The maximum number of rational points on plane curves over a finite field
(arXiv:0907.1325)

Seon Jeong Kim
Gyeongsang National University, Korea

(Joint work with Masaaki Homma)

Fq9

UCD, July 13-17, 2009

Notations

\mathbb{F}_{q}, a finite field with q elements
\mathbb{P}^{2}, the projective plane over $\overline{\mathbb{F}}_{q}$, the algebraic closure of \mathbb{F}_{q}
C, the curve defined by a homogeneous equation $f(x, y, z)=0$ with coefficients in \mathbb{F}_{q}

$$
\begin{aligned}
& \mathbb{P}^{2}\left(\mathbb{F}_{q}\right):=\left\{(\alpha, \beta, \gamma) \in \mathbb{P}^{2} \mid \alpha, \beta, \gamma \in \mathbb{F}_{q}\right\} \\
& C\left(\mathbb{F}_{q}\right):=\left\{(\alpha, \beta, \gamma) \in \mathbb{P}^{2}\left(\mathbb{F}_{q}\right) \mid f(\alpha, \beta, \gamma)=0\right\} \\
& \text { the set of } \mathbb{F}_{q} \text {-rational points of } C
\end{aligned}
$$

$N_{q}(C)$, the cardinality of the set $C\left(\mathbb{F}_{q}\right)$.

Preliminaries

We suppose that C has no \mathbb{F}_{q}-line as a component.

$$
M_{q}(d):=\max \left\{N_{q}(C) \mid C \in \mathscr{C}_{d}\left(\mathbb{F}_{q}\right)\right\}
$$

where $\mathscr{C}_{d}\left(\mathbb{F}_{q}\right)$ is the set of all plane curves over \mathbb{F}_{q} of degree d without an \mathbb{F}_{q}-linear component.
$M_{q}(d) \leq{ }^{\#} \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)=q^{2}+q+1$ for any $d \geq 1$
For $d \geq q+2, M_{q}(d)=q^{2}+q+1$. (Homma and Kim)
In particular, for $d=q+2, G$. Tallini proved there are irreducible curves C with $N_{q}(C)=q^{2}+q+1$. Homma and I proved there are even nonsingular curves C with $N_{q}(C)=q^{2}+q+1$.

$M_{q}(d) \leq(d-1) q+1$ (Sziklai Conjecture)

For $d=q+2, M_{q}(q+1)=q^{2}+q+1$. (Tallini)
For $d=q+1, M_{q}(q+1)=q^{2}+1$. (Homma and Kim)
For $d=\sqrt{q}+1$, when q is a square, $M_{q}(d)=(d-1) q+1$ is attained for a Hermitian curve. (well-known)
For $d=3, M_{q}(3)=2 q+1$ if and only if $q=2$ or 3 or 4 . (Schoof)
For $d=2, M_{q}(2)=q+1$. (well-known)

Some bounds and a conjecture

$$
\begin{aligned}
& M_{q}(d) \leq(d-1) q+\left\lfloor\frac{d}{2}\right\rfloor(\text { B. Segre }) \\
& M_{q}(d) \leq(d-1) q+(q+2-d)(\text { Homma and Kim })
\end{aligned}
$$

This bound is better than Segre's in the range $\frac{2}{3} q+\frac{5}{3}<d \leq q+1$ and implies that the Sziklai conjecture is true for $d=q+1$.

For $d=q=4$, the Sziklai's conjecture is false since $M_{4}(4)=14(>(4-1) 4+1)$. Indeed, $N_{4}(C)=14$ for the nonsingular curve C defined by the equation $X^{4}+Y^{4}+Z^{4}+X^{2} Y^{2}+Y^{2} Z^{2}+Z^{2} X^{2}+X^{2} Y Z+X Y^{2} Z+X Y Z^{2}=0$.

