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Overview @ Extension field with degree g over a finite base field ...
@ where the degree g divides |[F*| = (P —1) ...
@ and g is prime.

Examples
e GF(P?), where P is odd e GF(101%)
e GF(193) e GF(29")

o GF((29)°) o GF((5%)°)
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What We Will Show

Why Do We Care?

@ Parallel multiplication and
reduction using discrete
Fourier transforms

@ Added benefits to DFT
form: conjugates, traces,
inverses

@ Optimal Extension Fields
for Elliptic Curve
Cryptosystems

@ Root computation (/)
using Cipolla’s algorithm



Parallel ODEF
Operations

© Tools

@ Trivial Reduction
@ Useful Rings: CRT
o DFT & Parallel Multiplication



Two Term Representation

Parallel ODEF o . o
Operations Trivial Field Reduction

Anna
Johnston

ouEIFuq #1

Trivial Reduction




Two Term Representation

Parallel ODEF o . o
Operations Trivial Field Reduction

Anna
Johnston q,
ouEIFuq #1 o= JugF
o r(x)=x9—uis
irreducible over I

Trivial Reduction




Two Term Representation

Parallel ODEF o . o
Operations Trivial Field Reduction

Anna

Johnston
oucF us £1 ) gme

 GRP)=FU/rFl T e




Two Term Representation

Parallel ODEF o . o
Operations Trivial Field Reduction

Anna

Johnston
oucF us £1 ) gme

 GRP)=FU/rFl T e

2q—1

Z vixk € F[x]

k=0
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vex© mod H hi(x)
k=0 j



The CRT in Action: Multiplication

Parallel ODEF

gt (5x +3)(2x + 1) mod (x* — 1)

Useful Rings:
CRT



The CRT in Action: Multiplication

Parallel ODEF

gt (5x +3)(2x + 1) mod (x* — 1)

mod(x — 1)
mod(x + 1)




CRT in Action: Multiplication

Parallel ODEF

Operations (5X —+ 3)(2X + 1) mod (X — 1)

(5x+3)(2x+1) = mod(x — 1)
mod(x + 1)




The CRT in Action: Multiplication

Parallel ODEF

Operations (5X —+ 3)(2X + 1) mod (X — 1)

(5x+3)(2x+1) =(8)(3) mod(x — 1)




The CRT in Action: Multiplication

Parallel ODEF

Operations (5X + 3)(2X + 1) mod (X2 — 1)

(5x +3)(2x + 1)
(5x +3)(2x + 1)

(8)(
(-2

3) mod(x — 1)
)(—=1) mod(x+1)




The CRT in Action: Multiplication

Parallel ODEF

Operations (5X + 3)(2X + 1) mod (X2 — 1)

(5x+3)(2x+1) =(8)(3) mod(x — 1)
(5x+3)2x+1) =(-2)(—-1) mod(x+1)

|

{24(x +1)((x+1)"tmod (x — 1)) 4+ ... straight sum




The CRT in Action: Multiplication

Parallel ODEF

Operations (5X + 3)(2X + 1) mod (X2 — 1)

{24(x +1)27 ) +... straight sum




The CRT in Action: Multiplication

Parallel ODEF

Operations (5X + 3)(2X + 1) mod (X2 — 1)

(5x+3)(2x+1) =(8)(3) mod(x — 1)
(5x+3)2x+1) =(-2)(—-1) mod(x+1)

|

{24(X +1)(27Y) + 2(x — 1)(—=271) straight sum




The CRT in Action: Multiplication

Parallel ODEF

Operations (5X + 3)(2X + 1) mod (X2 — 1)

(5x+3)(2x+1) =(8)(3) mod(x — 1)
(5x+3)2x+1) =(-2)(—-1) mod(x+1)

24(x +1)(271) +2(x — 1)(=271) straight sum
24 iterative




The CRT in Action: Multiplication

Parallel ODEF

Operations (5X + 3)(2X + 1) mod (X2 — 1)

(5x+3)(2x+1) =(8)(3) mod(x — 1)
(5x+3)2x+1) =(-2)(—-1) mod(x+1)

24(x +1)(271) + 2(x — 1)(—271) straight sum
24+ (x — 1) ((—2)7 (2 — 24)) iterative




The CRT in Action: Multiplication

Parallel ODEF

Operations (5X + 3)(2X + 1) mod (X2 — 1)

(5x+3)(2x+1) =(8)(3) mod(x — 1)
(5x+3)2x+1) =(-2)(—-1) mod(x+1)

24(x +1)(271) + 2(x — 1)(—271) straight sum
24+ (x — 1) ((—2)7 (2 — 24)) iterative

|

11x + 13 mod (x% — 1)
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[0mod (x* — 1), (x®+2)(x*> — 1) = (x* +2)2 mod (x> — 3)]

|

(x*+2)24 (x> =3) (—271 (0 — (x +2)2))

|

x?(3x +2) — (3x +2)

|

x3+2=3x+2mod (x? —3)
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P DFT Modulus: | (x?9 —1) = iiBI (x - hk)

Discrete Fourier Transform Multiplication
DFT & Parle e f(x),g(x) € F[x]/(x? — u)F[x] have degree less than q.

e f(x)g(x) has degree less than 2q

@ Multiplication in 2g DFT loses no information

f(x)g(x) mod (x> — 1) = f(x)g(x) mod (x9 — v)

Reduction??
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@ Reduction modulo r(x) = (x9 — u)

o a € F[x], deg(a) < 2g;

o Use the CRT with moduli r(x) and (x9 — 1);

e Compute [0 mod (x?7 — 1), a(u? — 1) mod r(x)];
Reduction in e Divide by (x?9 — 1).

