Main Results

Proof of Theorem 1 000000000 A proof of Theorem 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

References

The maximum number of rational points on plane curves over a finite field (arXiv:0907.1325)

> Seon Jeong Kim Gyeongsang National University, Korea

(Joint work with Masaaki Homma)

Fq9 UCD, July 13-17, 2009

Notations

- \mathbb{F}_q , a finite field with q elements
- $\mathbb{P}^2,$ the projective plane over $\bar{\mathbb{F}}_q,$ the algebraic closure of \mathbb{F}_q
- C, the curve defined by a homogeneous equation f(x, y, z) = 0with coefficients in \mathbb{F}_q

$$\mathbb{P}^{2}(\mathbb{F}_{q}) := \{ (\alpha, \beta, \gamma) \in \mathbb{P}^{2} \mid \alpha, \beta, \gamma \in \mathbb{F}_{q} \}$$
$$C(\mathbb{F}_{q}) := \{ (\alpha, \beta, \gamma) \in \mathbb{P}^{2}(\mathbb{F}_{q}) \mid f(\alpha, \beta, \gamma) = 0 \}$$
the set of \mathbb{F}_{q} -rational points of C

 $N_q(C)$, the cardinality of the set $C(\mathbb{F}_q)$.

Main Results

Proof of Theorem 1 000000000 A proof of Theorem 2

References

Preliminaries

We suppose that *C* has no \mathbb{F}_q -line as a component.

 $M_q(d) := \max\{N_q(C) \mid C \in \mathscr{C}_d(\mathbb{F}_q)\},\$

where $\mathscr{C}_d(\mathbb{F}_q)$ is the set of all plane curves over \mathbb{F}_q of degree d without an \mathbb{F}_q -linear component.

$$M_q(d) \leq {}^\#\mathbb{P}^2(\mathbb{F}_q) = q^2 + q + 1$$
 for any $d \geq 1$

For $d \geq q+2$, $M_q(d) = q^2 + q + 1$. (Homma and Kim)

In particular, for d = q + 2, G. Tallini proved there are irreducible curves C with $N_q(C) = q^2 + q + 1$. Homma and I proved there are even nonsingular curves C with $N_q(C) = q^2 + q + 1$.

n	Main Resul
	0000000

00000

Proof of Theorem 1 000000000 A proof of Theorem 2

References

$M_q(d) \leq (d-1)q+1$ (Sziklai Conjecture)

For d = q + 2, $M_q(q + 1) = q^2 + q + 1$. (Tallini) For d = q + 1, $M_q(q + 1) = q^2 + 1$. (Homma and Kim) For $d = \sqrt{q} + 1$, when q is a square, $M_q(d) = (d - 1)q + 1$ is attained for a Hermitian curve. (well-known) For d = 3, $M_q(3) = 2q + 1$ if and only if q = 2 or 3 or 4. (Schoof) For d = 2, $M_q(2) = q + 1$. (well-known)

Main Results

Proof of Theorem 1 000000000 A proof of Theorem 2

References

Some bounds and a conjecture

$$M_q(d) \leq (d-1)q + \lfloor \frac{d}{2} \rfloor$$
 (B. Segre)

$M_q(d) \leq (d-1)q + (q+2-d)$ (Homma and Kim)

This bound is better than Segre's in the range $\frac{2}{3}q + \frac{5}{3} < d \le q + 1$ and implies that the Sziklai conjecture is true for d = q + 1.

For d = q = 4, the Sziklai's conjecture is false since $M_4(4) = 14(>(4-1)4+1)$. Indeed, $N_4(C) = 14$ for the nonsingular curve C defined by the equation $X^4 + Y^4 + Z^4 + X^2Y^2 + Y^2Z^2 + Z^2X^2 + X^2YZ + XYZ^2 = 0$.

