Lower Bounds on Distances of Improved Two-Point Codes

Radoslav Kirov
University of Illinois, Urbana-Champaign

July 21, 2009
joint work with Iwan Duursma

Algebraic Geometric (Goppa) Codes

$\mathcal{X} / \mathbb{F}_{q}$ - an algebraic curve (absolutely irreducible, smooth, projective).
$P_{1}, P_{2}, \ldots, P_{n}$ distinct rational points on \mathcal{X}.
$D=P_{1}+P_{2}+\ldots+P_{n}$
G - divisor with disjoint support from D.

Definition

$$
\begin{array}{rlrl}
\alpha_{e v}: L(G) & \longrightarrow \mathbb{F}_{q}^{n} & f & \mapsto\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \\
\alpha_{r e s}: \Omega(G-D) \longrightarrow \mathbb{F}_{q}^{n} & \omega & \mapsto\left(\operatorname{res}_{P_{1}}(\omega), \ldots, \operatorname{res}_{P_{n}}(\omega)\right)
\end{array}
$$

Definition (AG Codes)

$$
\begin{aligned}
& \mathcal{C}_{L}(D, G)=\operatorname{im}\left(\alpha_{\text {ev }}\right) \\
& \mathcal{C}_{\Omega}(D, G)=\operatorname{im}\left(\alpha_{\text {res }}\right)
\end{aligned}
$$

Basic Properties of AG Codes

- $\mathcal{C}_{L}(D, G)$ and $\mathcal{C}_{\Omega}(D, G)$ are dual codes (residue theorem).
- Length: $\operatorname{deg}(D)=n$.
- Dimension of $\mathcal{C}_{L}(D, G)$:

$$
k=\operatorname{dim} L(G)-\operatorname{dim} L(G-D)
$$

- Dimension of $\mathcal{C}_{\Omega}(D, G)$:

$$
\begin{aligned}
k & =\operatorname{dim} \Omega(G-D)-\operatorname{dim} \Omega(G) \\
& =\operatorname{dim} L(K-G+D)-\operatorname{dim} L(K-G)
\end{aligned}
$$

where K is the canonical divisor.

Set divisor $C=D-G$ for \mathcal{C}_{L} and $C=G-K$ for \mathcal{C}_{Ω}. Now both \mathcal{C}_{L} and \mathcal{C}_{Ω} can be viewed as the same construction.

Observation

$\alpha_{*}: L(D-C) \longrightarrow \mathbb{F}_{q}^{n}$ with $\operatorname{ker}\left(\alpha_{*}\right)=L(-C)$.
Notation: $\mathcal{C}(C, D)$ - both evaluation and residue codes with given C and D.

Observation

$$
\begin{aligned}
& k(\mathcal{C}(C, D))=\operatorname{dim} L(D-C)-\operatorname{dim} L(-C) \\
& d(\mathcal{C}(C, D))=\min \{\operatorname{deg}(A): 0 \leq A \leq D, L(A-C) \neq L(-C)\}
\end{aligned}
$$

$\min \operatorname{wt}(\mathcal{C}(C, D) \backslash \mathcal{C}(C+P, D))=$

$$
=\min \{\operatorname{deg}(A): 0 \leq A \leq D, L(A-C) \neq L(A-C-P)\}
$$

Gaps and semi-groups

D-divisor
P-point
Definition
P is a basepoint for D if $L(D)=L(D-P)$.

Theorem

P is not a basepoint for A and B, then P not a basepoint for $A+B$. Denote the semigroup of all divisor that don't have P as basepoint $-\Gamma_{P}$.

Definition

If S is a set of points, we write $\Gamma_{S}=\bigcap_{P \in S} \Gamma_{P}$.
By convention $\Gamma_{\emptyset}=\Gamma=\{D: \operatorname{dim} L(D)>0\}$ (i.e. all effective divisor classes).

