On permutation polynomials of the shape

$$
\mathbf{G}(\mathbf{X})+\gamma \operatorname{Tr}(\mathbf{H}(\mathbf{X}))
$$

Gohar Kyureghyan
Otto-von-Guericke University of Magdeburg
Department of Mathematics - Germany

> joint work with Pascale Charpin SECRET - INRIA - France

Fq9 - Dublin, Ireland - July 13, 2009

A polynomial $\boldsymbol{F}(\boldsymbol{X}) \in \mathbb{F}_{p^{n}}[\boldsymbol{X}]$ is called a permutation polynomial of $\mathbb{F}_{p^{n}}$ if the induced mapping $x \mapsto F(x)$ is a permutation of $\mathbb{F}_{p^{n}}$.

Let $\gamma \in \mathbb{F}_{p^{n}}$ and $\boldsymbol{G}(\boldsymbol{X}), \boldsymbol{H}(\boldsymbol{X}) \in \mathbb{F}_{p^{n}}[\boldsymbol{X}]$. We consider the permutation polynomials of the shape

$$
F(X)=G(X)+\gamma \operatorname{Tr}(H(X)),
$$

where $\operatorname{Tr}(X)=X+X^{p}+\ldots+X^{p^{n-1}}$.

Claim: If $G(X)+\gamma \operatorname{Tr}(\boldsymbol{H}(\boldsymbol{X}))$ is a permutation polynomial of $\mathbb{F}_{p^{n}}$, then for any $\alpha \in \mathbb{F}_{p^{n}}$ the equation $G(x)=\alpha$ has at most p solutions.

Let $G(x)$ be a permutation of $\mathbb{F}_{p^{n}}$. Then

$$
G(x)+\gamma \operatorname{Tr}(H(x))=\left(x+\gamma \operatorname{Tr}\left(H\left(G^{-1}(x)\right)\right)\right) \circ G(x)
$$

is a permutation of $\mathbb{F}_{\boldsymbol{p}^{n}}$ if and only if for any $\boldsymbol{c} \in \mathbb{F}_{\boldsymbol{p}}^{*}$ the mapping $R(x)=H \circ G^{-1}(x)$ satisfies

$$
\begin{equation*}
\sum_{x \in \mathbb{F}_{p^{n}}} \xi^{\operatorname{Tr}(c R(x)+\lambda x)}=0 \tag{1}
\end{equation*}
$$

for all $\boldsymbol{\lambda} \in \mathbb{F}_{p^{n}}$ with $\operatorname{Tr}(\gamma \boldsymbol{\lambda})=\boldsymbol{c}$.

The mappings $\boldsymbol{R}(\boldsymbol{x})$, such that $\boldsymbol{\operatorname { T r }}(\boldsymbol{R}(\boldsymbol{x}))$ has a linear structure, satisfy (1). This concept appears in several works in Cryptology.

Mappings with a linear structure

Let $b \in \mathbb{F}_{\boldsymbol{p}}$ and $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{\boldsymbol{p}}$. An element $\gamma \in \mathbb{F}_{p^{n}}^{*}$ is said to be a b-linear structure of the mapping f if

$$
f(x+\gamma)-f(x)=b
$$

for all $\boldsymbol{x} \in \mathbb{F}_{\boldsymbol{p}^{n} .} \quad$ (Dubuc, Everste, Lai, Yashchenko)

Example:

Let $\gamma \neq 0, \boldsymbol{\beta} \in \mathbb{F}_{p^{n}}$ and $\boldsymbol{H}(\boldsymbol{X}) \in \mathbb{F}_{p^{n}}[\boldsymbol{X}]$ be arbitrary. Then γ is a $\operatorname{Tr}(\beta \gamma)$-linear structure of the mapping defined by

$$
\operatorname{Tr}\left(H\left(X^{p}-\gamma^{p-1} X\right)+\beta X\right)
$$

Theorem. Let $\gamma \in \mathbb{F}_{p^{n}}$ be a b-linear structure of $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F} p$. Then the mapping

$$
F(x)=x+\gamma f(x)
$$

(1) is a permutation of $\mathbb{F}_{p^{n}}$ if and only if $b \neq-1$;
(2) is a complete mapping of $\mathbb{F}_{p^{n}}$ if and only if $b \neq-1,-2$;
(3) is p-to-1 on $\mathbb{F}_{p^{n}}$ if $b=-1$.
(4) The inverse mapping of $F(x)$ is $F^{-1}(x)=x-\frac{\gamma}{b+1} f(x)$.