Modified Sziklai's conjecture

Unless C is a curve defined over \mathbb{F}_4 which is projectively equivalent to

$$X^{4} + Y^{4} + Z^{4} + X^{2}Y^{2} + Y^{2}Z^{2} + Z^{2}X^{2} + X^{2}YZ + XY^{2}Z + XYZ^{2} = 0$$
(1)

over \mathbb{F}_4 , we might have

$$N_q(C) \le (d-1)q+1.$$
 (2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Main Results

Proof of Theorem 1 000000000 A proof of Theorem 2

References

The Main Theorems

Theorem 1

For d = q, the modified Sziklai's conjecture is true, and for each q there exists a nonsingular curve of degree q over \mathbb{F}_q with (q-1)q+1 rational points.

Now the case $d \leq q-1$ is remained .

Theorem 2

The modified Sziklai's conjecture is true for nonsingular curves of degree $d \le q - 1$. Moreover there is an example of a nonsingular curve for which equality holds in (2) if $d = q + 2, q + 1, q, q - 1, \sqrt{q} + 1$ (when q is square), or 2.

In this talk, we concentrate on a proof of Theorem 1.

For q = 2, we have $M_2(2) = 3$, since $M_q(2) = q + 1$ for arbitrary q.

For q = 3, $M_3(3) = 7$ (Segre's bound and an example).

For q = 4, $M_4(4) = 14$ (Segre's bound and an example), and we already proved that any plane curve attaining this bound is projectively equivalent to the curve defined by (1) over \mathbb{F}_4 .

Thus it remains to prove the theorem for $q \ge 5$.

Main Results

Proof of Theorem 1 000000000 A proof of Theorem 2

References

Lemma 1 and 2

Lemma 1 (Homma and Kim)

If $2 \leq d \leq q+1$, then

$$M_q(d) \leq (d-1)q + (q+2-d).$$

In particular, we have $M_q(q) \leq (q-1)q+2$.

Lemma 2

Let C be the plane curve defined by the equation $x^q - xz^{q-1} + y^{q-1}z - z^q$ over \mathbb{F}_q where $q \ge 2$. Then C is nonsingular and ${}^{\#}C(\mathbb{F}_q) = (q-1)q + 1$.

・ロト・雪ト・雪ト・雪・ 今日・

Main Results

Proof of Theorem 1 000000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

References

To prove Theorem 1

Thus, to prove $M_q(q) \le (q-1)q+1$ it suffices to prove that there is no irreducible curve C of degree q with $N_q(q) = (q-1)q+2$.

Indeed, note that if the curve C of degree q is reducible and decomposed into two curves of degree d_1 and d_2 with $2 \le d_1$, $d_2 \le q - 2$ as $C = C_1 \cup C_2$, then

$$egin{array}{rcl} N_q(\mathcal{C}) &\leq & N_q(\mathcal{C}_1)+N_q(\mathcal{C}_2) \ &\leq & ((d_1-1)q+\lfloorrac{d_1}{2}
floor)+((d_2-1)q+\lfloorrac{d_2}{2}
floor) \ &\leq & (q-1)q+\lfloorrac{q}{2}
floor-q\leq (q-1)q. \end{array}$$

Let f be a homogeneous polynomial in $\mathbb{F}_q[x, y, z]$.

 $Z(f) := \{(\alpha, \beta, \gamma) \in \mathbb{P}^2(\mathbb{F}_q) \mid f(\alpha, \beta, \gamma) = 0\}$, the zero set of f

We use the following notation:

 (α, β, γ) denotes a point. $[\alpha, \beta, \gamma]$ denotes the line with equation $\alpha x + \beta y + \gamma z = 0$.

Note that the lines through the origin (0, 0, 1) have the equation of the form $\alpha x + \beta y = 0$, i.e., are expressed as $[\alpha, \beta, 0]$.

duction	Mai
00	000

Results

0000

Proof of Theorem 1 000000000 A proof of Theorem 2

References

Lemma 3

Lemma 3

Let f be an irreducible homogeneous polynomial of degree $d = q \ge 5$ in $\mathbb{F}_q[x, y, z]$. Let $[-\gamma_i, \beta_i, 0]$, $i = 1, \ldots, k + 1$ with $3 \le k \le q$ be k + 1 distinct lines through the origin (0, 0, 1). Suppose that $Z(f) \supseteq [-\gamma_i, \beta_i, 0] - \{(\beta_i, \gamma_i, 0)\}$ for $i = 1, \ldots, k$. If Z(f) contains q+2-k points in the deleted line $[-\gamma_{k+1}, \beta_{k+1}, 0] - \{(\beta_{k+1}, \gamma_{k+1}, 0)\}$, then Z(f) contains all of them.

