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Notations

Fq, a finite field with q elements

P2, the projective plane over F̄q, the algebraic closure of Fq

C , the curve defined by a homogeneous equation f (x , y , z) = 0
with coefficients in Fq

P2(Fq) := {(α, β, γ) ∈ P2 | α, β, γ ∈ Fq}

C (Fq) := {(α, β, γ) ∈ P2(Fq) | f (α, β, γ) = 0},
the set of Fq-rational points of C

Nq(C ), the cardinality of the set C (Fq) .
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Preliminaries

We suppose that C has no Fq-line as a component.

Mq(d) := max{Nq(C ) | C ∈ Cd(Fq)},

where Cd(Fq) is the set of all plane curves over Fq of degree d
without an Fq-linear component.

Mq(d) ≤ #P2(Fq) = q2 + q + 1 for any d ≥ 1

For d ≥ q + 2, Mq(d) = q2 + q + 1. (Homma and Kim)

In particular, for d = q + 2, G. Tallini proved there are irreducible
curves C with Nq(C ) = q2 + q + 1. Homma and I proved there are
even nonsingular curves C with Nq(C ) = q2 + q + 1.
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Mq(d) ≤ (d − 1)q + 1 (Sziklai Conjecture)

For d = q + 2, Mq(q + 1) = q2 + q + 1. (Tallini)

For d = q + 1, Mq(q + 1) = q2 + 1. (Homma and Kim)

For d =
√

q + 1, when q is a square, Mq(d) = (d − 1)q + 1 is
attained for a Hermitian curve. (well-known)

For d = 3, Mq(3) = 2q + 1 if and only if q = 2 or 3 or 4. (Schoof)

For d = 2, Mq(2) = q + 1. (well-known)
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Some bounds and a conjecture

Mq(d) ≤ (d − 1)q +
⌊

d
2

⌋
(B. Segre)

Mq(d) ≤ (d − 1)q + (q + 2− d) (Homma and Kim)

This bound is better than Segre’s in the range 2
3q + 5

3 < d ≤ q + 1
and implies that the Sziklai conjecture is true for d = q + 1.

For d = q = 4, the Sziklai’s conjecture is false since
M4(4) = 14(> (4− 1)4 + 1). Indeed, N4(C ) = 14 for the
nonsingular curve C defined by the equation
X 4+Y 4+Z 4+X 2Y 2+Y 2Z 2+Z 2X 2+X 2YZ +XY 2Z +XYZ 2 = 0.
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Modified Sziklai’s conjecture

Unless C is a curve defined over F4 which is projectively equivalent
to

X 4 +Y 4 +Z 4 +X 2Y 2 +Y 2Z 2 +Z 2X 2 +X 2YZ +XY 2Z +XYZ 2 = 0 (1)

over F4, we might have

Nq(C ) ≤ (d − 1)q + 1. (2)
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The Main Theorems

Theorem 1

For d = q, the modified Sziklai’s conjecture is true, and for each q
there exists a nonsingular curve of degree q over Fq with (q−1)q+1
rational points.

Now the case d ≤ q − 1 is remained .

Theorem 2

The modified Sziklai’s conjecture is true for nonsingular curves of
degree d ≤ q − 1. Moreover there is an example of a nonsingular
curve for which equality holds in (2) if d = q + 2, q + 1, q, q −
1,
√

q + 1 (when q is square), or 2.
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In this talk, we concentrate on a proof of Theorem 1.

For q = 2, we have M2(2) = 3, since Mq(2) = q + 1 for arbitrary q.

For q = 3, M3(3) = 7 (Segre’s bound and an example).

For q = 4, M4(4) = 14 (Segre’s bound and an example), and we
already proved that any plane curve attaining this bound is
projectively equivalent to the curve defined by (1) over F4.

Thus it remains to prove the theorem for q ≥ 5.
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Lemma 1 and 2

Lemma 1 (Homma and Kim)

If 2 ≤ d ≤ q + 1, then

Mq(d) ≤ (d − 1)q + (q + 2− d).

In particular, we have Mq(q) ≤ (q − 1)q + 2.

Lemma 2

Let C be the plane curve defined by the equation xq − xzq−1 +
yq−1z − zq over Fq where q ≥ 2. Then C is nonsingular and
#C (Fq) = (q − 1)q + 1.
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To prove Theorem 1

Thus, to prove Mq(q) ≤ (q− 1)q + 1 it suffices to prove that there
is no irreducible curve C of degree q with Nq(q) = (q − 1)q + 2.

Indeed, note that if the curve C of degree q is reducible and
decomposed into two curves of degree d1 and d2 with
2 ≤ d1, d2 ≤ q − 2 as C = C1 ∪ C2, then

Nq(C ) ≤ Nq(C1) + Nq(C2)

≤ ((d1 − 1)q + bd1

2
c) + ((d2 − 1)q + bd2

2
c)

≤ (q − 1)q + bq

2
c − q ≤ (q − 1)q.
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More notations

Let f be a homogeneous polynomial in Fq[x , y , z ].

