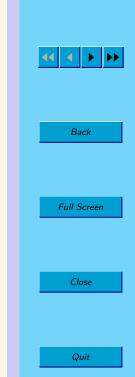
On monomial graphs of girth 8. Vasyl Dmytrenko, Felix Lazebnik, Jason Williford July 17, 2009



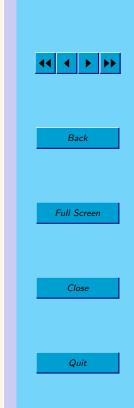
Let $q = p^e$, $f \in \mathbb{F}_q[x]$ is a **permutation** polynomial on \mathbb{F}_q (PP) if $c \mapsto f(c)$

is a bijection of \mathbb{F}_q to \mathbb{F}_q .

Examples:

$$ax + b, \ a, b \in \mathbb{F}_q, a \neq 0,$$

 $f = x^p,$
 $f = x^{p^n}.$



Conjecture 2:

Let $q = p^e$ be an odd prime power. Then

$$f = (x^2 + x)^k - x^{2k}$$

is a PP on \mathbb{F}_q if and only if $k = p^a$.

44 4 > >>
Back
Full Screen
Close
Quit
4

Conjecture 2:

Let $q = p^e$ be an odd prime power. Then

$$f = (x^2 + x)^k - x^{2k}$$

is a PP on \mathbb{F}_q if and only if $k = p^a$.

 (\Leftarrow) Obvious.

$$(x^{2} + x)^{p^{a}} - x^{2p^{a}} = x^{2p^{a}} + x^{p^{a}} - x^{2p^{a}} = x^{p^{a}},$$
$$c \mapsto c^{p^{a}} \text{ is a bijection on } \mathbb{F}_{q}.$$

4 4 > >>
Back
Full Screen
Close
Quit

Conjecture 2:

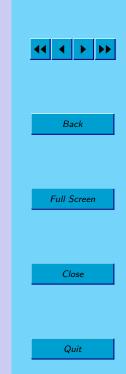
Let $q = p^e$ be an odd prime power. Then

$$f = (x^2 + x)^k - x^{2k}$$

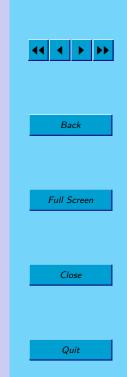
is a PP on \mathbb{F}_q if and only if $k = p^a$.

(\Leftarrow) Obvious. $(x^2 + x)^{p^a} - x^{2p^a} = x^{2p^a} + x^{p^a} - x^{2p^a} = x^{p^a},$ $c \mapsto c^{p^a}$ is a bijection on \mathbb{F}_q .

 (\Rightarrow) True for all $q < 10^{10}$.

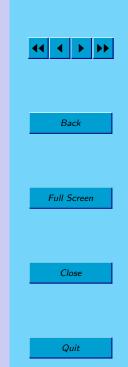


Generalized *n*-gon of order r is a bipartite (r + 1)-regular graph of diameter n and girth 2n.



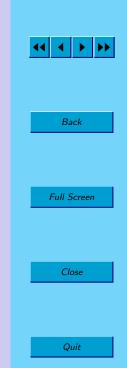
Generalized *n*-gon of order r is a bipartite (r + 1)-regular graph of diameter n and girth 2n.

• $r = 1, n \ge 2$: usual C_{2n} .



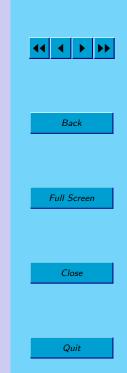
Generalized *n*-gon of order r is a bipartite (r + 1)-regular graph of diameter n and girth 2n.

- $r = 1, n \ge 2$: usual C_{2n} .
- $r \ge 2, n = 2$: $K_{r+1,r+1}$.



Generalized *n*-gon of order r is a bipartite (r + 1)-regular graph of diameter n and girth 2n.

- $r = 1, n \ge 2$: usual C_{2n} .
- $r \ge 2, n = 2$: $K_{r+1,r+1}$.
- $r \ge 2, n \ge 3$:



Generalized *n*-gon of order r is a bipartite (r + 1)-regular graph of diameter n and girth 2n.

• $r = 1, n \ge 2$: usual C_{2n} .

•
$$r \ge 2, n = 2$$
: $K_{r+1,r+1}$.

