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On monomial graphs of girth 8.

Vasyl Dmytrenko, Felix Lazebnik, Jason Williford

July 17, 2009
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Let q = pe, f ∈ Fq[x] is a permutation polynomial on
Fq (PP) if

c 7→ f (c)

is a bijection of Fq to Fq.

Examples:
ax + b, a, b ∈ Fq, a 6= 0,

f = xp,

f = xpn

.
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Conjecture 2:

Let q = pe be an odd prime power. Then

f = (x2 + x)k − x2k

is a PP on Fq if and only if k = pa.
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Conjecture 2:

Let q = pe be an odd prime power. Then

f = (x2 + x)k − x2k

is a PP on Fq if and only if k = pa.

(⇐) Obvious.

(x2 + x)pa − x2pa

= x2pa

+ xpa − x2pa

= xpa

,

c 7→ cpa

is a bijection on Fq.
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Conjecture 2:

Let q = pe be an odd prime power. Then

f = (x2 + x)k − x2k

is a PP on Fq if and only if k = pa.

(⇐) Obvious.

(x2 + x)pa − x2pa

= x2pa

+ xpa − x2pa

= xpa

,

c 7→ cpa

is a bijection on Fq.

(⇒) True for all q < 1010.
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Let n ≥ 2, s ≥ 1.

Generalized n-gon of order r is a bipartite (r + 1)-regular
graph of diameter n and girth 2n.
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Let n ≥ 2, s ≥ 1.

Generalized n-gon of order r is a bipartite (r + 1)-regular
graph of diameter n and girth 2n.

• r = 1, n ≥ 2: usual C2n.
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Let n ≥ 2, s ≥ 1.

Generalized n-gon of order r is a bipartite (r + 1)-regular
graph of diameter n and girth 2n.

• r = 1, n ≥ 2: usual C2n.

• r ≥ 2, n = 2: Kr+1,r+1.
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Let n ≥ 2, s ≥ 1.

Generalized n-gon of order r is a bipartite (r + 1)-regular
graph of diameter n and girth 2n.

• r = 1, n ≥ 2: usual C2n.

• r ≥ 2, n = 2: Kr+1,r+1.

• r ≥ 2, n ≥ 3:
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Let n ≥ 2, s ≥ 1.

Generalized n-gon of order r is a bipartite (r + 1)-regular
graph of diameter n and girth 2n.

• r = 1, n ≥ 2: usual C2n.

• r ≥ 2, n = 2: Kr+1,r+1.

• r ≥ 2, n ≥ 3:

Tits(59): For n = 3, 4, 6, and each prime power r, there
exists a generalized n-gon of order r.
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Let n ≥ 2, s ≥ 1.

Generalized n-gon of order r is a bipartite (r + 1)-regular
graph of diameter n and girth 2n.

• r = 1, n ≥ 2: usual C2n.

• r ≥ 2, n = 2: Kr+1,r+1.

• r ≥ 2, n ≥ 3:

Tits(59): For n = 3, 4, 6, and each prime power r, there
exists a generalized n-gon of order r.

Feit-Higman(64): No other values of n are possible.
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• A generalized quadrangle of order r + 1, GQ(r), is a
bipartite (r+1)-regular graph of diameter 4 and girth
8.
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• A generalized quadrangle of order r + 1, GQ(r), is a
bipartite (r+1)-regular graph of diameter 4 and girth
8.

• an (r + 1)-regular graph of girth 8 with the minimum
number of vertices
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• A generalized quadrangle of order r + 1, GQ(r), is a
bipartite (r+1)-regular graph of diameter 4 and girth
8.

• an (r + 1)-regular graph of girth 8 with the minimum
number of vertices

It is easy to show that each partition of GQ(r) con-
tains r3 + r2 + r + 1 vertices.

• a bipartite graph of girth 8 with each partition having
r3 + r2 + r + 1 vertices and with maximum number of
edges. Neuwirth(01), Hoory (02)
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• A generalized quadrangle of order r + 1, GQ(r), is a
bipartite (r+1)-regular graph of diameter 4 and girth
8.

• an (r + 1)-regular graph of girth 8 with the minimum
number of vertices

It is easy to show that each partition of GQ(r) con-
tains r3 + r2 + r + 1 vertices.