Introduction	Main Results	Proof of Theorem 1	A proof of Theore
00000	000000	000000000	

Lemma 4

Lemma 4

Let f be an irreducible homogeneous polynomial of degree $d = q \ge 5$ in $\mathbb{F}_q[x, y, z]$. Let $[-\gamma_i, \beta_i, 0]$, $i = 1, \ldots, k+1$ with $2 \le k \le q-1$ be k+1 distinct lines through the origin (0, 0, 1). Suppose that $Z(f) \supseteq [-\gamma_i, \beta_i, 0] - \{(0, 0, 1)\}$ for $i = 1, \ldots, k$. If Z(f) contains q+1-k points in the deleted line $[-\gamma_{k+1}, \beta_{k+1}, 0] - \{(0, 0, 1)\}$, then Z(f) contains all of them.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main Results

Proof of Theorem 1 •000000000

References

Proof of Theorem 1

Suppose that there exists an irreducible curve C of degree q with $N_q(C) = (q-1)q + 2$. If C is singular at some \mathbb{F}_q -rational point P, then each line through P meets C at most q-1 points. Then $N_q(C) \leq (q-2) \cdot (q+1) + 1 = q^2 - q - 1$. Thus we may assume that C is nonsingular at every \mathbb{F}_q -rational point of C. Let a_i $(0 \leq i \leq q)$ be the number of lines (*i*-point lines) ℓ in the projective plane such that $\#\ell \cap C(\mathbb{F}_q) = i$. Then we obtain the following;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- (1) $\sum_{i=0}^{q} a_i = q^2 + q + 1$ (the number of all lines on the plane). (2) $\sum_{i=0}^{q} ia_i = (q^2 - q + 2) \cdot (q + 1)$ (the sum of $\#\ell \cap C(\mathbb{F}_q)$ for all lines on the plane).
- (3) If q is even [resp. odd], then

$$\sum_{i=1}^{\frac{q}{2}-1} ia_i + \sum_{i=\frac{q}{2}}^{q} (q-i)a_i \ge q^2 - q + 2$$

[resp.
$$\sum_{i=1}^{\frac{q-1}{2}} ia_i + \sum_{i=\frac{q+1}{2}}^{q} (q-i)a_i \ge q^2 - q + 2$$
].

(the number of tangent lines at \mathbb{F}_q -rational points to C).

(4) $\sum_{i=2}^{q} {i \choose 2} a_i = {q^2-q+2 \choose 2}$ (counting the number of elements in the set $\{(\{P, Q\}, \langle P, Q \rangle) \mid P, Q \in C(\mathbb{F}_q) \text{ and } P \neq Q\}$ in two ways).

Main Results

Proof of Theorem 1

From above equations (1), (2), (3) and (4), we obtain $qa_0 + (q-2)a_1 + (q-4)a_2 + \cdots \leq q-4$, which implies $a_0 = 0$ and $a_1 = 0$ since a_i 's are nonnegative integers. Now we need the following lemma.

Lemma 5

At least one among $\{a_i \mid 2 \le i \le q-3\}$ is non-zero.

Proof of Lemma 5. Suppose that all of them are zero. Then the equations become

(1)
$$a_{q-2} + a_{q-1} + a_q = q^2 + q + 1$$

(2) $(q-2)a_{q-2} + (q-1)a_{q-1} + qa_q = (q^2 - q + 2) \cdot (q+1)$
(4) $\binom{q-2}{2}a_{q-2} + \binom{q-1}{2}a_{q-1} + \binom{q}{2}a_q + = \binom{q^2-q+2}{2}$

Using the elimination method, we have $a_{q-1} = -(q-3)^2 + 1$, which is smaller than zero for $q \ge 5$, and hence it is contradiction.