•
$$r \ge 2, n \ge 3$$
:

<u>Tits(59)</u>: For n = 3, 4, 6, and each prime power r, there exists a generalized n-gon of order r.

•• • •
Back
Full Screen
Close
Ouit

Generalized *n*-gon of order r is a bipartite (r + 1)-regular graph of diameter n and girth 2n.

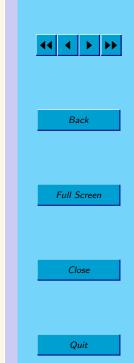
• $r = 1, n \ge 2$: usual C_{2n} .

•
$$r \ge 2, n = 2$$
: $K_{r+1,r+1}$.

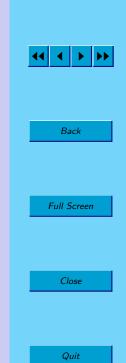
• $r \ge 2, n \ge 3$:

<u>Tits(59)</u>: For n = 3, 4, 6, and each prime power r, there exists a generalized n-gon of order r.

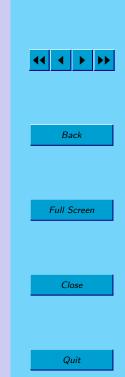
<u>Feit-Higman(64)</u>: No other values of n are possible.



• A generalized quadrangle of order r + 1, GQ(r), is a bipartite (r+1)-regular graph of diameter 4 and girth 8.



- A generalized quadrangle of order r + 1, GQ(r), is a bipartite (r+1)-regular graph of diameter 4 and girth 8.
- an (r+1)-regular graph of girth 8 with the minimum number of vertices



- A generalized quadrangle of order r + 1, GQ(r), is a bipartite (r+1)-regular graph of diameter 4 and girth 8.
- an (r+1)-regular graph of girth 8 with the minimum number of vertices

It is easy to show that each partition of GQ(r) contains $r^3 + r^2 + r + 1$ vertices.

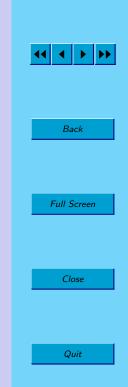
• a bipartite graph of girth 8 with each partition having $r^3 + r^2 + r + 1$ vertices and with maximum number of edges. <u>Neuwirth(01)</u>, <u>Hoory (02)</u>

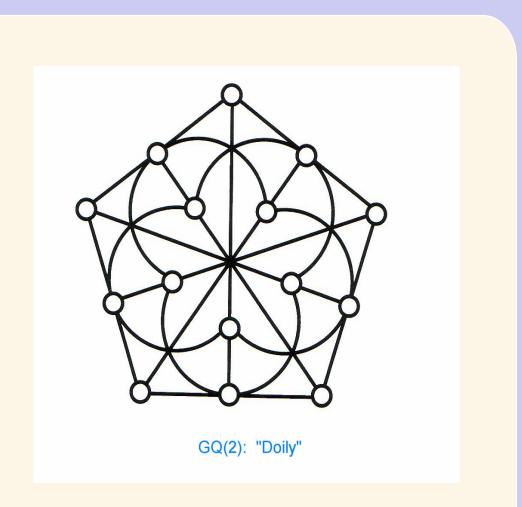
44 4 > >>
Back
Full Screen
Close
Quit

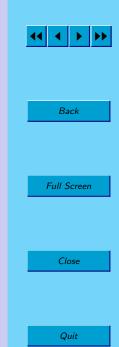
- A generalized quadrangle of order r + 1, GQ(r), is a bipartite (r+1)-regular graph of diameter 4 and girth 8.
- an (r+1)-regular graph of girth 8 with the minimum number of vertices

It is easy to show that each partition of GQ(r) contains $r^3 + r^2 + r + 1$ vertices.

- a bipartite graph of girth 8 with each partition having $r^3 + r^2 + r + 1$ vertices and with maximum number of edges. <u>Neuwirth(01)</u>, <u>Hoory (02)</u>
- a finite geometry (points and lines) with r + 1 points on every line, r + 1 lines passing through every point, and such that for every point x not on a line L there exists a unique line M through x which intersects L.







NO GQ(r) is known if r is not a prime power.

- GQ(q) exists for every prime power q .
- For all but few small even prime powers q, there exist non-isomorphic GQ(q).

