Lower Bounds on Distances of Improved Two-Point Codes

Radoslav Kirov

University of Illinois, Urbana-Champaign

July 21, 2009

joint work with Iwan Duursma

Radoslav Kirov (University of Illinois, Urbana

Improved Two-Point Codes

July 21, 2009 1 / 32

Algebraic Geometric (Goppa) Codes

 \mathcal{X}/\mathbb{F}_q - an algebraic curve (absolutely irreducible, smooth, projective). P_1, P_2, \ldots, P_n distinct rational points on \mathcal{X} . $D = P_1 + P_2 + \ldots + P_n$ G - divisor with disjoint support from D.

Definition

$$\alpha_{ev}: L(G) \longrightarrow \mathbb{F}_q^n \qquad f \mapsto (f(P_1), \dots, f(P_n))$$

$$\alpha_{res}: \Omega(G - D) \longrightarrow \mathbb{F}_q^n \qquad \omega \mapsto (\operatorname{res}_{P_1}(\omega), \dots, \operatorname{res}_{P_n}(\omega))$$

Definition (AG Codes)

$$C_L(D, G) = \operatorname{im}(\alpha_{ev})$$
$$C_{\Omega}(D, G) = \operatorname{im}(\alpha_{res})$$

Radoslav Kirov (University of Illinois, Urbana

Basic Properties of AG Codes

- $C_L(D, G)$ and $C_{\Omega}(D, G)$ are dual codes (residue theorem).
- Length: deg(D) = n.
- Dimension of $C_L(D, G)$:

$$k = \dim L(G) - \dim L(G - D).$$

• Dimension of $C_{\Omega}(D, G)$:

$$k = \dim \Omega(G - D) - \dim \Omega(G)$$

= dim L(K - G + D) - dim L(K - G)

where K is the canonical divisor.

Set divisor C = D - G for C_L and C = G - K for C_{Ω} . Now both C_L and C_{Ω} can be viewed as the same construction.

Observation

$$\alpha_*$$
 : $L(D-C) \longrightarrow \mathbb{F}_q^n$ with ker $(\alpha_*) = L(-C)$.

Notation: C(C, D) - both evaluation and residue codes with given C and D.

Observation

$$k(\mathcal{C}(C, D)) = \dim L(D - C) - \dim L(-C)$$

$$d(\mathcal{C}(C, D)) = \min\{\deg(A) : 0 \le A \le D, \ L(A - C) \ne L(-C)\}$$

$$\min \operatorname{wt}(\mathcal{C}(C, D) \setminus \mathcal{C}(C + P, D)) =$$

$$= \min\{\deg(A) : 0 \le A \le D, \ L(A - C) \ne L(A - C - P)\}$$

Gaps and semi-groups

D-divisor P-point

Definition

P is a basepoint for D if L(D) = L(D - P).

Theorem

P is not a basepoint for *A* and *B*, then *P* not a basepoint for A + B. Denote the semigroup of all divisor that don't have *P* as basepoint - Γ_P .

Definition

If S is a set of points, we write $\Gamma_S = \bigcap_{P \in S} \Gamma_P$.

By convention $\Gamma_{\emptyset} = \Gamma = \{D : \dim L(D) > 0\}$ (i.e. all effective divisor classes).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Geometric Distances

$$D = P_1 + \ldots + P_n$$

Let S be a set of points s.t. $S \cap D = \emptyset$
 $0 \le A \le D \Longrightarrow L(A) \ne L(A - P)$ for all $P \notin S$.

Definition ("Geometric Distance") $\gamma(C; S, S') = \min\{\deg(A) : A \in \Gamma_S \text{ and } A - C \in \Gamma_{S'}\}$

Lemma (Distance Bounds) Given $S \cap D = \emptyset$

> $\gamma(C; S, \emptyset) \le d(\mathcal{C}(C, D))$ $\gamma(C; S, \{P\}) \le \min wt(\mathcal{C}(C, D) \setminus \mathcal{C}(C + P, D)).$

Radoslav Kirov (University of Illinois, Urbana-

Improved Two-Point Codes

イロト イヨト イヨト イヨト

Questions

- How to use geometry to get a bound on $\gamma(C, S, S')$?
- What are the connections between $\gamma(C, S, S')$ with different S'.

