of girth 8 . Each partition contains q^{3} vertices.
2. Diameter of $A G Q(q)$ is 6 .

Why is it worth to look at the affine parts?

- $A G Q(q)$ is "CLOSE" to $G Q(q)$: it differs from $G Q(q)$ by "just" a tree with all internal vertices of degree $(q+1)$ and is q-regular graph of the same girth 8 . And graph $A G Q(q)$ is simpler.

$$
e \sim 2^{-\frac{4}{3}} v^{1+1 / 3}, v \rightarrow \infty
$$

for both $A G Q(q)$ and $G Q(q)$. Hence for the Turán type extremal problems the graphs are equally good.

- For $A G Q(q)$ of the classical $G Q(q)$, there exist relatively simple descriptions.

The only known $G Q(q)$ for odd q has its affine part described as follows. Its partitions are $P=L=\mathbb{F}_{q}^{3}$ and for $p \in P$ and $l \in L$,

$$
p=\left(p_{1}, p_{2}, p_{3}\right) \sim l=\left[l_{1}, l_{2}, l_{3}\right] \Leftrightarrow
$$

$$
\begin{aligned}
& p_{2}+l_{2}=p_{1} l_{1} \\
& p_{3}+l_{3}=p_{1} l_{1}^{2}
\end{aligned}
$$

The only known $G Q(q)$ for odd q has its affine part described as follows. Its partitions are $P=L=\mathbb{F}_{q}^{3}$ and for $p \in P$ and $l \in L$,

$$
p=\left(p_{1}, p_{2}, p_{3}\right) \sim l=\left[l_{1}, l_{2}, l_{3}\right] \Leftrightarrow
$$

$$
\begin{aligned}
& p_{2}+l_{2}=p_{1} l_{1} \\
& p_{3}+l_{3}=p_{1} l_{1}^{2}
\end{aligned}
$$

We denote this graph by $G\left(q ; x y, x y^{2}\right)$.

The only known $G Q(q)$ for odd q has its affine part described as follows. Its partitions are $P=L=\mathbb{F}_{q}^{3}$ and for $p \in P$ and $l \in L$,

$$
p=\left(p_{1}, p_{2}, p_{3}\right) \sim l=\left[l_{1}, l_{2}, l_{3}\right] \Leftrightarrow
$$

$$
\begin{aligned}
& p_{2}+l_{2}=p_{1} l_{1} \\
& p_{3}+l_{3}=p_{1} l_{1}^{2}
\end{aligned}
$$

We denote this graph by $G\left(q ; x y, x y^{2}\right)$.
It is easy to check that $G\left(q ; x y, x y^{2}\right)$ is a q-regular graph of girth 8 .

Problem: Are there two functions $f, g \in \mathbb{F}_{q}[x, y]$ such that the graph $G(q ; f, g)$:

$$
\begin{aligned}
& p_{2}+l_{2}=f\left(p_{1}, l_{1}\right) \\
& p_{3}+l_{3}=g\left(p_{1}, l_{1}\right)
\end{aligned}
$$

has girth 8 and not isomorphic to $G\left(q ; x y, x y^{2}\right)$?

Problem: Are there two functions $f, g \in \mathbb{F}_{q}[x, y]$ such that the graph $G(q ; f, g)$:

$$
\begin{aligned}
& p_{2}+l_{2}=f\left(p_{1}, l_{1}\right) \\
& p_{3}+l_{3}=g\left(p_{1}, l_{1}\right)
\end{aligned}
$$

has girth 8 and not isomorphic to $G\left(q ; x y, x y^{2}\right)$?
If such a graph exists, it is a candidate for a new $G Q(q)$ which we may try to build from it by "attaching" a tree on $2\left(1+q+q^{2}\right)$ vertices.

Problem: Are there two functions $f, g \in \mathbb{F}_{q}[x, y]$ such that the graph $G(q ; f, g)$:

$$
\begin{aligned}
& p_{2}+l_{2}=f\left(p_{1}, l_{1}\right) \\
& p_{3}+l_{3}=g\left(p_{1}, l_{1}\right)
\end{aligned}
$$

has girth 8 and not isomorphic to $G\left(q ; x y, x y^{2}\right)$?
If such a graph exists, it is a candidate for a new $G Q(q)$ which we may try to build from it by "attaching" a tree on $2\left(1+q+q^{2}\right)$ vertices.