Geometric Distances

$D=P_{1}+\ldots+P_{n}$
Let S be a set of points s.t. $S \cap D=\emptyset$
$0 \leq A \leq D \Longrightarrow L(A) \neq L(A-P)$ for all $P \notin S$.
Definition ("Geometric Distance")
$\gamma\left(C ; S, S^{\prime}\right)=\min \left\{\operatorname{deg}(A): A \in \Gamma_{S}\right.$ and $\left.A-C \in \Gamma_{S^{\prime}}\right\}$

Lemma (Distance Bounds)
Given $S \cap D=\emptyset$

$$
\begin{gathered}
\gamma(C ; S, \emptyset) \leq d(\mathcal{C}(C, D)) \\
\gamma(C ; S,\{P\}) \leq \min w t(\mathcal{C}(C, D) \backslash \mathcal{C}(C+P, D)) .
\end{gathered}
$$

Questions

- How to use geometry to get a bound on $\gamma\left(C, S, S^{\prime}\right)$?
- What are the connections between $\gamma\left(C, S, S^{\prime}\right)$ with different S^{\prime}.

Feng-Rao Method for One Point Codes: Statement

Fix a point P outside $D=P_{1}+P_{2}+\ldots+P_{n}$.
Λ-Weierstrass numerical semigroup at P
$i \in \Lambda$ if $L((i-1) P) \neq L(i P)$ (i.e. all one point non-gaps).

Theorem (Feng-Rao'95)

$$
\begin{gathered}
d\left(\mathcal{C}_{\Omega}(i P, D)\right) \geq \min \left\{v_{j}: j>i\right\} \\
v_{j}=\left\{k \in \mathbb{N}_{0}: k \in \Lambda \text { and } j-k \in \Lambda\right\}
\end{gathered}
$$

Feng-Rao Method can be viewed as a Two Step Process:

- Find bounds for cosets $\left(v_{j}\right.$ are $\gamma((j-1) P ;\{P\},\{P\})$ in disguise $)$.
- Combine coset bounds to get bound for the code.

Example: Hermitian Curve over \mathbb{F}_{16}

- P - any point.
- genus - 6
- Weierstrass semigroup generated by 4,5 .
- blue gaps.
- green non-gaps.

$0 P$	$1 P$	$2 P$	$3 P$	$4 P$	$5 P$	$6 P$	$7 P$	$8 P$	$9 P$	$10 P$	$11 P$	$12 P$	$13 P$	$14 P$	$15 P$	$16 P$	$17 P$
min $\operatorname{wt}(\mathcal{C}(14 P) \backslash \mathcal{C}(15 P))=?$																	

Example: Hermitian Curve over \mathbb{F}_{16}

- P - any point.
- genus-6
- Weierstrass semigroup generated by 4,5 .
- blue gaps.
- green non-gaps.

$\min \operatorname{wt}(\mathcal{C}(14 P) \backslash \mathcal{C}(15 P))=4$

Step II: Example

Using Step I, for all v_{i} we get:

$d(\mathcal{C}(D) \backslash \mathcal{C}(D+P))$	0	0	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12

$$
d(\mathcal{C}(12 P))=?
$$

Step II: Example

Using Step I, for all v_{i} we get:

$d(\mathcal{C}(D) \backslash \mathcal{C}(D+P))$	0	0	0		2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9		10	12	12
D			$2 P$		P	5	${ }_{6}{ }^{\text {P }}$	$7 P$	$8 P$	${ }_{9}$	10 P		P		14		16 P		$18 P$			20	$21 P$	
$d(\mathcal{C}(12 P))=$?																								
$d(\mathcal{C}(D) \backslash \mathcal{C}(D+P))$	0	0	0		2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9		10	12	12
D										${ }^{9 P}$												P		
$d(\mathcal{C}(12 P))$																								

Step II: Example

Using Step I, for all v_{i} we get:

$d(\mathcal{C}(D) \backslash \mathcal{C}(D+P))$	0	0	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12
D	$0 P$	$1 P$	$2 P$	$3 P$	$4 P$	$5 P$	$6 P$	$7 P$	$8 P$	$9 P$	$10 P$	$11 P$	$12 P$	$13 P$	$14 P$	$15 P$	$16 P$	$17 P$	$18 P$	$19 P$	$20 P$	$21 P$	$22 P$

$$
d(\mathcal{C}(12 P))=?
$$

$d(\mathcal{C}(D) \backslash \mathcal{C}(D+P))$	0	0	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12
D	$0 P$	$1 P$	$2 P$	$3 P$	$4 P$	$5 P$	$6 P$	$7 P$	$8 P$	$9 P$	$10 P$	$11 P$	$12 P$	$13 P$	$14 P$	$15 P$	$16 P$	$17 P$	$18 P$	$19 P$	$20 P$	$21 P$	$22 P$