→ < ∃ >

Feng-Rao Method for One Point Codes: Statement

Fix a point P outside $D = P_1 + P_2 + \ldots + P_n$. A-Weierstrass numerical semigroup at P $i \in \Lambda$ if $L((i-1)P) \neq L(iP)$ (i.e. all one point non-gaps).

Theorem (Feng-Rao'95)

 $d(\mathcal{C}_{\Omega}(iP, D)) \ge \min\{v_j : j > i\}$ $v_i = \{k \in \mathbb{N}_0 : k \in \Lambda \text{ and } j - k \in \Lambda\}$

Feng-Rao Method can be viewed as a Two Step Process:

- Find bounds for cosets $(v_j \text{ are } \gamma((j-1)P; \{P\}, \{P\}) \text{ in disguise}).$
- Combine coset bounds to get bound for the code.

Example: Hermitian Curve over \mathbb{F}_{16}

- P any point.
- genus 6
- Weierstrass semigroup generated by 4, 5.
- blue gaps.
- green non-gaps.

0P	1P	2P	3P	4P	5P	6P	7P	8P	9P	10P	11P	12P	13P	14P	15P	16P	17P
----	----	----	----	----	----	----	----	----	----	-----	-----	-----	-----	-----	-----	-----	-----

min wt($C(14P) \setminus C(15P)$) =?

Example: Hermitian Curve over \mathbb{F}_{16}

- P any point.
- genus 6
- Weierstrass semigroup generated by 4, 5.
- blue gaps.
- green non-gaps.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

$$d(\mathcal{C}_{\Omega}(iP,D)) = \min_{j \ge i} \{\min wt(\mathcal{C}_{\Omega}(jP) \setminus \mathcal{C}_{\Omega}((j+1)P))\}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

D 0P 1P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P 12P 13P 14P 15P 16P 17P 18P 19P 20P 21P 22P Suppose we want biggest code with distance d = 5.

- blue empty cosets
- red cosets to remove (add checks)
- green good cosets

Best: G = 15P, r = 9 + 1 hidden(constants)

Definition

Redundancy of an AG code is the number of checks required to obtain the given code (i.e. dimension of the dual code).

D 0P 1P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P 12P 13P 14P 15P 16P 17P 18P 19P 20P 21P 22P Suppose we want biggest code with distance d = 5.

- blue empty cosets
- red cosets to remove (add checks)
- green good cosets

Best: G = 15P, r = 9 + 1 hidden(constants)

Definition

Redundancy of an AG code is the number of checks required to obtain the given code (i.e. dimension of the dual code).

Q:Can we reduce the redundancy? A:Yes, if we don't only take sequential checks. (Exploit the lack of monotonicity in the chain $C_*(iP, D)$)

.

Improved One-Point Codes: Example and Definition

Definition

Improved one-point codes for a given distance d is the code obtained by removing only the cosets(adding checks) where $v_i < d$.

Note: such codes no longer have the form $C_*(iP, D)$. Example:

0 0 0 2 2 0 0 3 4 3 0 4 6 6 4 5 8 9 8 9 10 12 12

Improved one-point code with d = 5 here has r = 7 + 1 (constants).

Improved One-Point Codes on the Hermitian Curve

Weierstrass semi-group generated by q, q + 1 over \mathbb{F}_{q^2} . Redundancies for classical and improved one-point codes are known analytically for Hermitian curves.[Bras-Amorós - O'Sullivan]