Modified Sziklai's conjecture

Unless C is a curve defined over \mathbb{F}_{4} which is projectively equivalent to

$$
\begin{equation*}
X^{4}+Y^{4}+Z^{4}+X^{2} Y^{2}+Y^{2} Z^{2}+Z^{2} X^{2}+X^{2} Y Z+X Y^{2} Z+X Y Z^{2}=0 \tag{1}
\end{equation*}
$$

over \mathbb{F}_{4}, we might have

$$
\begin{equation*}
N_{q}(C) \leq(d-1) q+1 \tag{2}
\end{equation*}
$$

The Main Theorems

Theorem 1

For $d=q$, the modified Sziklai's conjecture is true, and for each q there exists a nonsingular curve of degree q over \mathbb{F}_{q} with $(q-1) q+1$ rational points.

Now the case $d \leq q-1$ is remained.

Theorem 2

The modified Sziklai's conjecture is true for nonsingular curves of degree $d \leq q-1$. Moreover there is an example of a nonsingular curve for which equality holds in (2) if $d=q+2, q+1, q, q-$ $1, \sqrt{q}+1$ (when q is square), or 2 .

In this talk, we concentrate on a proof of Theorem 1.
For $q=2$, we have $M_{2}(2)=3$, since $M_{q}(2)=q+1$ for arbitrary q.
For $q=3, M_{3}(3)=7$ (Segre's bound and an example).
For $q=4, M_{4}(4)=14$ (Segre's bound and an example), and we already proved that any plane curve attaining this bound is projectively equivalent to the curve defined by (1) over \mathbb{F}_{4}.
Thus it remains to prove the theorem for $q \geq 5$.

Lemma 1 and 2

Lemma 1 (Homma and Kim)
If $2 \leq d \leq q+1$, then

$$
M_{q}(d) \leq(d-1) q+(q+2-d)
$$

In particular, we have $M_{q}(q) \leq(q-1) q+2$.

Lemma 2

Let C be the plane curve defined by the equation $x^{q}-x z^{q-1}+$ $y^{q-1} z-z^{q}$ over \mathbb{F}_{q} where $q \geq 2$. Then C is nonsingular and ${ }^{\#} C\left(\mathbb{F}_{q}\right)=(q-1) q+1$.

To prove Theorem 1

Thus, to prove $M_{q}(q) \leq(q-1) q+1$ it suffices to prove that there is no irreducible curve C of degree q with $N_{q}(q)=(q-1) q+2$.
Indeed, note that if the curve C of degree q is reducible and decomposed into two curves of degree d_{1} and d_{2} with $2 \leq d_{1}, d_{2} \leq q-2$ as $C=C_{1} \cup C_{2}$, then

$$
\begin{aligned}
N_{q}(C) & \leq N_{q}\left(C_{1}\right)+N_{q}\left(C_{2}\right) \\
& \leq\left(\left(d_{1}-1\right) q+\left\lfloor\frac{d_{1}}{2}\right\rfloor\right)+\left(\left(d_{2}-1\right) q+\left\lfloor\frac{d_{2}}{2}\right\rfloor\right) \\
& \leq(q-1) q+\left\lfloor\frac{q}{2}\right\rfloor-q \leq(q-1) q
\end{aligned}
$$

More notations

Let f be a homogeneous polynomial in $\mathbb{F}_{q}[x, y, z]$.
$Z(f):=\left\{(\alpha, \beta, \gamma) \in \mathbb{P}^{2}\left(\mathbb{F}_{q}\right) \mid f(\alpha, \beta, \gamma)=0\right\}$, the zero set of f
We use the following notation:
(α, β, γ) denotes a point. $[\alpha, \beta, \gamma]$ denotes the line with equation $\alpha x+\beta y+\gamma z=0$.

Note that the lines through the origin $(0,0,1)$ have the equation of the form $\alpha x+\beta y=0$, i.e., are expressed as $[\alpha, \beta, 0]$.

Lemma 3

Lemma 3

Let f be an irreducible homogeneous polynomial of degree $d=q \geq$ 5 in $\mathbb{F}_{q}[x, y, z]$. Let $\left[-\gamma_{i}, \beta_{i}, 0\right], i=1, \ldots, k+1$ with $3 \leq k \leq q$ be $k+1$ distinct lines through the origin $(0,0,1)$. Suppose that $Z(f) \supseteq\left[-\gamma_{i}, \beta_{i}, 0\right]-\left\{\left(\beta_{i}, \gamma_{i}, 0\right)\right\}$ for $i=1, \ldots, k$.
If $Z(f)$ contains $q+2-k$ points in the deleted line $\left[-\gamma_{k+1}, \beta_{k+1}, 0\right]-$ $\left\{\left(\beta_{k+1}, \gamma_{k+1}, 0\right)\right\}$, then $Z(f)$ contains all of them.