$d(\mathcal{C}(12 P))=\min \{6,6,4,5,8,9, \ldots\}=4$
Lemma

$$
d\left(\mathcal{C}_{\Omega}(i P, D)\right)=\min _{j \geq i}\left\{\min w t\left(\mathcal{C}_{\Omega}(j P) \backslash \mathcal{C}_{\Omega}((j+1) P)\right)\right\} .
$$

$d(\mathcal{C}(D) \backslash \mathcal{C}(D+P))$	0	0	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12
D	$0 P$	$1 P$	$2 P$	$3 P$	$4 P$	$5 P$	$6 P$	$7 P$	$8 P$	$9 P$	$10 P$	$11 P$	$12 P$	$13 P$	$14 P$	$15 P$	$16 P$	$17 P$	$18 P$	$19 P$	$20 P$	$21 P$	$22 P$

Suppose we want biggest code with distance $d=5$.

$d(\mathcal{C}(D) \backslash \mathcal{C}(D+P))$	0	0	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12
D																							

Suppose we want biggest code with distance $d=5$.

- blue empty cosets
- red cosets to remove (add checks)
- green good cosets

0	0	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12

Best: $G=15 P, r=9+1$ hidden(constants)

Definition

Redundancy of an AG code is the number of checks required to obtain the given code (i.e. dimension of the dual code).

$d(\mathcal{C}(D) \backslash \mathcal{C}(D+P))$	0	0	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12

Suppose we want biggest code with distance $d=5$.

- blue empty cosets
- red cosets to remove (add checks)
- green good cosets

0	0	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12

Best: $G=15 P, r=9+1$ hidden(constants)

Definition

Redundancy of an AG code is the number of checks required to obtain the given code (i.e. dimension of the dual code).

Q:Can we reduce the redundancy?
A:Yes, if we don't only take sequential checks. (Exploit the lack of monotonicity in the chain $\left.\mathcal{C}_{*}(i P, D)\right)$

Improved One-Point Codes: Example and Definition

Definition

Improved one-point codes for a given distance d is the code obtained by removing only the cosets(adding checks) where $v_{i}<d$.

Note: such codes no longer have the form $\mathcal{C}_{*}(i P, D)$. Example:

0	0	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12

Improved one-point code with $d=5$ here has $r=7+1$ (constants).

Improved One-Point Codes on the Hermitian Curve

Weierstrass semi-group generated by $q, q+1$ over $\mathbb{F}_{q^{2}}$. Redundancies for classical and improved one-point codes are known analytically for Hermitian curves.[Bras-Amorós - O'Sullivan]

$$
\begin{aligned}
& r(t)= \begin{cases}t(2 t+1), & \text { if } t \leq a / 2 \\
\left(a^{2}-a\right) / 2+(a+1)\left\lfloor\frac{2 t}{a+1}\right\rfloor, & \text { if } a / 2<t<a\left(\left\lfloor\frac{2 t}{a+1}\right\rfloor+1\right) / 2 \\
\left(a^{2}-a\right) / 2+2 t, & \text { if } t \geq a\left(\left\lfloor\frac{2 t}{a+1}\right\rfloor+1\right) / 2 .\end{cases} \\
& \tilde{r}(t)= \begin{cases}t(2 t+1)-\sum_{x^{\prime}=\lceil 2 \sqrt{2 t+1}-2\rceil}^{2 t-1}\left(\left\lfloor\sqrt{x^{\prime 2}+4 x^{\prime}-8 t}\right\rfloor+\delta_{x^{\prime} t}\right), & \text { if } t \leq a / 2 \\
\left(a^{2}-a\right) / 2+(a+1)\left\lfloor\frac{2 t}{a+1}\right\rfloor & \\
-\sum_{x^{\prime}=\lceil 2+\sqrt{2 t+1}}^{a-2+2\rceil}\left(\left\lfloor\sqrt{x^{\prime 2}+4}+4 x^{\prime}-8 t\right\rfloor+\delta_{x^{\prime} t}\right), & \text { if } a / 2<t<a\left(\left\lfloor\frac{2 t}{a+1}\right\rfloor+1\right) / 2 \\
\left.\left(a^{2}-a\right) / 2+2 t-\sum_{x^{\prime}=\left\lceil 2 \sqrt{a-1}+\left\lfloor\frac{2 t}{a t+1}\right\rfloor\right.}^{a+1}-2\right\rceil\left(\left\lfloor\sqrt{x^{\prime 2}+4 x^{\prime}-8 t}\right\rfloor+\delta_{x^{\prime} t}\right), & \text { if } a\left(\left\lfloor\frac{2 t}{a+1}\right\rfloor+1\right) / 2 \leq t \leq \frac{a(a+1)}{2} \\
\left(a^{2}-a\right) / 2+2 t, & \text { if } t>\frac{a(a+1)}{2}\end{cases}
\end{aligned}
$$