$$\begin{split} r(t) &= \begin{cases} t(2t+1), & \text{if } t \leq a/2\\ (a^2-a)/2 + (a+1)\lfloor \frac{2t}{a+1} \rfloor, & \text{if } a/2 < t < a(\lfloor \frac{2t}{a+1} \rfloor + 1)/2\\ (a^2-a)/2 + 2t, & \text{if } t \geq a(\lfloor \frac{2t}{a+1} \rfloor + 1)/2. \end{cases} \\ \tilde{r}(t) &= \begin{cases} t(2t+1) - \sum_{x'=\lceil 2\sqrt{2t+1}-2\rceil}^{2t-1} (\lfloor \sqrt{x'^2 + 4x' - 8t} \rfloor + \delta_{x't}), & \text{if } t \leq a/2\\ (a^2-a)/2 + (a+1)\lfloor \frac{2t}{a+1} \rfloor \\ -\sum_{x'=\lceil 2\sqrt{2t+1}-2\rceil}^{a-2+\lfloor \frac{2t}{a+1} \rfloor} (\lfloor \sqrt{x'^2 + 4x' - 8t} \rfloor + \delta_{x't}), & \text{if } a/2 < t < a(\lfloor \frac{2t}{a+1} \rfloor + 1)/2\\ (a^2-a)/2 + 2t - \sum_{x'=\lceil 2\sqrt{2t+1}-2\rceil}^{a-1+\lfloor \frac{2t}{a+1} \rfloor} (\lfloor \sqrt{x'^2 + 4x' - 8t} \rfloor + \delta_{x't}), & \text{if } a(\lfloor \frac{2t}{a+1} \rfloor + 1)/2 \leq t \leq \frac{a(a+1)}{2}\\ (a^2-a)/2 + 2t, & \text{if } t > \frac{a(a+1)}{2} \end{cases} \end{split}$$

Not pretty!

Previous Generalizations of Feng-Rao

Definition

We call $\{A_i\}$ a sequence of divisors if $A_{i+1} = A_i + P_i$ for some point P_i .

Previous attempts to generalize Feng-Rao beyond one-point codes.

- Beelen'07
- Duursma-Park'08

bound	divisor	Step I sq	Step II sq
FR	kP	$\{iP\}$	{ <i>iP</i> }
Beelen	any	$\{iP\}$	any
DP	any	any	any

Key Features:

- Step I: Instead of cosets uses finer subset.
- Step II: the same, combine subsets to get distance (or coset) bounds.
- Proof: One unifying theorem with all previous methods (Feng-Rao, Beelen, Duursma-Park, Duursma-K.) being consequences.

Statement Step I

$$\gamma(C; S, S') = \min\{\deg(A) : A \in \Gamma_S \text{ and } A - C \in \Gamma_{S'}\}$$

Theorem (Main Theorem (Technical))

(Roughly) Any sequence of divisors A_i gives a bound for $\gamma(C; S, S')$ by careful counting.

Lemma (Direct Consequence of Main Theorem)

Let A_i be a sequence with support in S. Then $\gamma(C; S, S) \ge |\{i : A_i \in \Gamma_{P_i} \text{ and } A_i - C \notin \Gamma_{P_i}\}|$

Observation

$$\gamma(\mathcal{C}; \mathcal{S}, \mathcal{S}') \leq \min \operatorname{wt}(\mathcal{C}(\mathcal{C}) \setminus \bigcup_{P \in \mathcal{S}'} \mathcal{C}(\mathcal{C} + P))$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Statement Step II

Lemma

$$\gamma(C; S, S' \setminus P) = \min_{i \ge 0} \gamma(C + iP; S, S')$$
$$\gamma(C; S, \emptyset) = \min_{D \in \Lambda} \gamma(C + D; S, S')$$

where Λ is the semigroup of positive divisors generated by S'.

-

What were those γ 's again?

- $\bullet \ \gamma$ is a geometric lower bound for a subset of code.
- The subset is an intersections of certain cosets.
- To get the "right" generalization of Feng-Rao we need to go to finer sets than cosets.
- Codes and cosets can be reconstructed by taking unions of those subsets.

Connection with codes:

Observation

$$\gamma(\mathcal{C}; \mathcal{S}, \mathcal{S}') \leq d(\mathcal{C}(\mathcal{C}, D) \setminus \bigcap_{P \in \mathcal{S}'} \mathcal{C}(\mathcal{C} + P, D)) ext{ given } \mathcal{S} \cap D = \emptyset$$

Example: two-point codes on Hermitian \mathbb{F}_{16}

3

- 本間 と 本語 と 本語 と

 $\gamma(\mathsf{C}; \{\mathsf{P}, \mathsf{Q}\}, \{\mathsf{P}, \mathsf{Q}\}) \leq \min \, \mathsf{wt}(\mathcal{C}(\mathsf{C}) \setminus \mathcal{C}(\mathsf{C} + \mathsf{P}) \cup \mathcal{C}(\mathsf{C} + \mathsf{Q}))$