•• • ••
Back
Full Screen
Close
Quit

NO GQ(r) is known if r is not a prime power.

- GQ(q) exists for every prime power q .
- For all but few small even prime powers q, there exist non-isomorphic GQ(q).
- For odd prime power q, there exist only one generalized 4-gon.

44 ()))
Back
Full Screen
Close

Quit

Example of GQ(q)Here are two description of the GQ(q), q odd, by <u>Benson(66)</u>.

The first model.

$$\mathbf{Q}_4 = \{ (x_0, \dots, x_4) \in \mathbb{F}_q^5 : x_0^2 + x_1 x_2 + x_3 x_4 = 0 \}$$

Points and Lines: these are 1- and 2-dimensional totally isotropic subspaces of \mathbf{Q}_4 , respectively. The adjacency (incidence) is defined by containment. The obtained GQ is denoted by $\mathbf{Q}(4, q)$.

It is known that all nonsingular quadrics in PG(4, q) are projectively equivalent.

Back Full Screen Close Quit

The second model. Consider the following bilinear form on \mathbb{F}_q^4 :

$$\mathbf{x} \cdot \mathbf{y} = y_1 x_0 - y_0 x_1 + y_3 x_2 - y_2 x_3 = 0.$$

Then $x \cdot y = -y \cdot x$, and so $x \cdot x = 0$.

Points and Lines: these are 1- and 2-dimensional totally isotropic subspaces in the symplectic geometry on \mathbb{F}_q^4 . The adjacency (incidence) is defined by containment. The obtained GQ is denoted by $\mathbf{W}(q)$.

Again, all non-degenerate anti-symmetric bilinear forms on PG(3,q) are projectively equivalent.

4 4 > >>
Back
Full Screen
Close
Quit

The second model. Consider the following bilinear form on \mathbb{F}_q^4 :

$$\mathbf{x} \cdot \mathbf{y} = y_1 x_0 - y_0 x_1 + y_3 x_2 - y_2 x_3 = 0.$$

Then $x \cdot y = -y \cdot x$, and so $x \cdot x = 0$.

Points and Lines: these are 1- and 2-dimensional totally isotropic subspaces in the symplectic geometry on \mathbb{F}_q^4 . The adjacency (incidence) is defined by containment. The obtained GQ is denoted by $\mathbf{W}(q)$.

Again, all non-degenerate anti-symmetric bilinear forms on PG(3,q) are projectively equivalent.

As incidence geometries, $\mathbf{Q}(4, q)$ and $\mathbf{W}(q)$ are dual of each other. (Benson (70)). Their point-line incidence bipartite graphs are isomorphic. None of them is self-dual (Thas(73)).

~
Back
Full Screen
Close
Quit

^{*********}

QUESTION:

Given and ODD prime power q, is there a GQ(q) such that

 $GQ(q) \not\cong \mathbf{Q}(4,q), \text{ (or } \mathbf{W}(q))$?

44 4 > >>
Back
Full Screen
Close
Quit

A Turán-type problem.

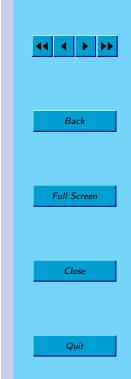
What is the greatest number of edges a graph with v vertices can have if its girth at least 8?

 $\Theta(v^{1+1/3})$, when $v \to \infty$.

What is the greatest number of edges a graph with v vertices can have if it contains no 6-cycle?

 $\Theta(v^{1+1/3})$, when $v \to \infty$.

The asymptotic lower bounds are provided by generalized 4-gons (or their subgraphs).



GQ(q) contains

$$1 + q + q^2 + q^3$$

vertices in each partition.

Let xy be an edge of GQ(q). Remove it and all vertices that are at distance at most 3 from both x and y.

Let AGQ(q) denote the remaining graph, called an an affine part of GQ(q).

Then

- 1. AGQ(q) is a bipartite q-regular graph of girth 8. Each partition contains q^3 vertices.
- 2. Diameter of AGQ(q) is 6.

4 4 >
Back
Full Screen
Close
Quit

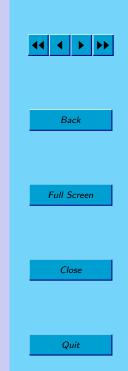
Why is it worth to look at the affine parts?

