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Formal power series over a finite field

I There is a well-known analogy:

±1 F∗q
∩ ∩
Z ←→ Fq[T]
∩ ∩
Q ←→ Fq(T)
∩ ∩
R Fq((1/T))

I We replace the number expanded in base b

x =
X
n≤k

anbn ∈ R

by the formal power series

α =
X
n≤k

anTn ∈ Fq((1/T)) = F(q).

I For instance: T/(T − 1) = 1 + T−1 + · · ·+ T−n + . . . in Fp(T)
α ∈ Fq(T) ⇐⇒ (an)n≤k is eventually periodic.
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Continued fractions in F(q)

I Every α ∈ F(q) can be expanded as a continued fraction :

α = a0 + 1/(a1 + 1/(a2 + 1/(· · · = [a0, a1, a2, . . . ]

where ai ∈ Fq[T] and deg(ai) > 0 for i > 0.

I The expansion is finite ⇐⇒ α ∈ Fq(T).
For instance : (T2 − 1)2/(2T3 + 4T) = [3T, 2T, 3T, 2T] in F5(T).

I [Fq(T, α) : Fq(T)] = 2 ⇐⇒ (an)n≥0 is eventually periodic.

I For α ∈ F(q)\Fq(T) we define (the approximation exponent):

ν(α) = 2 + lim sup
n>0

(deg(an+1)/
X

0≤i≤n

deg(ai)).
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Hyperquadratic Formal Power Series in F(q)

I Let p be the characteristic of Fq and r = pt where t ≥ 0 is an integer.

I We write α ∈ Hr(q), if α ∈ F(q)\Fq(T) and it satisfies

α = (Aαr + B)/(Cαr + D)

where (A,B,C,D) ∈ (Fq[T])4.

I α ∈ H1(q) ⇐⇒ α is quadratic over Fq(T).

I α ∈ F(q) is hyperquadratic if α ∈ H(q) =
S

t≥0 Hr(q).

I α ∈ H(q)⇒ α′ = b0 + b1α+ b2α
2 where bi ∈ Fq(T).

α is hyperquadratic⇒ α is “differential-quadratic”.
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Two basic examples in F(p)

I Example 1. α = [T, Tr, Tr2
, . . . , Trk

, . . . ].
Hence α = T + 1/αr and α ∈ Hr(p) for all p.

We observe that here we have ν(α) = r + 1.

I Example 2. K. Mahler (1949) α = 1/T + 1/Tr + · · ·+ 1/Trk
+ . . .

Hence α = 1/T + αr and α ∈ Hr(p) for all p.
We put β = 1/α = [a1, a2, . . . , an, . . . ].
For r > 2, we have β = [T, β2] and βr = −T2β2 − T .

The sequence (ai)i≥1 is defined recursively by a1 = T and :

a4k+1 = T a4k+2 = −ar
2k+1/T2 a4k+3 = −T a4k+4 = ar

2k+2 for k ≥ 0.

We observe that here we also have ν(α) = r.
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General Theorems on diophantine approximation in F(q)

I α ∈ F(q) and [Fq(T, α) : Fq(T)] = n ⇒ ν(α) ∈ [2; n].
Liouville (1849) - Mahler (1949).

I α ∈ H(q) and ν(α) = 2 ⇒ (deg(ai))i≥0 is bounded.
Voloch (1988).

I α ∈ H(q) ⇒ ν(α) ∈ Q.
de Mathan (1992).

I α ∈ F(q)\H(q) and [Fq(T, α) : Fq(T)] = n ⇒ ν(α) ≤ [n/2] + 1.
Osgood (1975) - de Mathan-L. (1996).
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Generating continued fractions in H(q)

Proposition (L. 2006)
Let l ≥ 1 be an integer. Let (a1, a2, . . . , al) ∈ (Fq[T])l and (R,P,Q) ∈ (Fq[T])3 with
deg(Q) < deg(P) < r. Then there exists a unique α ∈ Hr(q) such that

α = [a1, a2, . . . , al, αl+1] and Rαr = Pαl+1 + Q.

*********

If (a1, a2, . . . , al,R,P,Q) ∈ (Fq[T])l+3 are well chosen then the continued fraction
expansion can be given explicitely.
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Mills and Robbins example in F(13) (1986)

In F(p) for all p, we have

x4 − Tx3 + x2 + 1 = 0 ⇒ x = α = T +
X
k<0

ukTk.

For p = 13, α ∈ H13(13), we have α = [T, 12T, 7T, 11T, 8T, 5T, α7] and

α13 = (T2 + 8)4α7 + 4
Z T

0
(x2 + 8)3dx.