Not pretty!

Previous Generalizations of Feng-Rao

Definition

We call $\left\{A_{i}\right\}$ a sequence of divisors if $A_{i+1}=A_{i}+P_{i}$ for some point P_{i}.
Previous attempts to generalize Feng-Rao beyond one-point codes.

- Beelen'07
- Duursma-Park'08

bound	divisor	Step I sq	Step II sq
FR	$k P$	$\{i P\}$	$\{i P\}$
Beelen	any	$\{i P\}$	any
DP	any	any	any

Duursma - K. Method

Key Features:

- Step I: Instead of cosets uses finer subset.
- Step II: the same, combine subsets to get distance (or coset) bounds.
- Proof: One unifying theorem with all previous methods (Feng-Rao, Beelen, Duursma-Park, Duursma-K.) being consequences.

Statement Step I

$\gamma\left(C ; S, S^{\prime}\right)=\min \left\{\operatorname{deg}(A): A \in \Gamma_{S}\right.$ and $\left.A-C \in \Gamma_{S^{\prime}}\right\}$
Theorem (Main Theorem (Technical))
(Roughly) Any sequence of divisors A_{i} gives a bound for $\gamma\left(C ; S, S^{\prime}\right)$ by careful counting.

Lemma (Direct Consequence of Main Theorem)
Let A_{i} be a sequence with support in S. Then
$\gamma(C ; S, S) \geq \mid\left\{i: A_{i} \in \Gamma_{P_{i}}\right.$ and $\left.A_{i}-C \notin \Gamma_{p_{i}}\right\} \mid$
Observation

$$
\gamma\left(C ; S, S^{\prime}\right) \leq \min \operatorname{wt}\left(\mathcal{C}(C) \backslash \bigcup_{P \in S^{\prime}} \mathcal{C}(C+P)\right)
$$

Statement Step II

Lemma

$$
\begin{gathered}
\gamma\left(C ; S, S^{\prime} \backslash P\right)=\min _{i \geq 0} \gamma\left(C+i P ; S, S^{\prime}\right) \\
\gamma(C ; S, \emptyset)=\min _{D \in \Lambda} \gamma\left(C+D ; S, S^{\prime}\right)
\end{gathered}
$$

where Λ is the semigroup of positive divisors generated by S^{\prime}.

What were those γ 's again?

- γ is a geometric lower bound for a subset of code.
- The subset is an intersections of certain cosets.
- To get the "right" generalization of Feng-Rao we need to go to finer sets than cosets.
- Codes and cosets can be reconstructed by taking unions of those subsets.

Connection with codes:

Observation

$$
\gamma\left(C ; S, S^{\prime}\right) \leq d\left(\mathcal{C}(C, D) \backslash \bigcap_{P \in S^{\prime}} \mathcal{C}(C+P, D)\right) \text { given } S \cap D=\emptyset
$$

Example: two-point codes on Hermitian \mathbb{F}_{16}

curve - Hermitian over \mathbb{F}_{16}
P, Q - any two points
$D=P_{1}+P_{2}+\ldots+P_{n}$, where $P_{i} \notin P, Q$.
$C=a P+b Q$ Since $5 P \sim 5 Q, b<5$.