• AGQ(q) is "CLOSE" to GQ(q): it differs from GQ(q)by "just" a tree with all internal vertices of degree (q + 1) and is q-regular graph of the same girth 8. And graph AGQ(q) is simpler.

$$e \sim 2^{-\frac{4}{3}} v^{1+1/3}, \ v \to \infty$$

for both AGQ(q) and GQ(q). Hence for the Turán type extremal problems the graphs are equally good.

• For AGQ(q) of the classical GQ(q), there exist relatively simple descriptions.



The only known GQ(q) for odd q has its affine part described as follows. Its partitions are $P = L = \mathbb{F}_q^3$ and for $p \in P$ and $l \in L$,

$$p = (p_1, p_2, p_3) \sim l = [l_1, l_2, l_3] \quad \Leftrightarrow \quad$$

$$p_2 + l_2 = p_1 l_1$$
$$p_3 + l_3 = p_1 l_1^2$$

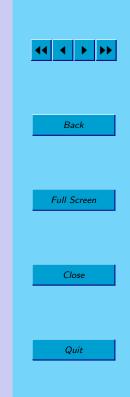
•• • ••
Back
Full Screen
Close
Quit

The only known GQ(q) for odd q has its affine part described as follows. Its partitions are $P = L = \mathbb{F}_q^3$ and for $p \in P$ and $l \in L$,

$$p = (p_1, p_2, p_3) \sim l = [l_1, l_2, l_3] \quad \Leftrightarrow \quad$$

$$p_2 + l_2 = p_1 l_1$$
$$p_3 + l_3 = p_1 l_1^2$$

We denote this graph by $G(q; xy, xy^2)$.

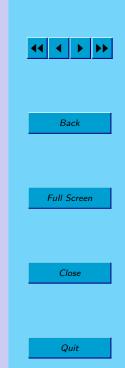


The only known GQ(q) for odd q has its affine part described as follows. Its partitions are $P = L = \mathbb{F}_q^3$ and for $p \in P$ and $l \in L$,

$$p = (p_1, p_2, p_3) \sim l = [l_1, l_2, l_3] \quad \Leftrightarrow \quad$$

$$p_2 + l_2 = p_1 l_1$$
$$p_3 + l_3 = p_1 l_1^2$$

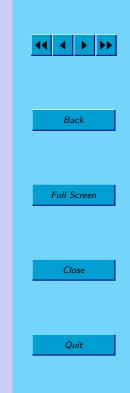
We denote this graph by $G(q; xy, xy^2)$. It is easy to check that $G(q; xy, xy^2)$ is a q-regular graph of girth 8.



Problem: Are there two functions $f, g \in \mathbb{F}_q[x, y]$ such that the graph G(q; f, g):

 $p_2 + l_2 = f(p_1, l_1)$ $p_3 + l_3 = g(p_1, l_1)$

has girth 8 and not isomorphic to $G(q; xy, xy^2)$?

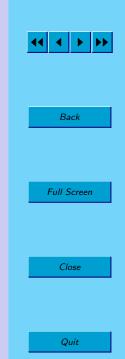


Problem: Are there two functions $f, g \in \mathbb{F}_q[x, y]$ such that the graph G(q; f, g):

 $p_2 + l_2 = f(p_1, l_1)$ $p_3 + l_3 = g(p_1, l_1)$

has girth 8 and not isomorphic to $G(q; xy, xy^2)$?

If such a graph exists, it is a candidate for a new GQ(q) which we may try to build from it by "attaching" a tree on $2(1 + q + q^2)$ vertices.

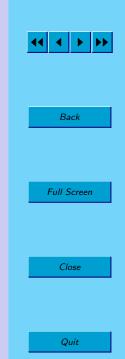


Problem: Are there two functions $f, g \in \mathbb{F}_q[x, y]$ such that the graph G(q; f, g):

 $p_2 + l_2 = f(p_1, l_1)$ $p_3 + l_3 = g(p_1, l_1)$

has girth 8 and not isomorphic to $G(q; xy, xy^2)$?

If such a graph exists, it is a candidate for a new GQ(q) which we may try to build from it by "attaching" a tree on $2(1 + q + q^2)$ vertices.