• a bipartite graph of girth 8 with each partition having
r3 + r2 + r + 1 vertices and with maximum number of
edges. Neuwirth(01), Hoory (02)

• a finite geometry (points and lines) with r + 1 points
on every line, r + 1 lines passing through every point,
and such that for every point x not on a line L there
exists a unique line M through x which intersects L.
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NO GQ(r) is known if r is not a prime power.

• GQ(q) exists for every prime power q .

• For all but few small even prime powers q, there exist
non-isomorphic GQ(q).
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NO GQ(r) is known if r is not a prime power.

• GQ(q) exists for every prime power q .

• For all but few small even prime powers q, there exist
non-isomorphic GQ(q).

• For odd prime power q, there exist only one general-
ized 4-gon.
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Example of GQ(q)
Here are two description of the GQ(q), q odd, by
Benson(66).

The first model.

Q4 = {(x0, . . . , x4) ∈ F5
q : x2

0 + x1x2 + x3x4 = 0}

Points and Lines: these are 1- and 2-dimensional totally
isotropic subspaces of Q4, respectively. The adjacency
(incidence) is defined by containment. The obtained GQ
is denoted by Q(4, q).

It is known that all nonsingular quadrics in PG(4, q) are
projectively equivalent.
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The second model. Consider the following bilinear
form on F4

q:

x · y = y1x0 − y0x1 + y3x2 − y2x3 = 0.

Then x · y = −y · x, and so x · x = 0.

Points and Lines: these are 1- and 2-dimensional totally
isotropic subspaces in the symplectic geometry on F4

q. The
adjacency (incidence) is defined by containment. The ob-
tained GQ is denoted by W(q).

Again, all non-degenerate anti-symmetric bilinear forms
on PG(3, q) are projectively equivalent.
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The second model. Consider the following bilinear
form on F4

q:

x · y = y1x0 − y0x1 + y3x2 − y2x3 = 0.

Then x · y = −y · x, and so x · x = 0.

Points and Lines: these are 1- and 2-dimensional totally
isotropic subspaces in the symplectic geometry on F4

q. The
adjacency (incidence) is defined by containment. The ob-
tained GQ is denoted by W(q).

Again, all non-degenerate anti-symmetric bilinear forms
on PG(3, q) are projectively equivalent.

**************

As incidence geometries, Q(4, q) and W(q) are dual of
each other. (Benson (70)).
Their point-line incidence bipartite graphs are isomorphic.

None of them is self-dual (Thas(73)).
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QUESTION:

Given and ODD prime power q, is there a GQ(q) such
that

GQ(q) � Q(4, q), (or W(q)) ?
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A Turán-type problem.

What is the greatest number of edges a graph with v ver-
tices can have if its girth at least 8?

Θ(v1+1/3), when v →∞.

What is the greatest number of edges a graph with v ver-
tices can have if it contains no 6-cycle?

Θ(v1+1/3), when v →∞.

The asymptotic lower bounds are provided by generalized
4-gons (or their subgraphs).
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GQ(q) contains
1 + q + q2 + q3

vertices in each partition.

Let xy be an edge of GQ(q). Remove it and all vertices
that are at distance at most 3 from both x and y.

Let AGQ(q) denote the remaining graph, called an an
affine part of GQ(q).

Then

1. AGQ(q) is a bipartite q-regular graph of girth 8. Each
partition contains q3 vertices.

2. Diameter of AGQ(q) is 6.
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Why is it worth to look at the affine parts?

• AGQ(q) is “CLOSE” to GQ(q): it differs from GQ(q)
by “just” a tree with all internal vertices of degree
(q + 1) and is q-regular graph of the same girth 8.
And graph AGQ(q) is simpler.

•
e ∼ 2−

4
3v1+1/3, v →∞,

for both AGQ(q) and GQ(q). Hence for the Turán
type extremal problems the graphs are equally good.