What conditions should f and g satisfy that the graph $G(q ; f, g)$:

$$
\begin{aligned}
& p_{2}+l_{2}=f\left(p_{1}, l_{1}\right) \\
& p_{3}+l_{3}=g\left(p_{1}, l_{1}\right)
\end{aligned}
$$

has girth 8 ?
Let $\Delta_{2}(h): \mathbb{F}_{q}[x, y] \rightarrow \mathbb{F}_{q}\left[x_{1}, x_{2}, y_{1}, y_{2}\right]$ such that

$$
h(x, y) \mapsto h\left(x_{1}, y_{1}\right)-h\left(x_{2}, y_{1}\right)+h\left(x_{2}, y_{2}\right)-h\left(x_{1}, y_{2}\right),
$$

and

$$
\begin{gathered}
\Delta_{3}(h): \mathbb{F}_{q}[x, y] \rightarrow \mathbb{F}_{q}\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right] \text { such that } \\
h(x, y) \mapsto \\
h\left(x_{1}, y_{1}\right)-h\left(x_{2}, y_{1}\right)+h\left(x_{2}, y_{2}\right)-h\left(x_{3}, y_{2}\right)+h\left(x_{3}, y_{3}\right)-h\left(x_{1}, y_{3}\right)
\end{gathered}
$$

Theorem. Graph $G(q ; f, g)$ contains NO

- 4-cycle if and only if for every solution of the system

$$
\begin{aligned}
& \Delta_{2}(f)=0 \\
& \Delta_{2}(g)=0,
\end{aligned}
$$

$$
x_{1}=x_{2} \text { or } y_{1}=y_{2} \text {. }
$$

- 6-cycle if and only if for every solution of the system

$$
\begin{aligned}
& \Delta_{3}(f)=0 \\
& \Delta_{3}(g)=0,
\end{aligned}
$$

$$
x_{i}=x_{j} \text { or } y_{i}=y_{j} \text { for some distinct } i, j \in\{1,2,3\} .
$$

Monomial graphs
What if we try both f and g to be MONOMIALS in x, y ?
Let $G=G\left(q ; x^{m} y^{n}, x^{u} y^{v}\right)$, i.e.

$$
\begin{aligned}
& p_{2}+l_{2}=p_{1}^{m} l_{1}^{n} \\
& p_{3}+l_{3}=p_{1}^{u} l_{1}^{v}
\end{aligned}
$$

Why monomials?
For even q, they produce numerous example of nonisomorphic $G Q$.

For several classes of polynomials, we could show that the girth of G is less than 8. E.g., the girth of

$$
G\left(q ; x^{m} y^{n}, x^{u_{1}} y^{v_{1}}+\lambda x^{u_{2}} y^{v_{2}}\right)
$$

is 6 for q sufficiently large Dmytrenko-L (05).

Theorem. Dmytrenko-L.-Williford (FFA, 2007)
Let $q=p^{e}$ be an odd prime power, and let girth of $G=$ $G\left(q ; x^{m} y^{n}, x^{u} y^{v}\right)$ be at least 8 . Then

- If $q \geq 5$ and $e=2^{a} 3^{b}$, then $G \cong G\left(q ; x y, x y^{2}\right)=$ $A G Q(q)$.

Theorem. Dmytrenko-L.-Williford (FFA, 2007)
Let $q=p^{e}$ be an odd prime power, and let girth of $G=$ $G\left(q ; x^{m} y^{n}, x^{u} y^{v}\right)$ be at least 8 . Then

- If $q \geq 5$ and $e=2^{a} 3^{b}$, then $G \cong G\left(q ; x y, x y^{2}\right)=$ $A G Q(q)$.
- If $p \geq 5$ and $e \neq 2^{a} 3^{b}$, then $G \cong G\left(q ; x y, x^{k} y^{2 k}\right)$, where k satisfies the conditions:

Let $q=p^{e}$ be an odd prime power, and let girth of $G=$ $G\left(q ; x^{m} y^{n}, x^{u} y^{v}\right)$ be at least 8 . Then

- If $q \geq 5$ and $e=2^{a} 3^{b}$, then $G \cong G\left(q ; x y, x y^{2}\right)=$ $A G Q(q)$.
- If $p \geq 5$ and $e \neq 2^{a} 3^{b}$, then $G \cong G\left(q ; x y, x^{k} y^{2 k}\right)$, where k satisfies the conditions:
$1 \leq k<(q-1) / 2, \quad \operatorname{gcd}(k, q-1)=1$,
$(2 k-1) \quad$ X $(q-1), \quad k \equiv 1(\bmod (p-1))$,
$\binom{2 k}{k} \equiv 2(\bmod p),\binom{4 k}{2 k} \equiv 6(\bmod p)$,
$f(x)=\left(x^{2}+x\right)^{k}-x^{2 k}$ is a PP on \mathbb{F}_{q}
etc...