Now let *k* be the smallest positive integer such that $a_k > 0$. By Lemma 5, we have $2 \le k \le q-3$. Let ℓ_0 be a fixed *k*-point line. Let $\ell_0 \cap \mathbb{P}^2(\mathbb{F}_q) = \{P_0, P_1, \ldots, P_q\}$, and $\ell_0 \cap C(\mathbb{F}_q) = \{P_0, P_1, \ldots, P_{k-1}\}$. Let $S := \mathbb{P}^2(\mathbb{F}_q) - \ell_0 - C(\mathbb{F}_q)$ then ${}^\#S = q + k - 2$. For each P_i with $0 \le i \le k - 1$, let $\mathscr{S}(P_i)$ be the set of points $Q \in S$ such that the line $\langle P_i, Q \rangle$ is a *q*-point line. Then ${}^\#\mathscr{S}(P_i) \ge q - k + 2$ since the union of *q* lines except ℓ_0 through P_i contains *S*.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ • の � @

Introduction 00000	Main Results 0000000	Proof of Theorem 1 0000000000	A proof of Theorem 2	References

Now we consider the case $k \ge 3$ at first. Since we have

$$\sum_{i=0}^{k-1} {}^{\#} \mathscr{S}(P_i) \ge k(q-k+2) > 2(q+k-2) = 2 \cdot {}^{\#} S$$

for $3 \le k \le q-3$ by simple computation, there exists a point $Q \in S$ such that $Q \in \mathscr{S}(P_{i_1}) \cap \mathscr{S}(P_{i_2}) \cap \mathscr{S}(P_{i_3})$ for some distinct $i_1, i_2, i_3 \in \{0, 1, \ldots, k-1\}$. Then we have a contradiction by the following lemma which can be proved using Lemma 4.

Lemma 6

Let $Q \in \mathbb{P}^2(\mathbb{F}_q) - C(\mathbb{F}_q)$. If there are at least two *q*-point lines containing Q, then the pencil of lines through Q consists of two *q*-point lines and q-1 (q-2)-point lines.

Proof. Suppose that there are exactly $r(\geq 2)$ *q*-point lines through Q. Then by Lemma 4, each of the other lines through Q contains at most q - r rational points of C. Note that $r \leq q - 1$ since $a_0 = a_1 = 0$. The total number of rational points on C is equal to $\sum_{Q \in \ell} {}^{\#}(\ell \cap C(\mathbb{F}_q))$. Thus

$$q^2-q+2=\sum_{Q\in\ell}{}^{\#}(\ell\cap C(\mathbb{F}_q))\leq rq+(q-r+1)(q-r),$$

which is equivalent to $(r-2)q \le (r-2)(r+1)$. Since $2 \le r \le q-1$, that inequality implies r = 2 or r = q-1. If r = q-1, at least one of the remaining two lines is 0-point line or 1-point line which contradicts the fact $a_0 = a_1 = 0$. Thus we have r = 2 and the other q-1 lines are exactly (q-2)-point ones.

troduction	Main Results	Proof of Theorem 1	A proof of Theorem 2	References
0000	0000000	0000000000		

The case $a_2 = 1$

Main Results

Proof of Theorem 1 000000000 A proof of Theorem 2

References

Now only the case $a_2 > 0$ is remained. In fact, the computation above Lemma 5 implies $a_2 = 1$. As in the part of proof above Lemma 6, we use the same notation. The line ℓ_0 is the unique 2-point line and $\ell_0 \cap C(\mathbb{F}_7) = \{P_0, P_1\},\$ $\ell_0 \cap (\mathbb{P}^2(\mathbb{F}_q) - \mathcal{C}(\mathbb{F}_q)) = \{P_i \mid 2 \le i \le q\}$. Then every line through P_0 or P_1 except ℓ_0 is a *q*-point line. Let ℓ_1, \ldots, ℓ_q be the q lines through P_0 except ℓ_0 . Let $\ell_i \cap (\mathbb{P}^2(\mathbb{F}_q) - C(\mathbb{F}_q)) = \{Q_i\}$ for $i = 1, \ldots, q$, then $S = \{Q_1, Q_2, \ldots, Q_n\}.$ By Lemma 3, no three points of S are collinear. Thus the set $S \cup \{P_0, P_1\} = \{P_0, P_1, Q_1, Q_2, \dots, Q_q\}$ becomes a (q+2)-arc, i.e., no three points in that set are collinear. For odd q, this is contradiction since $\mathbb{P}^2(\mathbb{F}_q)$ can not contain *r*-arcs for $r \ge q+2$. Thus we may assume q is even.