Lemma 4

Lemma 4

Let f be an irreducible homogeneous polynomial of degree $d=q \geq$ 5 in $\mathbb{F}_{q}[x, y, z]$. Let $\left[-\gamma_{i}, \beta_{i}, 0\right], i=1, \ldots, k+1$ with $2 \leq k \leq q-1$ be $k+1$ distinct lines through the origin $(0,0,1)$. Suppose that $Z(f) \supseteq\left[-\gamma_{i}, \beta_{i}, 0\right]-\{(0,0,1)\}$ for $i=1, \ldots, k$.
If $Z(f)$ contains $q+1-k$ points in the deleted line $\left[-\gamma_{k+1}, \beta_{k+1}, 0\right]-$ $\{(0,0,1)\}$, then $Z(f)$ contains all of them.

Proof of Theorem 1

Suppose that there exists an irreducible curve C of degree q with $N_{q}(C)=(q-1) q+2$. If C is singular at some \mathbb{F}_{q}-rational point P, then each line through P meets C at most $q-1$ points. Then $N_{q}(C) \leq(q-2) \cdot(q+1)+1=q^{2}-q-1$. Thus we may assume that C is nonsingular at every \mathbb{F}_{q}-rational point of C.
Let $a_{i}(0 \leq i \leq q)$ be the number of lines (i-point lines) ℓ in the projective plane such that $\# \ell \cap C\left(\mathbb{F}_{q}\right)=i$. Then we obtain the following;
(1) $\sum_{i=0}^{q} a_{i}=q^{2}+q+1$ (the number of all lines on the plane).
(2) $\sum_{i=0}^{q} i a_{i}=\left(q^{2}-q+2\right) \cdot(q+1)$ (the sum of $\# \ell \cap C\left(\mathbb{F}_{q}\right)$ for all lines on the plane).
(3) If q is even [resp. odd], then

$$
\begin{aligned}
& \qquad \sum_{i=1}^{\frac{q}{2}-1} i a_{i}+\sum_{i=\frac{q}{2}}^{q}(q-i) a_{i} \geq q^{2}-q+2 \\
& \text { [resp. } \left.\sum_{i=1}^{\frac{q-1}{2}} i a_{i}+\sum_{i=\frac{q+1}{2}}^{q}(q-i) a_{i} \geq q^{2}-q+2\right] .
\end{aligned}
$$

(the number of tangent lines at \mathbb{F}_{q}-rational points to C).
(4) $\sum_{i=2}^{q}\binom{i}{2} a_{i}=\binom{q^{2}-q+2}{2}$ (counting the number of elements in the set $\left\{(\{P, Q\},\langle P, Q\rangle) \mid P, Q \in C\left(\mathbb{F}_{q}\right)\right.$ and $\left.P \neq Q\right\}$ in two ways).

From above equations (1), (2), (3) and (4), we obtain $q a_{0}+(q-2) a_{1}+(q-4) a_{2}+\cdots \leq q-4$, which implies $a_{0}=0$ and $a_{1}=0$ since a_{i} 's are nonnegative integers.
Now we need the following lemma.

Lemma 5

At least one among $\left\{a_{i} \mid 2 \leq i \leq q-3\right\}$ is non-zero.
Proof of Lemma 5. Suppose that all of them are zero. Then the equations become
(1) $a_{q-2}+a_{q-1}+a_{q}=q^{2}+q+1$
(2) $(q-2) a_{q-2}+(q-1) a_{q-1}+q a_{q}=\left(q^{2}-q+2\right) \cdot(q+1)$
(4) $\binom{q-2}{2} a_{q-2}+\binom{q-1}{2} a_{q-1}+\binom{q}{2} a_{q}+=\binom{q^{2}-q+2}{2}$

Using the elimination method, we have $a_{q-1}=-(q-3)^{2}+1$, which is smaller than zero for $q \geq 5$, and hence it is contradiction.