Let $q=p^{e}$ be an odd prime power, and let girth of $G=$ $G\left(q ; x^{m} y^{n}, x^{u} y^{v}\right)$ be at least 8 . Then

- If $q \geq 5$ and $e=2^{a} 3^{b}$, then $G \cong G\left(q ; x y, x y^{2}\right)=$ $A G Q(q)$.
- If $p \geq 5$ and $e \neq 2^{a} 3^{b}$, then $G \cong G\left(q ; x y, x^{k} y^{2 k}\right)$, where k satisfies the conditions:
$1 \leq k<(q-1) / 2, \quad \operatorname{gcd}(k, q-1)=1$,
$(2 k-1) \quad$ ($q-1), \quad k \equiv 1(\bmod (p-1))$,
$\binom{2 k}{k} \equiv 2(\bmod p),\binom{4 k}{2 k} \equiv 6(\bmod p)$,
$f(x)=\left(x^{2}+x\right)^{k}-x^{2 k}$ is a PP on \mathbb{F}_{q}
etc...
- For $3 \leq q \leq 10^{10}, G \cong G\left(q ; x y, x y^{2}\right)=A G Q(q)$.

Conjecture 1.

Let q be an odd prime power. Then every monomial graph of girth 8 is isomorphic to $G\left(q ; x y, x y^{2}\right)$.

Conjecture 2.
Let $q=p^{e}$ be an odd prime power. Then

$$
f(x)=\left(x^{2}+x\right)^{k}-x^{2 k}
$$

is a PP on \mathbb{F}_{q} if and only if $k=p^{a}$.

Conjecture $2 \Rightarrow$ Conjecture 1

Some ideas of the proof.

- Use of automorphisms of monomial graphs $G\left(q ; x^{m} y^{n}, x^{u} y^{v}\right)$ to reduce the question to graphs $G\left(q ; x y, x^{k} y^{2 k}\right)$. One element of the reduction was the following result of Matthews (94):

$$
1+x+x^{2}+\ldots x^{k}
$$

is PP if and only if $k \equiv 1(\bmod p(q-1))$.

- We observed that graphs $G\left(q ; x y, x^{k} y^{2 k}\right)$ always contain 6-cycles of a special form, and tried to prove it. This is how the question whether the polynomial $\left(x^{2}=x\right)^{k}-x^{2 k}$ is PP was born.
- For the analysis of $\left(x^{2}+x\right)^{k}-x^{2 k}$ we used Hermite-

Problem: Are there three functions $f, g, h \in \mathbb{F}_{q}[x, y]$ such that the following graph $G(q ; f, g, h)$ has no 8 -cycle?

For $G(q ; f, g, h): p \in \mathbb{F}_{q}^{4}$ and $l \in \mathbb{F}_{q}^{4}$,

$$
p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \sim l=\left[l_{1}, l_{2}, l_{3}, l_{4}\right] \Leftrightarrow
$$

$$
\begin{aligned}
& p_{2}+l_{2}=f\left(p_{1}, l_{1}\right) \\
& p_{3}+l_{3}=g\left(p_{1}, l_{1}\right) \\
& p_{4}+l_{4}=h\left(p_{1}, l_{1}\right)
\end{aligned}
$$

An equivalent form of this problem is:
Are there three functions $f, g, h \in \mathbb{F}_{q}[x, y]$ such that the system

$$
\Delta_{4}(f)=\Delta_{4}(g)=\Delta_{4}(h)=0
$$

has a solution $\left(x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)$ such that $x_{i} \neq x_{i+1}$, and $y_{i} \neq y_{i+1}$ for $i=1,2,3,4$?
Positive answer to this question will solve a 60 year old question on the magnitude of the maximum number of edges in a graph on v vertices and without C_{8}.

If the answer to the previous question seems to be definite "NO", one should compare it with the following result of Wenger(91), and L.-Ustimenko (93):

Graph $G\left(q ; x y, x y^{2}, x y^{3}, x y^{4}\right)$

$$
\begin{aligned}
p_{2}+l_{2} & =p_{1} l_{1} \\
p_{3}+l_{3} & =p_{1} l_{1}^{2} \\
p_{4}+l_{4} & =p_{1} l_{1}^{3} \\
p_{5}+l_{5} & =p_{1} l_{1}^{4}
\end{aligned}
$$

has no 10-cycles.
This means that every solution $\left(x_{1}, \ldots, x_{5}, y_{1}, \ldots, y_{5}\right)$ of this system

$$
\Delta_{5}(x y)=\Delta_{5}\left(x y^{2}\right)=\Delta_{5}\left(x y^{3}\right)=\Delta_{5}\left(x y^{4}\right)=0
$$

has $x_{i}=x_{i+1}$ or $y_{i} \stackrel{\text { = }}{\overline{\text { }}} y_{i+1}$ for some $i=1, \ldots, 5$.