・ロト・日本・日本・日本・日本・日本

Main Rest

Proof of Theorem 1 000000000 References

The case $a_2 = 1$ and q even

Since $S \cup \{P_0, P_1\}$ is (q+2)-arc, i.e., a hyperoval, every line in the plane is an 2-secant line or 0-secant line of it. Counting the number of points in $S \cup \{P_0, P_1\}$ implies that exactly $\frac{q}{2}$ lines through P_q (or any P_i , $2 \le i \le q$) are 0-secant lines, equivalently q-point lines. Since $q \ge 5$, in fact $q \ge 8$, we have a contradiction using Lemma 6 again.

Thus there is no irreducible plane curve *C* of degree *q* over \mathbb{F}_q with $N_q(C) = q^2 - q + 2$. By combining the fact mentioned below Lemma 2, we conclude there is no plane curve *C* of degree *q* with no \mathbb{F}_q -linear component with $N_q(C) = q^2 - q + 2$.

Therefore $M_q(q) = q^2 - q + 1$ for $q \ge 5$. Thus the proof of Theorem 1 is complete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Main Results

Proof of Theorem 1 000000000

A proof of Theorem 2

Now we may assume that *C* is a nonsingular plane curve over \mathbb{F}_q of degree *d* with $1 < d \le q - 1$. We prove that $N_q(C) \le (d-1)q + 1$. A nonsingular plane curve *C* defined over \mathbb{F}_q is said to be *q*-Frobenius nonclassical if $F_q(P) \in T_P(C)$ for a general $\overline{\mathbb{F}}_q$ -point *P*, where F_q is the *q*-th power Frobenius map and $T_P(C)$ is the embedded tangent line at *P* to *C*. Stöhr and Voloch showed that if *C* is *q*-Frobenius classical of degree *d*, then

$$N_q(C) \leq \frac{1}{2}d(d+q-1), \tag{3}$$

and Hefez and Voloch proved that if C is q-Frobenius nonclassical of degree d, then $d \ge \sqrt{q} + 1$ and

$$N_q(C) = d(q - d + 2).$$
 (4)

 Main Results
 Proof of Theorem 1
 A proof of Theorem 2
 References

 0000
 00000000
 000000000
 References
 References

Each of these two estimates for $N_q(C)$ is stronger than the expected bound if $2 \le d \le q - 1$ for (3) or $d \ge \sqrt{q} + 1$ for (4). In fact,

$$(d-1)q+1-rac{1}{2}d(d+q-1)=rac{1}{2}(d-2)(q-d-1)$$

and

$$(d-1)q+1-d(q-d+2)=(d-\sqrt{q}-1)(d+\sqrt{q}-1).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

References

- A. Hefez and J. F. Voloch, Frobenius nonclassical curves, Arch. Math. (Basel) 54 (1990) 263–273; Correction, Arch. Math. (Basel) 57 (1991) 416.
- [2] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Clarendon Press, Oxford (1998).
- [3] M. Homma and S. J. Kim, *Nonsingular plane filling curves of minimum degree over a finite field and their automorphism groups: Supplements to a work of Tallini*, Preprint 2008.
- [4] M. Homma and S. J. Kim, Around Sziklai's conjecture on the number of points of a plane curve over a finite field, preprint 2008.
- [5] R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987) 183–211.
- [6] B. Segre, *Le geometrie di Galois*, Ann. Mat. Pura Appl. (4) 48 1–96 (1959).
- [7] M. P. Sziklai, A bound on the number of points of a plane curve, Finite Fields Appl. 14 (2008) 41–43.
- [8] K.-O. Stöhr and J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3) 52 (1986), 1–19.