Now let k be the smallest positive integer such that $a_{k}>0$. By Lemma 5, we have $2 \leq k \leq q-3$. Let ℓ_{0} be a fixed k-point line. Let $\ell_{0} \cap \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)=\left\{P_{0}, P_{1}, \ldots, P_{q}\right\}$, and $\ell_{0} \cap C\left(\mathbb{F}_{q}\right)=\left\{P_{0}, P_{1}, \ldots, P_{k-1}\right\}$. Let $S:=\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)-\ell_{0}-C\left(\mathbb{F}_{q}\right)$ then $\# S=q+k-2$. For each P_{i} with $0 \leq i \leq k-1$, let $\mathscr{S}\left(P_{i}\right)$ be the set of points $Q \in S$ such that the line $\left\langle P_{i}, Q\right\rangle$ is a q-point line. Then $\# \mathscr{S}\left(P_{i}\right) \geq q-k+2$ since the union of q lines except ℓ_{0} through P_{i} contains S.

Now we consider the case $k \geq 3$ at first. Since we have

$$
\sum_{i=0}^{k-1} \# \mathscr{S}\left(P_{i}\right) \geq k(q-k+2)>2(q+k-2)=2 \cdot \# S
$$

for $3 \leq k \leq q-3$ by simple computation, there exists a point $Q \in S$ such that $Q \in \mathscr{S}\left(P_{i_{1}}\right) \cap \mathscr{S}\left(P_{i_{2}}\right) \cap \mathscr{S}\left(P_{i_{3}}\right)$ for some distinct $i_{1}, i_{2}, i_{3} \in\{0,1, \ldots, k-1\}$. Then we have a contradiction by the following lemma which can be proved using Lemma 4.

Lemma 6

Let $Q \in \mathbb{P}^{2}\left(\mathbb{F}_{q}\right)-C\left(\mathbb{F}_{q}\right)$. If there are at least two q-point lines containing Q, then the pencil of lines through Q consists of two q-point lines and $q-1(q-2)$-point lines.

Proof. Suppose that there are exactly $r(\geq 2) q$-point lines through Q. Then by Lemma 4, each of the other lines through Q contains at most $q-r$ rational points of C. Note that $r \leq q-1$ since $a_{0}=a_{1}=0$. The total number of rational points on C is equal to $\sum_{Q \in \ell} \#\left(\ell \cap C\left(\mathbb{F}_{q}\right)\right)$. Thus

$$
q^{2}-q+2=\sum_{Q \in \ell} \#\left(\ell \cap C\left(\mathbb{F}_{q}\right)\right) \leq r q+(q-r+1)(q-r)
$$

which is equivalent to $(r-2) q \leq(r-2)(r+1)$. Since $2 \leq r \leq q-1$, that inequality implies $r=2$ or $r=q-1$. If $r=q-1$, at least one of the remaining two lines is 0-point line or 1 -point line which contradicts the fact $a_{0}=a_{1}=0$. Thus we have $r=2$ and the other $q-1$ lines are exactly $(q-2)$-point ones.

Proof of Theorem 1
000000000
The case $a_{2}=1$

Now only the case $a_{2}>0$ is remained. In fact, the computation above Lemma 5 implies $a_{2}=1$. As in the part of proof above Lemma 6, we use the same notation. The line ℓ_{0} is the unique 2-point line and $\ell_{0} \cap C\left(\mathbb{F}_{7}\right)=\left\{P_{0}, P_{1}\right\}$,
$\ell_{0} \cap\left(\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)-C\left(\mathbb{F}_{q}\right)\right)=\left\{P_{i} \mid 2 \leq i \leq q\right\}$. Then every line through P_{0} or P_{1} except ℓ_{0} is a q-point line.
Let $\ell_{1}, \ldots, \ell_{q}$ be the q lines through P_{0} except ℓ_{0}.
Let $\ell_{i} \cap\left(\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)-C\left(\mathbb{F}_{q}\right)\right)=\left\{Q_{i}\right\}$ for $i=1, \ldots, q$, then $S=\left\{Q_{1}, Q_{2}, \ldots, Q_{q}\right\}$.
By Lemma 3, no three points of S are collinear. Thus the set $S \cup\left\{P_{0}, P_{1}\right\}=\left\{P_{0}, P_{1}, Q_{1}, Q_{2}, \ldots, Q_{q}\right\}$ becomes a $(q+2)$-arc, i.e., no three points in that set are collinear. For odd q, this is contradiction since $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ can not contain r-arcs for $r \geq q+2$.
Thus we may assume q is even.