Corollary. Let $p=2$ and $1 \leq d, t \leq 2^{n}-2$. Then

$$
X^{d}+\operatorname{Tr}\left(X^{t}\right)
$$

is a permutation polynomial over $\mathbb{F}_{2^{n}}$ if and only if the following conditions are satisfied:

- n is even and $\operatorname{gcd}\left(d, 2^{n}-1\right)=1$
- $t=d \cdot s\left(\bmod 2^{n}-1\right)$ for some s such that $1 \leq s \leq 2^{n}-2$ and has binary weight 1 or 2 .

The proof uses the complete characterization of the monomial Boolean functions $\operatorname{Tr}\left(\delta \boldsymbol{x}^{s}\right)$ having a linear structure.

$G(X)$ is a linearized polynomial

Theorem. Let $G: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ be a linear p - to-1 mapping with kernel $\alpha \mathbb{F}$ p and $\boldsymbol{H}: \mathbb{F}_{\boldsymbol{p}^{n}} \rightarrow \mathbb{F}_{\boldsymbol{p}^{n}}$. Then the mapping

$$
G(x)+\gamma \operatorname{Tr}(\boldsymbol{H}(x)), \quad \gamma \in \mathbb{F}_{p^{n}}
$$

is a permutation of $\mathbb{F}_{p^{n}}$ if and only if

- γ does not belong to the image set of G
- $\operatorname{Tr}(\boldsymbol{H}(\boldsymbol{x}+\delta)-\boldsymbol{H}(\boldsymbol{x})) \neq 0$ for any $\boldsymbol{x} \in \mathbb{F}_{\boldsymbol{p}^{n}}$ and $\delta \in \alpha \mathbb{F}_{p}^{*}$.

Corollary. Let $\boldsymbol{H}: \mathbb{F}_{\boldsymbol{p}^{n}} \rightarrow \mathbb{F}_{\boldsymbol{p}^{n}}$ be arbitrary and $\boldsymbol{\beta}, \gamma \in \mathbb{F} \boldsymbol{p}^{n}$. Then

$$
X^{p}-\alpha^{p-1} X+\gamma \operatorname{Tr}\left(H\left(X^{p}-\alpha^{p-1} X\right)+\beta X\right)
$$

is a permutation polynomial of $\mathbb{F}_{p^{n}}$ if and only if $\operatorname{Tr}\left(\gamma \alpha^{-p}\right) \neq 0$ and $\operatorname{Tr}(\boldsymbol{\alpha} \boldsymbol{\beta}) \neq 0$.

Lifting of permutations

Theorem. Let $\boldsymbol{h}: \mathbb{F}_{\boldsymbol{p}} \rightarrow \mathbb{F}_{\boldsymbol{p}}$ and $\gamma \in \mathbb{F}_{p^{n}}$ be a b-linear structure of $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{\boldsymbol{p}}$. Then

$$
x+\gamma \boldsymbol{h}(f(x))
$$

permutes $\mathbb{F}_{p^{n}}$ if and only if

$$
x+b h(x)
$$

permutes $\mathbb{F} \boldsymbol{p}$.

Remark. A prime number \boldsymbol{p} can be replaced by a prime power \boldsymbol{q}.

Conclusions

We found a link between permutation polynomials of the shape

$$
G(X)+\gamma \operatorname{Tr}(H(X))
$$

and the concept of a linear structure. The mappings with a linear structure allow

- to construct large families of permutation polynomials of \mathbb{F}_{q}
- to lift permutation polynomials of \mathbb{F}_{q} to those of $\mathbb{F}_{q^{n}}$

Open Problems

- general $G(X)$