Step I: Example

$$
\gamma(C ;\{P, Q\},\{P, Q\}) \leq \min \operatorname{wt}(\mathcal{C}(C) \backslash \mathcal{C}(C+P) \cup \mathcal{C}(C+Q))
$$

Fixing C
(1) Pick a divisor sequence A_{i} (ie. a path in the grid).
(2) Count number of i where $A_{i} \in \Gamma_{P_{i}}$ and $A_{i}-C \notin \Gamma_{P_{i}}$ where $P_{i}=P$ or Q depending whether we took a vertical or horizontal step.
(3) $\gamma(C ;\{P, Q\},\{P, Q\})$ is bounded below by that number

$\gamma\left(C ; S, S^{\prime}\right)^{\prime}$ s with $S=S^{\prime}=\{P, Q\}$ for Hermitian \mathbb{F}_{16}

- Analytic form available for all q.
- The bounds are sharp (by explicit construction of a divisor matching the bound).
- Best bound always achieved with a straight path.

Step II: Example

Q: What is the distance of the coset $\mathcal{C}(2 Q-P) \backslash \mathcal{C}(3 Q-P)$

3	5	5	3	4	7	8	7	8	9	11	11	12	13	14	15				
	4	4	5	6	6	7	6	7	8	10	10	11	12	13	14	15			
		4	5	6	6	6	7	8	9	9	9	10	11	12	13	14	15		
			3	4	4	6	6	7	8	8	9	10	11	12	12	13	14	15	
				0	4	6	6	4	5	8	9	8	9	10	12	12	13	14	15

A: 5

Step II: Example

Q: What is the distance of the coset $\mathcal{C}(2 Q-P) \backslash \mathcal{C}(3 Q-P)$

A: 5
Q: What is the distance for whole code $\mathcal{C}(2 Q-P)$.

3	5	5	3	4	7	8	7	8	9	11	11	12	13	14	15				
	4	4	5	6	6	7	6	7	8	10	10	11	12	13	14	15			
		4	5	6	6	6	7	8	9	9	9	10	11	12	13	14	15		
			3	4	4	6	6	7	8	8	9	10	11	12	12	13	14	15	
				0	4	6	6	4	5	8	9	8	9	10	12	12	13	14	15

A: 3

Improved Two Point Codes

We need cosets to talk about redundancies, and consequently improved codes. Two choices:

- Obtain all coset bounds on the grid and then find best path. or
- Directly use $\gamma(C,\{P, Q\},\{P, Q\})$ to choose an optimal path. We will demonstrate the second option.

Improved Codes from $\gamma(C,\{P, Q\},\{P, Q\})$ table

$$
0 \rightarrow P \rightarrow P+Q \rightarrow P+2 Q
$$

Lemma

If $m P \sim m Q$ then $\gamma(C,\{P, Q\},\{P, Q\}) \leq \gamma(C+m P,\{P, Q\},\{P, Q\})$

2	2	2	3	2	3	3	5	5	3				
2	2	2	2	3	4	4	4	4	5	6			
0	0	0	-2	2	3	3	3	4	5	6	6		
0	ϕ	0	2	2	0	0	3	4	3	4	4	6	
0	-	0	2	2	0	0	3	4	3	0	4	6	6

blue - path red - Q step (coset) green - P step (coset)

Full Path

2	2	2	3	2	3	3	5	5	3	4	7	8	7	8	9	11	11	12	13	14	1	5			
2	2	2	2	3	4	4	4	4	5	6	6	7	6	7	8	10	10	11	12	13	14	15			
0	0	0	2	2	3	3	3	4	5	6	6	6	7	8	9	9	9	10	11	12	13	14	15		
0	0	0	2	2	0	0	3	4	3	4	4	6	6	7	8	8	9	10	11	12	12	13	14	15	
0	0	0	2	2	0	0	3	4	3	0	4	6	6	4	5	8	9	8	9	10	12	12	13	14	15

Coset bounds along that path:

0	0	0	0	0	2	2	2	0	4	3	4	6	4	6	7	8	9	8	9	10	12	12	13	14	15

Ex: This gives improved code with $d=5$ and $r=7(+1)$. This happens to be maximal, but also achievable by one-point improved codes.