What conditions should f and g satisfy that the graph G(q; f, g):

$$p_2 + l_2 = f(p_1, l_1)$$

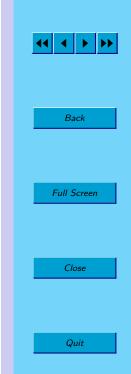
$$p_3 + l_3 = g(p_1, l_1)$$

has girth 8?

Let
$$\Delta_2(h) : \mathbb{F}_q[x, y] \to \mathbb{F}_q[x_1, x_2, y_1, y_2]$$
 such that
 $h(x, y) \mapsto h(x_1, y_1) - h(x_2, y_1) + h(x_2, y_2) - h(x_1, y_2),$
and

$$\Delta_3(h) : \mathbb{F}_q[x, y] \to \mathbb{F}_q[x_1, x_2, x_3, y_1, y_2, y_3]$$
 such that
 $h(x, y) \mapsto$

 $h(x_1, y_1) - h(x_2, y_1) + h(x_2, y_2) - h(x_3, y_2) + h(x_3, y_3) - h(x_1, y_3)$



Theorem. Graph G(q; f, g) contains NO

• 4-cycle if and only if for every solution of the system

 $\Delta_2(f) = 0$ $\Delta_2(g) = 0,$

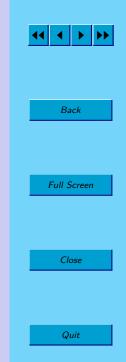
 $x_1 = x_2$ or $y_1 = y_2$.

• 6-cycle if and only if for every solution of the system

$$\Delta_3(f) = 0$$

$$\Delta_3(g) = 0,$$

 $x_i = x_j$ or $y_i = y_j$ for some distinct $i, j \in \{1, 2, 3\}$.



Monomial graphs

What if we try both f and g to be MONOMIALS in x, y? Let $G = G(q; x^m y^n, x^u y^v)$, i.e.

$$p_2 + l_2 = p_1^m l_1^n p_3 + l_3 = p_1^u l_1^v$$

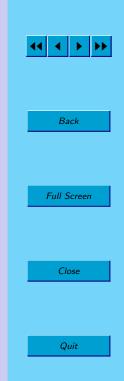
Why monomials?

For even q, they produce numerous example of nonisomorphic GQ.

For several classes of polynomials, we could show that the girth of G is less than 8. E.g., the girth of

 $G(q; x^m y^n, x^{u_1} y^{v_1} + \lambda x^{u_2} y^{v_2})$

is 6 for q sufficiently large <u>Dmytrenko-L (05)</u>.



Let $q = p^e$ be an odd prime power, and let girth of $G = G(q; x^m y^n, x^u y^v)$ be at least 8. Then

• If $q \ge 5$ and $e = 2^a 3^b$, then $G \cong G(q; xy, xy^2) = AGQ(q)$.

44 4 > >>	
Back	
Full Screen	
Close	
Quit	

Let $q = p^e$ be an odd prime power, and let girth of $G = G(q; x^m y^n, x^u y^v)$ be at least 8. Then

- If $q \ge 5$ and $e = 2^a 3^b$, then $G \cong G(q; xy, xy^2) = AGQ(q)$.
- If $p \ge 5$ and $e \ne 2^a 3^b$, then $G \cong G(q; xy, x^k y^{2k})$, where k satisfies the conditions:

4 4 > >>
Back
Full Screen
Close
Quit

Let $q = p^e$ be an odd prime power, and let girth of $G = G(q; x^m y^n, x^u y^v)$ be at least 8. Then

- If $q \ge 5$ and $e = 2^a 3^b$, then $G \cong G(q; xy, xy^2) = AGQ(q)$.
- If $p \ge 5$ and $e \ne 2^a 3^b$, then $G \cong G(q; xy, x^k y^{2k})$, where k satisfies the conditions:

$$1 \le k < (q-1)/2, \quad \gcd(k, q-1) = 1,$$

$$(2k-1) \not \mid (q-1), \quad k \equiv 1 \pmod{(p-1)},$$

$$\binom{2k}{k} \equiv 2 \pmod{p}, \ \binom{4k}{2k} \equiv 6 \pmod{p},$$

$$f(x) = (x^2 + x)^k - x^{2k} \text{ is a PP on } \mathbb{F}_q$$
etc...