Z (f ) := {(α, β, γ) ∈ P2(Fq) | f (α, β, γ) = 0}, the zero set of f

We use the following notation:

(α, β, γ) denotes a point.
[α, β, γ] denotes the line with equation αx + βy + γz = 0.

Note that the lines through the origin (0, 0, 1) have the equation of
the form αx + βy = 0, i.e., are expressed as [α, β, 0].
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Lemma 3

Lemma 3

Let f be an irreducible homogeneous polynomial of degree d = q ≥
5 in Fq[x , y , z ]. Let [−γi , βi , 0], i = 1, . . . , k + 1 with 3 ≤ k ≤ q
be k + 1 distinct lines through the origin (0, 0, 1). Suppose that
Z (f ) ⊇ [−γi , βi , 0]− {(βi , γi , 0)} for i = 1, . . . , k.
If Z (f ) contains q+2−k points in the deleted line [−γk+1, βk+1, 0]−
{(βk+1, γk+1, 0)}, then Z (f ) contains all of them.
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Lemma 4

Lemma 4

Let f be an irreducible homogeneous polynomial of degree d = q ≥
5 in Fq[x , y , z ]. Let [−γi , βi , 0], i = 1, . . . , k + 1 with 2 ≤ k ≤ q−1
be k + 1 distinct lines through the origin (0, 0, 1). Suppose that
Z (f ) ⊇ [−γi , βi , 0]− {(0, 0, 1)} for i = 1, . . . , k .
If Z (f ) contains q+1−k points in the deleted line [−γk+1, βk+1, 0]−
{(0, 0, 1)}, then Z (f ) contains all of them.
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Proof of Theorem 1

Suppose that there exists an irreducible curve C of degree q with
Nq(C ) = (q − 1)q + 2. If C is singular at some Fq-rational point
P, then each line through P meets C at most q − 1 points. Then
Nq(C ) ≤ (q − 2) · (q + 1) + 1 = q2 − q − 1. Thus we may assume
that C is nonsingular at every Fq-rational point of C .
Let ai (0 ≤ i ≤ q) be the number of lines (i-point lines) ` in the
projective plane such that #` ∩ C (Fq) = i . Then we obtain the
following;
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(1)
∑q

i=0 ai = q2 + q + 1 (the number of all lines on the plane).

(2)
∑q

i=0 iai = (q2 − q + 2) · (q + 1) (the sum of #` ∩ C (Fq) for
all lines on the plane).

(3) If q is even [resp. odd], then

q
2
−1∑

i=1

iai +

q∑
i= q

2

(q − i)ai ≥ q2 − q + 2

[resp.

q−1
2∑

i=1

iai +

q∑
i= q+1

2

(q − i)ai ≥ q2 − q + 2].

(the number of tangent lines at Fq-rational points to C ).

(4)
∑q

i=2

( i
2

)
ai =

(q2−q+2
2

)
(counting the number of elements in

the set {({P,Q}, 〈P,Q〉) | P,Q ∈ C (Fq) and P 6= Q} in two
ways).
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From above equations (1), (2), (3) and (4), we obtain
qa0 + (q − 2)a1 + (q − 4)a2 + · · · ≤ q − 4, which implies a0 = 0
and a1 = 0 since ai ’s are nonnegative integers.
Now we need the following lemma.

Lemma 5

At least one among {ai | 2 ≤ i ≤ q − 3} is non-zero.

Proof of Lemma 5. Suppose that all of them are zero. Then the
equations become

(1) aq−2 + aq−1 + aq = q2 + q + 1

(2) (q − 2)aq−2 + (q − 1)aq−1 + qaq = (q2 − q + 2) · (q + 1)

(4)
(q−2

2

)
aq−2 +

(q−1
2

)
aq−1 +

(q
2

)
aq+ =

(q2−q+2
2

)
Using the elimination method, we have aq−1 = −(q − 3)2 + 1,
which is smaller than zero for q ≥ 5, and hence it is contradiction.
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Now let k be the smallest positive integer such that ak > 0. By
Lemma 5, we have 2 ≤ k ≤ q − 3. Let `0 be a fixed k-point line.
Let `0 ∩ P2(Fq) = {P0,P1, . . . ,Pq}, and
`0 ∩ C (Fq) = {P0,P1, . . . ,Pk−1}. Let S := P2(Fq)− `0 − C (Fq)
then #S = q + k − 2. For each Pi with 0 ≤ i ≤ k − 1, let S (Pi )
be the set of points Q ∈ S such that the line 〈Pi ,Q〉 is a q-point
line. Then #S (Pi ) ≥ q − k + 2 since the union of q lines except
`0 through Pi contains S .
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Now we consider the case k ≥ 3 at first. Since we have

k−1∑
i=0

#S (Pi ) ≥ k(q − k + 2) > 2(q + k − 2) = 2 · #S

for 3 ≤ k ≤ q − 3 by simple computation, there exists a point
Q ∈ S such that Q ∈ S (Pi1) ∩S (Pi2) ∩S (Pi3) for some distinct
i1, i2, i3 ∈ {0, 1, . . . , k − 1}. Then we have a contradiction by the
following lemma which can be proved using Lemma 4.
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Lemma 6

Let Q ∈ P2(Fq) − C (Fq). If there are at least two q-point lines
containing Q, then the pencil of lines through Q consists of two
q-point lines and q − 1 (q − 2)-point lines.