• For AGQ(q) of the classical GQ(q), there exist rela-
tively simple descriptions.
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The only known GQ(q) for odd q has its affine part de-
scribed as follows. Its partitions are P = L = F3

q and for
p ∈ P and l ∈ L,

p = (p1, p2, p3) ∼ l = [l1, l2, l3] ⇔

p2 + l2 = p1l1
p3 + l3 = p1l

2
1
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The only known GQ(q) for odd q has its affine part de-
scribed as follows. Its partitions are P = L = F3

q and for
p ∈ P and l ∈ L,

p = (p1, p2, p3) ∼ l = [l1, l2, l3] ⇔

p2 + l2 = p1l1
p3 + l3 = p1l

2
1

We denote this graph by G(q; xy, xy2).
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The only known GQ(q) for odd q has its affine part de-
scribed as follows. Its partitions are P = L = F3

q and for
p ∈ P and l ∈ L,

p = (p1, p2, p3) ∼ l = [l1, l2, l3] ⇔

p2 + l2 = p1l1
p3 + l3 = p1l

2
1

We denote this graph by G(q; xy, xy2).
It is easy to check that G(q; xy, xy2) is a q-regular graph
of girth 8.
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Problem: Are there two functions f, g ∈ Fq[x, y] such
that the graph G(q; f, g):

p2 + l2 = f (p1, l1)

p3 + l3 = g(p1, l1)

has girth 8 and not isomorphic to G(q; xy, xy2)?
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Problem: Are there two functions f, g ∈ Fq[x, y] such
that the graph G(q; f, g):

p2 + l2 = f (p1, l1)

p3 + l3 = g(p1, l1)

has girth 8 and not isomorphic to G(q; xy, xy2)?

If such a graph exists, it is a candidate for a new GQ(q)
which we may try to build from it by “attaching” a tree
on 2(1 + q + q2) vertices.
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Problem: Are there two functions f, g ∈ Fq[x, y] such
that the graph G(q; f, g):

p2 + l2 = f (p1, l1)

p3 + l3 = g(p1, l1)

has girth 8 and not isomorphic to G(q; xy, xy2)?

If such a graph exists, it is a candidate for a new GQ(q)
which we may try to build from it by “attaching” a tree
on 2(1 + q + q2) vertices.
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What conditions should f and g satisfy that the graph
G(q; f, g):

p2 + l2 = f (p1, l1)

p3 + l3 = g(p1, l1)

has girth 8?

Let ∆2(h) : Fq[x, y] → Fq[x1, x2, y1, y2] such that

h(x, y) 7→ h(x1, y1)− h(x2, y1) + h(x2, y2)− h(x1, y2),

and

∆3(h) : Fq[x, y] → Fq[x1, x2, x3, y1, y2, y3] such that

h(x, y) 7→

h(x1, y1)−h(x2, y1)+h(x2, y2)−h(x3, y2)+h(x3, y3)−h(x1, y3)
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Theorem. Graph G(q; f, g) contains NO

• 4-cycle if and only if for every solution of the system

∆2(f ) = 0

∆2(g) = 0,

x1 = x2 or y1 = y2.

• 6-cycle if and only if for every solution of the system

∆3(f ) = 0

∆3(g) = 0,

xi = xj or yi = yj for some distinct i, j ∈ {1, 2, 3}.
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Monomial graphs

What if we try both f and g to be MONOMIALS in x, y?

Let G = G(q; xmyn, xuyv), i.e.

p2 + l2 = pm
1 ln1

p3 + l3 = pu
1l

v
1

Why monomials?

For even q, they produce numerous example of non-
isomorphic GQ.

For several classes of polynomials, we could show that the
girth of G is less than 8. E.g., the girth of

G(q; xmyn, xu1yv1 + λxu2yv2)

is 6 for q sufficiently large Dmytrenko-L (05).
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Theorem. Dmytrenko-L.-Williford (FFA, 2007)

Let q = pe be an odd prime power, and let girth of G =
G(q; xmyn, xuyv) be at least 8. Then

• If q ≥ 5 and e = 2a3b, then G ∼= G(q; xy, xy2) =
AGQ(q).
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Theorem. Dmytrenko-L.-Williford (FFA, 2007)

Let q = pe be an odd prime power, and let girth of G =
G(q; xmyn, xuyv) be at least 8. Then

• If q ≥ 5 and e = 2a3b, then G ∼= G(q; xy, xy2) =
AGQ(q).

• If p ≥ 5 and e 6= 2a3b, then G ∼= G(q; xy, xky2k),
where k satisfies the conditions:
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Theorem. Dmytrenko-L.-Williford (FFA, 2007)

Let q = pe be an odd prime power, and let girth of G =
G(q; xmyn, xuyv) be at least 8. Then

• If q ≥ 5 and e = 2a3b, then G ∼= G(q; xy, xy2) =
AGQ(q).