4 4 > >
Back
Full Screen
Close
Quit

Let $q = p^e$ be an odd prime power, and let girth of $G = G(q; x^m y^n, x^u y^v)$ be at least 8. Then

- If $q \ge 5$ and $e = 2^a 3^b$, then $G \cong G(q; xy, xy^2) = AGQ(q)$.
- If $p \ge 5$ and $e \ne 2^a 3^b$, then $G \cong G(q; xy, x^k y^{2k})$, where k satisfies the conditions:

$$1 \le k < (q-1)/2, \quad \gcd(k, q-1) = 1,$$

$$(2k-1) \not \mid (q-1), \quad k \equiv 1 \pmod{(p-1)},$$

$$\binom{2k}{k} \equiv 2 \pmod{p}, \quad \binom{4k}{2k} \equiv 6 \pmod{p},$$

$$f(x) = (x^2 + x)^k - x^{2k} \text{ is a PP on } \mathbb{F}_q$$
etc...

• For $3 \le q \le 10^{10}$, $G \cong G(q; xy, xy^2) = AGQ(q)$.



Conjecture 1.

Let q be an odd prime power. Then every monomial graph of girth 8 is isomorphic to $G(q; xy, xy^2)$.

Conjecture 2.

Let $q = p^e$ be an odd prime power. Then $f(x) = (x^2 + x)^k - x^{2k}$ is a PP on \mathbb{F}_q if and only if $k = p^a$.

Conjecture $2 \Rightarrow$ Conjecture 1

4 1 >
Back
Full Screen
Close
Quit

Some ideas of the proof.

• Use of automorphisms of monomial graphs $G(q; x^m y^n, x^u y^v)$ to reduce the question to graphs $G(q; xy, x^k y^{2k})$. One element of the reduction was the following result of <u>Matthews</u> (94):

 $1 + x + x^2 + \dots x^k$

is PP if and only if $k \equiv 1 \pmod{p(q-1)}$.

- We observed that graphs $G(q; xy, x^k y^{2k})$ always contain 6-cycles of a special form, and tried to prove it. This is how the question whether the polynomial $(x^2 x)^k x^{2k}$ is PP was born.
- For the analysis of $(x^2 + x)^k x^{2k}$ we used Hermite-Dickson criterium, and some *ad hoc* approaches.

Back Full Screen Close Quit

Problem: Are there three functions $f, g, h \in \mathbb{F}_q[x, y]$ such that the following graph G(q; f, g, h) has no 8-cycle?

For G(q; f, g, h): $p \in \mathbb{F}_q^4$ and $l \in \mathbb{F}_q^4$,

 $p = (p_1, p_2, p_3, p_4) \sim l = [l_1, l_2, l_3, l_4] \iff$

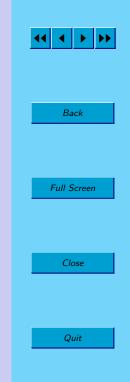
$p_2 + l_2 = f(p_1, l_1)$
$p_3 + l_3 = g(p_1, l_1)$
$p_4 + l_4 = h(p_1, l_1)$

An equivalent form of this problem is:

Are there three functions $f, g, h \in \mathbb{F}_q[x, y]$ such that the system

$$\Delta_4(f) = \Delta_4(g) = \Delta_4(h) = 0$$

has a solution $(x_1, \ldots, x_4, y_1, \ldots, y_4)$ such that $x_i \neq x_{i+1}$, and $y_i \neq y_{i+1}$ for i = 1, 2, 3, 4? Positive answer to this question will solve a 60 year old question on the magnitude of the maximum number of edges in a graph on v vertices and without C_8 .



If the answer to the previous question seems to be definite "NO", one should compare it with the following result of Wenger(91), and L.-Ustimenko (93):

Graph $G(q; xy, xy^2, xy^3, xy^4)$

$$p_2 + l_2 = p_1 l_1$$

$$p_3 + l_3 = p_1 l_1^2$$

$$p_4 + l_4 = p_1 l_1^3$$

$$p_5 + l_5 = p_1 l_1^4$$

has no 10-cycles.

This means that every solution $(x_1, \ldots, x_5, y_1, \ldots, y_5)$ of this system

$$\Delta_5(xy) = \Delta_5(xy^2) = \Delta_5(xy^3) = \Delta_5(xy^4) = 0$$

has $x_i = x_{i+1}$ or $y_i \neq y_{i+1}$ for some $i = 1, \dots, 5$.