Proof. Suppose that there are exactly r(≥ 2) q-point lines through
Q. Then by Lemma 4, each of the other lines through Q contains
at most q − r rational points of C . Note that r ≤ q − 1 since
a0 = a1 = 0. The total number of rational points on C is equal to∑

Q∈`
#(` ∩ C (Fq)). Thus

q2 − q + 2 =
∑
Q∈`

#(` ∩ C (Fq)) ≤ rq + (q − r + 1)(q − r),

which is equivalent to (r − 2)q ≤ (r − 2)(r + 1). Since
2 ≤ r ≤ q − 1, that inequality implies r = 2 or r = q − 1. If
r = q − 1, at least one of the remaining two lines is 0-point line or
1-point line which contradicts the fact a0 = a1 = 0. Thus we have
r = 2 and the other q − 1 lines are exactly (q − 2)-point ones.
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The case a2 = 1



Introduction Main Results Proof of Theorem 1 A proof of Theorem 2 References

Now only the case a2 > 0 is remained. In fact, the computation
above Lemma 5 implies a2 = 1. As in the part of proof above
Lemma 6, we use the same notation. The line `0 is the unique
2-point line and `0 ∩ C (F7) = {P0,P1},
`0 ∩ (P2(Fq)− C (Fq)) = {Pi | 2 ≤ i ≤ q}. Then every line
through P0 or P1 except `0 is a q-point line.
Let `1, . . . , `q be the q lines through P0 except `0.
Let `i ∩ (P2(Fq)− C (Fq)) = {Qi} for i = 1, . . . , q, then
S = {Q1,Q2, . . . ,Qq}.
By Lemma 3, no three points of S are collinear. Thus the set
S ∪ {P0,P1} = {P0,P1,Q1,Q2, . . . ,Qq} becomes a (q + 2)-arc,
i.e., no three points in that set are collinear. For odd q, this is
contradiction since P2(Fq) can not contain r -arcs for r ≥ q + 2.
Thus we may assume q is even.
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The case a2 = 1 and q even

Since S ∪ {P0,P1} is (q + 2)-arc, i.e., a hyperoval, every line in the
plane is an 2-secant line or 0-secant line of it. Counting the
number of points in S ∪ {P0,P1} implies that exactly q

2 lines
through Pq (or any Pi , 2 ≤ i ≤ q) are 0-secant lines, equivalently
q-point lines. Since q ≥ 5, in fact q ≥ 8, we have a contradiction
using Lemma 6 again.

Thus there is no irreducible plane curve C of degree q over Fq

with Nq(C ) = q2 − q + 2. By combining the fact mentioned below
Lemma 2, we conclude there is no plane curve C of degree q with
no Fq-linear component with Nq(C ) = q2 − q + 2.

Therefore Mq(q) = q2 − q + 1 for q ≥ 5. Thus the proof of
Theorem 1 is complete.



Introduction Main Results Proof of Theorem 1 A proof of Theorem 2 References

A proof of Theorem 2

Now we may assume that C is a nonsingular plane curve over Fq

of degree d with 1 < d ≤ q − 1. We prove that
Nq(C ) ≤ (d − 1)q + 1. A nonsingular plane curve C defined over
Fq is said to be q-Frobenius nonclassical if Fq(P) ∈ TP(C ) for a
general Fq-point P, where Fq is the q-th power Frobenius map and
TP(C ) is the embedded tangent line at P to C . Stöhr and Voloch
showed that if C is q-Frobenius classical of degree d , then

Nq(C ) ≤ 1

2
d(d + q − 1), (3)

and Hefez and Voloch proved that if C is q-Frobenius nonclassical
of degree d , then d ≥ √q + 1 and

Nq(C ) = d(q − d + 2). (4)
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Each of these two estimates for Nq(C ) is stronger than the
expected bound if 2 ≤ d ≤ q − 1 for (3) or d ≥ √q + 1 for (4). In
fact,

(d − 1)q + 1− 1

2
d(d + q − 1) =

1

2
(d − 2)(q − d − 1)

and

(d − 1)q + 1− d(q − d + 2) = (d −√q − 1)(d +
√

q − 1).
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