Fixing C

- **1** Pick a divisor sequence A_i (i.e. a path in the grid).
- Ocurt number of *i* where $A_i ∈ Γ_{P_i}$ and $A_i − C ∉ Γ_{P_i}$ where $P_i = P$ or *Q* depending whether we took a vertical or horizontal step.
- $\gamma(C; \{P, Q\}, \{P, Q\})$ is bounded below by that number

 $\gamma(C; S, S')$'s with $S = S' = \{P, Q\}$ for Hermitian \mathbb{F}_{16}

- Analytic form available for all q.
- The bounds are sharp (by explicit construction of a divisor matching the bound).
- Best bound always achieved with a straight path.

Q: What is the distance of the coset $C(2Q - P) \setminus C(3Q - P)$

3	5	5	3	4	7	8	7	8	9	11	11	12	13	14	15				
	4	4	5	6	6	7	6	7	8	10	10	11	12	13	14	15			
		4	5	6	6	6	7	8	9	9	9	10	11	12	13	14	15		
			3	4	4	6	6	7	8	8	9	10	11	12	12	13	14	15	
				0	4	6	6	4	5	8	9	8	9	10	12	12	13	14	15

A: 5

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Q: What is the distance of the coset $C(2Q - P) \setminus C(3Q - P)$

3	5	5	3	4	7	8	7	8	9	11	11	12	13	14	15				
	4	4	5	6	6	7	6	7	8	10	10	11	12	13	14	15			
		4	5	6	6	6	7	8	9	9	9	10	11	12	13	14	15		
			3	4	4	6	6	7	8	8	9	10	11	12	12	13	14	15	
				0	4	6	6	4	5	8	9	8	9	10	12	12	13	14	15

A: 5

Q: What is the distance for whole code C(2Q - P).

3	5	5	3	4	7	8	7	8	9	11	11	12	13	14	15				
	4	4	5	6	6	7	6	7	8	10	10	11	12	13	14	15			
		4	5	6	6	6	7	8	9	9	9	10	11	12	13	14	15		
			3	4	4	6	6	7	8	8	9	10	11	12	12	13	14	15	
				0	4	6	6	4	5	8	9	8	9	10	12	12	13	14	15

We need cosets to talk about redundancies, and consequently improved codes. Two choices:

- Obtain all coset bounds on the grid and then find best path. or
- Directly use $\gamma(C, \{P, Q\}, \{P, Q\})$ to choose an optimal path.

We will demonstrate the second option.

Improved Codes from $\gamma(C, \{P, Q\}, \{P, Q\})$ table

$$0 \rightarrow P \rightarrow P + Q \rightarrow P + 2Q$$

Lemma

If $mP \sim mQ$ then $\gamma(C, \{P, Q\}, \{P, Q\}) \leq \gamma(C + mP, \{P, Q\}, \{P, Q\})$

2	2	2	3	2	3	3	5	5	3				
2	2	2	2	3	4	4	4	4	5	6			
0	9	-0	-2	2	3	3	3	4	5	6	6		
0	0	0	2	2	0	0	3	4	3	4	4	6	
0	-0	0	2	2	0	0	3	4	3	0	4	6	6

blue - path red - Q step (coset) green - P step (coset)

- 本間 と えき と えき とうき

Full Path

2	2	2	3	2	3	3	5	5	3	4	7	8	7	8	9	11	11	12	13	14	15				
2	2	2	2	3	4	4	4	4	5	6	6	7	6	7	8	10	10	11	12	13	14	15			
0	9	0	-2	2	3	3	3	4	5	6	6	6	7	8	9	9	9	10	11	12	13	14	15		
0	0	0	2	2	0	0	3	4	3	4	4	6	6	7	8	8	9	10	11	12	12	13	14	15	
0	-	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12	13	14	15

Coset bounds along that path:

10 12 12 13 14 15

Ex: This gives improved code with d = 5 and r = 7 (+1). This happens to be maximal, but also achievable by one-point improved codes.

Results: Distances vs. redundancies

*n*Cl - Classical *n*-point code *n*Im - Improved *n*-point code

 $1Cl \geq \{1lm, 2Cl\} \geq 2lm$

Hermitian over \mathbb{F}_{16} Low is better!