• If p ≥ 5 and e 6= 2a3b, then G ∼= G(q; xy, xky2k),
where k satisfies the conditions:

1 ≤ k < (q − 1)/2, gcd(k, q − 1) = 1,

(2k − 1) 6 | (q − 1), k ≡ 1 (mod (p− 1)),(2k
k

)
≡ 2 (mod p),

(4k
2k

)
≡ 6 (mod p),

f (x) = (x2 + x)k − x2k is a PP on Fq

etc...
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Theorem. Dmytrenko-L.-Williford (FFA, 2007)

Let q = pe be an odd prime power, and let girth of G =
G(q; xmyn, xuyv) be at least 8. Then

• If q ≥ 5 and e = 2a3b, then G ∼= G(q; xy, xy2) =
AGQ(q).

• If p ≥ 5 and e 6= 2a3b, then G ∼= G(q; xy, xky2k),
where k satisfies the conditions:

1 ≤ k < (q − 1)/2, gcd(k, q − 1) = 1,

(2k − 1) 6 | (q − 1), k ≡ 1 (mod (p− 1)),(2k
k

)
≡ 2 (mod p),

(4k
2k

)
≡ 6 (mod p),

f (x) = (x2 + x)k − x2k is a PP on Fq

etc...

• For 3 ≤ q ≤ 1010, G ∼= G(q; xy, xy2) = AGQ(q).
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Conjecture 1.

Let q be an odd prime power. Then every monomial graph
of girth 8 is isomorphic to G(q; xy, xy2).

Conjecture 2.

Let q = pe be an odd prime power. Then

f (x) = (x2 + x)k − x2k

is a PP on Fq if and only if k = pa.

Conjecture 2 ⇒ Conjecture 1
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Some ideas of the proof.

• Use of automorphisms of monomial graphs
G(q; xmyn, xuyv) to reduce the question to graphs
G(q; xy, xky2k). One element of the reduction was
the following result of Matthews (94):

1 + x + x2 + . . . xk

is PP if and only if k ≡ 1 (mod p(q − 1)).

• We observed that graphs G(q; xy, xky2k) always con-
tain 6-cycles of a special form, and tried to prove
it. This is how the question whether the polynomial
(x2 − x)k − x2k is PP was born.

• For the analysis of (x2 + x)k − x2k we used Hermite-
Dickson criterium, and some ad hoc approaches.

Felix Lazebnik
Note
A typo:  should be " + " sign. 
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Problem: Are there three functions f, g, h ∈ Fq[x, y] such
that the following graph G(q; f, g, h) has no 8-cycle?

For G(q; f, g, h): p ∈ F4
q and l ∈ F4

q,

p = (p1, p2, p3, p4) ∼ l = [l1, l2, l3, l4] ⇔

p2 + l2 = f (p1, l1)

p3 + l3 = g(p1, l1)

p4 + l4 = h(p1, l1)

An equivalent form of this problem is:

Are there three functions f, g, h ∈ Fq[x, y] such that the
system

∆4(f ) = ∆4(g) = ∆4(h) = 0

has a solution (x1, . . . , x4, y1, . . . , y4) such that xi 6= xi+1,
and yi 6= yi+1 for i = 1, 2, 3, 4?
Positive answer to this question will solve a 60 year old
question on the magnitude of the maximum number of
edges in a graph on v vertices and without C8.

Felix Lazebnik
Note
Indices are taken modulo 4.
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If the answer to the previous question seems to be definite
“NO”, one should compare it with the following result of
Wenger(91), and L.-Ustimenko (93):

Graph G(q; xy, xy2, xy3, xy4)

p2 + l2 = p1l1
p3 + l3 = p1l

2
1

p4 + l4 = p1l
3
1

p5 + l5 = p1l
4
1

has no 10-cycles.

This means that every solution (x1, . . . , x5, y1, . . . , y5) of
this system

∆5(xy) = ∆5(xy2) = ∆5(xy3) = ∆5(xy4) = 0

has xi = xi+1 or yi 6= yi+1 for some i = 1, . . . , 5.

Felix Lazebnik
Note
should be " = ".  Indices are taken modulo 5. 