From this we can deduce : There exists a sequence (λn)n≥1 in F∗13 such that

an = λnAv9(8n−2) for n ≥ 1

where the sequence (Am)m≥0 in Fq[T] is given by

A0 = T and Am+1 = [A13
m /(T2 + 8)4] for m ≥ 0.

Here we have ν(α) = 8/3.

8 / 10



Mills and Robbins example in F(13) (1986)

In F(p) for all p, we have

x4 − Tx3 + x2 + 1 = 0 ⇒ x = α = T +
X
k<0

ukTk.

For p = 13, α ∈ H13(13), we have α = [T, 12T, 7T, 11T, 8T, 5T, α7] and

α13 = (T2 + 8)4α7 + 4
Z T

0
(x2 + 8)3dx.

From this we can deduce : There exists a sequence (λn)n≥1 in F∗13 such that

an = λnAv9(8n−2) for n ≥ 1

where the sequence (Am)m≥0 in Fq[T] is given by

A0 = T and Am+1 = [A13
m /(T2 + 8)4] for m ≥ 0.

Here we have ν(α) = 8/3.

8 / 10



Mills and Robbins example in F(13) (1986)

In F(p) for all p, we have

x4 − Tx3 + x2 + 1 = 0 ⇒ x = α = T +
X
k<0

ukTk.

For p = 13, α ∈ H13(13), we have α = [T, 12T, 7T, 11T, 8T, 5T, α7] and

α13 = (T2 + 8)4α7 + 4
Z T

0
(x2 + 8)3dx.

From this we can deduce : There exists a sequence (λn)n≥1 in F∗13 such that

an = λnAv9(8n−2) for n ≥ 1

where the sequence (Am)m≥0 in Fq[T] is given by

A0 = T and Am+1 = [A13
m /(T2 + 8)4] for m ≥ 0.

Here we have ν(α) = 8/3.

8 / 10



Mills and Robbins example in F(13) (1986)

In F(p) for all p, we have

x4 − Tx3 + x2 + 1 = 0 ⇒ x = α = T +
X
k<0

ukTk.

For p = 13, α ∈ H13(13), we have α = [T, 12T, 7T, 11T, 8T, 5T, α7] and

α13 = (T2 + 8)4α7 + 4
Z T

0
(x2 + 8)3dx.

From this we can deduce : There exists a sequence (λn)n≥1 in F∗13 such that

an = λnAv9(8n−2) for n ≥ 1

where the sequence (Am)m≥0 in Fq[T] is given by

A0 = T and Am+1 = [A13
m /(T2 + 8)4] for m ≥ 0.

Here we have ν(α) = 8/3.

8 / 10



A last and sophisticated example in H3(27)

We have F27 = F3(u) = {0,±uk : 0 ≤ k ≤ 12} where u3 + u2 − u + 1 = 0.

In F(27), we have

x = (Tx3 + u6 − uT2)/(x3 − u3T) ⇒ x = [λ1T, λ2T, λ3T, . . . , λnT, . . . ].

The sequence (λn)n≥1 in F∗27 is defined recursively by λ1 = 1 and

λ3n−1 = −u6(−1)n
λ3

n, λ3n = u6(−1)n+1
δ−1

n , λ3n+1 = −λ−1
3n for n ≥ 1

where the sequence (δn)n≥1 in F∗27 satisfies δ1 = u4 and

δ3n−1 = u5(−1)n
δ3

n(1 + γ3
n), δ3n =

γ3
n − 1
δ3n−1

, δ3n+1 =
δ3n−1

1− γ6
n

for n ≥ 1

and finally the sequence (γn)n≥1 in F∗27 satisfies γ1 = u and

γ3n−1 =
γ3

n

1 + γ3
n
, γ3n =

γ3
n

1− γ6
n
, γ3n+1 =

γ3
n

1− γ3
n

for n ≥ 1.
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A comment on Mathematics

“Roughly speaking, unfashionable mathematics consists of those parts of
mathematics which were declared by the mandarins of Bourbaki not to be
mathematics. A number of very beautiful mathematical discoveries fall into
this category. To be mathematics according to Bourbaki, an idea should be
general, abstract, coherent, and connected by clear logical relationships
with the rest of mathematics. Excluded from mathematics are particular
facts, concrete objects which just happen to exist for no identifiable reason,
things which a mathematician would call accidental or sporadic.....things of
accidental beauty, special functions, particular number fields, ..... ”

Freeman J. Dyson
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