The case $a_{2}=1$ and q even

Since $S \cup\left\{P_{0}, P_{1}\right\}$ is $(q+2)$-arc, i.e., a hyperoval, every line in the plane is an 2 -secant line or 0 -secant line of it. Counting the number of points in $S \cup\left\{P_{0}, P_{1}\right\}$ implies that exactly $\frac{q}{2}$ lines through P_{q} (or any $P_{i}, 2 \leq i \leq q$) are 0 -secant lines, equivalently q-point lines. Since $q \geq 5$, in fact $q \geq 8$, we have a contradiction using Lemma 6 again.
Thus there is no irreducible plane curve C of degree q over \mathbb{F}_{q} with $N_{q}(C)=q^{2}-q+2$. By combining the fact mentioned below Lemma 2, we conclude there is no plane curve C of degree q with no $\mathbb{F}_{q^{-}}$linear component with $N_{q}(C)=q^{2}-q+2$.
Therefore $M_{q}(q)=q^{2}-q+1$ for $q \geq 5$. Thus the proof of Theorem 1 is complete.

A proof of Theorem 2

Now we may assume that C is a nonsingular plane curve over \mathbb{F}_{q} of degree d with $1<d \leq q-1$. We prove that $N_{q}(C) \leq(d-1) q+1$. A nonsingular plane curve C defined over \mathbb{F}_{q} is said to be q-Frobenius nonclassical if $F_{q}(P) \in T_{P}(C)$ for a general $\overline{\mathbb{F}}_{q}$-point P, where F_{q} is the q-th power Frobenius map and $T_{P}(C)$ is the embedded tangent line at P to C. Stöhr and Voloch showed that if C is q-Frobenius classical of degree d, then

$$
\begin{equation*}
N_{q}(C) \leq \frac{1}{2} d(d+q-1) \tag{3}
\end{equation*}
$$

and Hefez and Voloch proved that if C is q-Frobenius nonclassical of degree d, then $d \geq \sqrt{q}+1$ and

$$
\begin{equation*}
N_{q}(C)=d(q-d+2) \tag{4}
\end{equation*}
$$

Each of these two estimates for $N_{q}(C)$ is stronger than the expected bound if $2 \leq d \leq q-1$ for (3) or $d \geq \sqrt{q}+1$ for (4). In fact,

$$
(d-1) q+1-\frac{1}{2} d(d+q-1)=\frac{1}{2}(d-2)(q-d-1)
$$

and

$$
(d-1) q+1-d(q-d+2)=(d-\sqrt{q}-1)(d+\sqrt{q}-1) .
$$

References

[1] A. Hefez and J. F. Voloch, Frobenius nonclassical curves, Arch. Math. (Basel) 54 (1990) 263-273; Correction, Arch. Math. (Basel) 57 (1991) 416.
[2] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Clarendon Press, Oxford (1998).
[3] M. Homma and S. J. Kim, Nonsingular plane filling curves of minimum degree over a finite field and their automorphism groups: Supplements to a work of Tallini, Preprint 2008.
[4] M. Homma and S. J. Kim, Around Sziklai's conjecture on the number of points of a plane curve over a finite field, preprint 2008.
[5] R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987) 183-211.
[6] B. Segre, Le geometrie di Galois, Ann. Mat. Pura Appl. (4) 48 1-96 (1959).
[7] M. P. Sziklai, A bound on the number of points of a plane curve, Finite Fields Appl. 14 (2008) 41-43.
[8] K.-O. Stöhr and J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3) 52 (1986), 1-19.