$d \setminus r$	1 <i>CI</i>	1 <i>lm</i>	2 <i>CI</i>	2Im	impr
3	3	3	3	3	0
4	6	5	6	5	0
5	10	8	8	8	0
6	11	9	8	8	0
7	11	11	10	10	0
8	11	11	11	11	0
9	14	13	13	13	0
10	15	15	14	14	0
11	16	16	15	15	0
im	pr =	min{2	CI, 1I	$m\}-2$	2Im

$$impr = \min\{2CI, 1Im\} - 2Im\}$$

Hermitian over \mathbb{F}_{64}

$d \setminus r$	1 <i>Cl</i>	1 <i>Im</i>	2 <i>CI</i>	2Im	impr
5	10	8	10	8	0
7	21	14	21	14	0
9	36	20	30	20	0
11	37	24	30	23	1
13	37	28	30	27	1
15	37	30	36	29	1
17	44	35	39	35	0
19	46	39	39	37	2
21	46	41	39	39	0
23	46	43	45	42	1
25	52	47	48	47	0
27	54	50	48	48	0
29	55	53	52	50	2
31	55	55	54	54	0

Suzuki over \mathbb{F}_{32}

$d \setminus r$	1 <i>Cl</i>	1 <i>lm</i>	2 <i>CI</i>	2 <i>Im</i>	impr
21	128	79	97	77	2
23	128	82	98	80	2
25	128	95	101	93	2
27	128	100	103	96	4
29	128	102	103	99	3
31	128	102	103	101	1
33	156	112	131	108	4
35	156	116	131	111	5
37	160	123	131	119	4
39	160	123	134	121	2
41	164	128	134	125	3
43	165	132	134	127	5
45	165	136	138	132	4
47	165	138	138	135	3
49	165	144	141	140	1

★ロト ★御 と ★ 注 と ★ 注 と … 注

Giulietti-Kochmáros over \mathbb{F}_{729}

$d \setminus r$	1 <i>Cl</i>	1 <i>lm</i>	2 <i>CI</i>	2Im	im	$d \setminus r$	1 <i>Cl</i>	1 <i>lm</i>	2 <i>CI</i>	2Im	im
29	127	88	114	84	4	61	155	143	149	141	2
31	127	92	114	90	2	63	155	144	155	143	1
33	127	94	114	92	2	65	162	147	156	144	3
35	127	96	114	94	2	67	162	149	156	148	1
37	127	102	121	101	1	69	162	151	162	151	0
39	127	105	121	104	1	71	169	156	163	154	2
41	127	109	121	108	1	73	169	160	163	156	4
43	141	114	135	112	2	75	169	160	163	158	2
45	141	115	135	114	1	77	175	164	170	163	1
47	141	119	135	118	1	79	176	167	170	165	2
49	147	124	135	122	2	81	176	169	170	167	2
51	148	127	142	124	3	83	181	171	176	169	2
53	148	129	142	128	1	85	183	176	177	171	5
55	153	133	142	131	2	87	183	178	177	175	2
57	155	137	149	134	3	89	183	178	182	177	1
59	155	138	149	135	3	91	189	181	184	179	2

Radoslav Kirov (University of Illinois, Urbana

Improved Two-Point Codes

July 21, 2009 29 / 32

Open Problems / Future Work

- Is the path *iP* + *Q* always optimal for improved two point codes on Hermitian curves? True for F₁₆ and F₆₄ for all *d*.
- How to find the best path in general.
- Decoding based on our generalization of Feng-Rao.
- Can we construct improved codes based directly on the subset bounds (maybe non-linear).

Online Resources

All data is available at http://agtables.appspot.com

Improved Two-Point Codes

- M. Bras-Amorós, M. O'Sullivan, "On Semigroups Generated by Two Consecutive Integers and Improved Hermitian Codes", IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2560-2566, 2007.
- G.-L. Feng and T. R. N. Rao, "Improved geometric Goppa codes. I. basic theory, Special issue on algebraic geometry codes," *IEEE Trans. Inf. Theory*, vol. 41, pt. 1, pp. 1678-1693, 1995.
- M. Homma and S. J. Kim. "The complete determination of the minimum distance of two-point codes on a Hermitian curve." Des. Codes Cryptogr., 40(1):524, 2006.