Results: Distances vs. redundancies

$n \mathrm{Cl}$ - Classical n-point code nIm - Improved n-point code

$$
1 C l \geq\{1 \mathrm{Im}, 2 \mathrm{Cl}\} \geq 2 \mathrm{~lm}
$$

Hermitian over \mathbb{F}_{16}
Low is better!

$d \backslash r$	$1 C l$	$1 / m$	$2 C l$	$2 / m$	$i m p r$
3	3	3	3	3	0
4	6	5	6	5	0
5	10	8	8	8	0
6	11	9	8	8	0
7	11	11	10	10	0
8	11	11	11	11	0
9	14	13	13	13	0
10	15	15	14	14	0
11	16	16	15	15	0

$$
i m p r=\min \{2 C I, 1 / m\}-2 I m
$$

Hermitian over \mathbb{F}_{64}

$d \backslash r$	$1 C l$	$1 / m$	$2 C l$	$2 / m$	impr
5	10	8	10	8	0
7	21	14	21	14	0
9	36	20	30	20	0
11	37	24	30	23	1
13	37	28	30	27	1
15	37	30	36	29	1
17	44	35	39	35	0
19	46	39	39	37	2
21	46	41	39	39	0
23	46	43	45	42	1
25	52	47	48	47	0
27	54	50	48	48	0
29	55	53	52	50	2
31	55	55	54	54	0

Suzuki over \mathbb{F}_{32}

$d \backslash r$	$1 C l$	$1 / m$	$2 C l$	$2 / m$	impr
21	128	79	97	77	2
23	128	82	98	80	2
25	128	95	101	93	2
27	128	100	103	96	4
29	128	102	103	99	3
31	128	102	103	101	1
33	156	112	131	108	4
35	156	116	131	111	5
37	160	123	131	119	4
39	160	123	134	121	2
41	164	128	134	125	3
43	165	132	134	127	5
45	165	136	138	132	4
47	165	138	138	135	3
49	165	144	141	140	1

Giulietti-Kochmáros over \mathbb{F}_{729}

$d \backslash r$	$1 C l$	$1 / m$	$2 C l$	$2 / m$	$i m$						
29	127	88	114	84	4	$d \backslash r$	$1 C l$	$1 / m$	$2 C l$	$2 / m$	$i m$
31	127	92	114	90	2	155	143	149	141	2	
33	127	94	114	92	2	155	144	155	143	1	
35	127	96	114	94	2	162	147	156	144	3	
37	127	102	121	101	1	162	149	156	148	1	
39	127	105	121	104	1	162	151	162	151	0	
41	127	109	121	108	1	169	156	163	154	2	
43	169	160	163	156	4						
43	141	114	135	112	2	75	169	160	163	158	2
45	141	115	135	114	1	77	175	164	170	163	1
47	141	119	135	118	1	79	176	167	170	165	2
49	147	124	135	122	2	81	176	169	170	167	2
51	148	127	142	124	3	83	181	171	176	169	2
53	148	129	142	128	1	85	183	176	177	171	5
55	153	133	142	131	2	87	183	178	177	175	2
57	155	137	149	134	3	89	183	178	182	177	1
59	155	138	149	135	3	91	189	181	184	179	2

Open Problems / Future Work

- Is the path $i P+Q$ always optimal for improved two point codes on Hermitian curves? True for \mathbb{F}_{16} and \mathbb{F}_{64} for all d.
- How to find the best path in general.
- Decoding based on our generalization of Feng-Rao.
- Can we construct improved codes based directly on the subset bounds (maybe non-linear).

Online Resources

All data is availble at http://agtables.appspot.com

[^0]R. Mras-Amorós, M. O'Sullivan, "On Semigroups Generated by Two Consecutive Integers and Improved Hermitian Codes", IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2560-2566, 2007.
围 G.-L. Feng and T. R. N. Rao, "Improved geometric Goppa codes. I. basic theory, Special issue on algebraic geometry codes," IEEE Trans. Inf. Theory, vol. 41, pt. 1, pp. 1678-1693, 1995.

- M. Homma and S. J. Kim. "The complete determination of the minimum distance of two-point codes on a Hermitian curve." Des. Codes Cryptogr., 40(1):524, 2006.

[^0]: Highest numbers is a row are marked in red.

