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> We replace the number expanded in base b

X = Z ab" € R

n<k

by the formal power series

a=> aT" €F,((1/T)) =F(q).

n<k

> For instance: T/ (T—1)=1+T"" 4+ T +...
a € Fy(T) < (an)a<x is eventually periodic.
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Continued fractions in F(g)

Every a € F(g) can be expanded as a continued fraction :

a=ao+ 1/(a1 +1/(az+1/(- - = [a0, a1, a2, ..

where a; € F,[T] and deg(a;) > 0 fori > 0.

The expansion is finite <= « € Fy(T).
For instance : (T? — 1)*/(2T% + 4T) = [3T, 2T, 3T, 2T

[Fo(T, ) : Fy(T)] =2 <= (an)a>o0 is eventually periodic.

For a € F(q)\F,(T) we define (the approximation exponent):

v(a) = 2+ limsup(deg(an+1)/ Z deg(a)).

n>0 0<i<n

]
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Hyperquadratic Formal Power Series in F(g)

Let p be the characteristic of F, and r = p’ where ¢ > 0 is an integer.

We write o € H,(q), if & € F(q)\F,(T) and it satisfies
a = (Aa"+ B)/(Ca" + D)

where (4, B, C, D) € (F,[T])*.
a € Hi(q) <= «is quadratic over F (7).
a € F(q) is hyperquadratic if a € H(q) = U, H:(q).

a € H(q) = o = bo + bia + bra® where b; € Fy(T).
« is hyperquadratic = « is “differential-quadratic”.
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» Example 1. @ = |17 T' VAR
Hencea =7+ 1/a" andaEH(p)forallp

We observe that here we have v(«a) = r + 1.

» Example 2. K. Mahler (1949) a=1/T+1/T"+
Hence a = 1/T + o and o € H,(p) for all p.
Weput 8 =1/a=|ai,a2,...,an,...]

Forr > 2,wehave § = [T, 3] and 8" = —T°(, — T

T +
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Two basic examples in F(p)

k

» Example 1. @ = |17 T' VAR

Hencea =7+ 1/a" and a € H (p) forallp

We observe that here we have v(«a) = r + 1.

Example 2. K. Mahler (1949) o= 1/T+ 1/T" + -+ 1/T" +
Hence o = 1/T + " and o € H,(p) for all p.

Weput 8 =1/a=|ai,a2,...,an,...]
Forr > 2,wehave § = [T, 3] and 8" = —T°(, — T

The sequence (a;);>1 is defined recursively by a; = T and :

~ 2
gy =T augr = —ayy1 /T amys = —T  Qupga = ayqn fork > 0.
We observe that here we also have v(a) = r.
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General Theorems on diophantine approximation in F(g)

v

a€F(q) and [Fy(T,a):Fy(T)]=n = v(a)€2;n].
Liouville (1849) - Mahler (1949).

» o €H(q) and wv(a)=2 = (deg(a))i>o is bounded.
Voloch (1988).

\4

o € H(q) = v(a) €Q.
de Mathan (1992).

v

a €F(g)\H(q) and [Fy(T,a):Fy(T)]=n = v(a)<[n/2]+1.
Osgood (1975) - de Mathan-L. (1996).
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Generating continued fractions in H(g)

Proposition (L. 2006)
Let 1 > 1 be an integer. Let (a1,az, . . ., a1) € (F,[T)) and (R, P, Q) € (F,[T])* with
deg(0Q) < deg(P) < r. Then there exists a unique o € H,(q) such that

a=la,a,...,a,cuy1] and Ra" = Paip + 0.
sfeskeoskeoskoskoskoskoskok
If (a1,a,...,a,R, P, Q) € (F,[T])™ are well chosen then the continued fraction

expansion can be given explicitely.
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In F(p) for all p, we have

Yo+l +1=0 = x:oz:T—i—Zuka.
k<0

Forp = 13, @ € Hy3(13), we have o = [T, 127,77, 11T, 8T, 5T, 7] and

T
o = (T +8) 'y + 4/ (x* + 8)’dx.
0
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Mills and Robbins example in F(13) (1986)

In F(p) for all p, we have

T+ +1=0 = x:a:T—i—Zuka.

k<0

Forp = 13, @ € Hy3(13), we have o = [T, 127,77, 11T, 8T, 5T, 7] and

T
o = (T +8) 'y + 4/ (x* + 8)’dx.
0

From this we can deduce : There exists a sequence (\,),>1 in F{3 such that
an = )\rlAvg(Eian) for n>1
where the sequence (An)m>o in Fy[T] is given by
Ag=T and A, =|A),/(T*+8)"] for m>0.

Here we have v(a) = 8/3.
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We have Fa; = F3(u) = {0, 44 : 0 < k < 12} where u® + > —u+1=0.
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A last and sophisticated example in Hj3(27)

We have Fo; = F3(u) = {0, 44" : 0 < k < 12} where u® +u*> —u+1=0.
InF(27), we have

x= (T +u® —uT?)/(X* —’'T) = x=[MNT, T, \T,..., \T,...].
The sequence (\,)n>1 in F3; is defined recursively by A; = 1 and
>\3n71 = _”6(71)”>\i7 >\3)z — ué(il)”*—l(snilv )\3n+l - _)\;nl for n 2 1

where the sequence (3,,),>1 in 3, satisfies §; = u* and

St =’ TV 6 (14 72), G = e O3np1 = — for n>1
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A last and sophisticated example in Hj3(27)

We have Fo; = F3(u) = {0, 44" : 0 < k < 12} where u® +u*> —u+1=0.
InF(27), we have

x= (T +u® —uT?)/(X* —’'T) = x=[MNT, T, \T,..., \T,...].
The sequence (\,)n>1 in F3; is defined recursively by A; = 1 and
DTS N = =y, for m>1

>\3n71 = _uﬁ(il)”Aiv >\3)z =u

where the sequence (3,,),>1 in 3, satisfies §; = u* and

1y - —1 O3n—
53”*] == L‘S( D 52(1 + A/S)? 03n = I 5311+] - 1 & lﬁ for n Z 1
— T

and finally the sequence (y,).>1 in IF3; satisfies v, = u and

3 3
'\/ll ’YI‘I ’Yl'l

n — 5 3n = for n>1.
T+ T P T I -

Y3n—1 =
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A comment on Mathematics

“Roughly speaking, unfashionable mathematics consists of those parts of
mathematics which were declared by the mandarins of Bourbaki not to be
mathematics. A number of very beautiful mathematical discoveries fall into
this category. To be mathematics according to Bourbaki, an idea should be
general, abstract, coherent, and connected by clear logical relationships
with the rest of mathematics. Excluded from mathematics are particular
facts, concrete objects which just happen to exist for no identifiable reason,
things which a mathematician would call accidental or sporadic.....things of
accidental beauty, special functions, particular number fields, .....

Freeman J. Dyson
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