DFT Form v

Cla) = Oé(u2fl)+(xqfu) ((Xq _ u)il(f(u2 —1))a mod (X2q . 1))
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o a € F[x], deg(a) < 2g;
o Use the CRT with moduli r(x) and (x9 — 1);
e Compute [0 mod (x?7 — 1), a(u? — 1) mod r(x)];
o Divide by (x?9 —1).

Reduction in
DFT Form

C(a) = a(u®=1)+(xI—u) (x* — u) " }(—(v® — 1))a mod (x*7 — 1))

—(v? — 1) = x?9 — u? mod (x?9 — 1)

= (x9 — u)(x9 4 uv)
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a € F[x], deg(a) < 2g;

Use the CRT with moduli r(x) and (x?9 — 1);
Compute [0 mod (x?9 — 1), a(u?® — 1) mod r(x)];

Divide by (x?9 — 1).

Reduction in
DFT Form

C(a) = a(u® = 1) + (x7 — u) ((x7 + u)a mod (x*7 — 1))

—(v? = 1)(x9 — u)"t = (x9 + u) mod (x*9 — 1)
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Reduction in

DFT Form M= (Xq + u)a mod (X2q _

Notice
® Deg (a(u® —1)) < 2q e Deg (I < 2q

-1 .
r:XqZJq:O CJ'XJ + ...
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DFT Form

Computational Reduction
o Compute I = (x9 + u)a mod (x39 — 1)
1 :
@ Subtract off Zﬁ:o dix!
o Divide by x9 mod (x?9 — 1)
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o = [aj mod (x — /}j)]FO

Computational Reduction — In Parallel

2g—-1
Reduction in e ComPUte I_ : rO = [gOJ]Jzo Where
DFT Form goj = ((fl)J + U) aj
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o = [aj mod (x — hf')]?igl
Computational Reduction — In Parallel
Reduction in ° ComPUte r - ro = [gO,J]Jzi()_l Where govj = ((_l)J + U) aj

DFT Form

@ Subtract off Zf:_ol dix!
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2g—-1
Jj=0

Computational Reduction — In Parallel

@ Compute I =T = [go}j]fioil where go; = ((—1) + u) 3
@ Fori=0to g—1:
Reduction in ° Compute di — (2q)71 22261 glj

DFT Form J
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2g—-1
Jj=0

Computational Reduction — In Parallel

@ Compute ' =T = [g07j1121071 where go; = ((—1) + u) 3
@ Fori=0toq—1:
Sl o Compute d; = (29)"* 335" &i;

2g—1

o xliy1 = [gij — dil;Zy
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Computational Reduction — In Parallel

@ Compute ' =T = [go,j]fzal where gpj = ((*1)1. + “) aj
@ Fori=0toqg—1:
Reduction in o Compute di = (267)_1 22181 gi,j

DFT Form 2g—1 J
o xIip1 = [gij — di]iZ,
o Divide by x9 mod (x?7 — 1)
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Computational Reduction — In Parallel

@ Compute [ =T = [go,j]fio_l where go; = ((—1) + u) a;
@ Fori=0toqg—1:

Reduction in ° ComPUte d = (2q) quo ' g’xJ
DFT Form

o xlip1=gij— d]2q '

o Multiply by x~* = [p?97]%
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2g—1
j=0

Computational Reduction — In Parallel

@ Compute [ =T = [go,j]fio_l where go; = ((—1) + u) a;
@ Fori=0toqg—1:

Reduction in o Compute d; = (2q)~ quo ! gij
DFT Form o Xl_i+1 _ [g’.J d]2q 1

o Multiply by x~ [h2q—f]2"0 !

_ . 2g—1
o [y = [g,+1 J]2q ' [th J (gi«,j - df)L‘Zo
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2g—1
j=0

Computational Reduction — In Parallel

@ Compute [ =T = [go,j]fio_l where go; = ((—1) + u) 3
@ Fori=0toqg—1:

Reduction in o Compute d; = (2q)71 Zfial gij

DFT Form o il = 50— di]fial

o Multiply by x~1 = [h2q—f]fjo‘1

_ o 2g—1
o = [g,'+1,j]fiol = [h2q S di)} !

j=0

g = a mod r(x)
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o = [d2q—1 qu_Q qu_3 d2 dl do]

/!
of =[dy dy ... dy ds db]

onjugates ‘ ‘
Traces \/

o = d2g-1)+2) d2g-2)+2j - - daj2 doj1 dyj]
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A few definitions
Let:

Q
I
-

a= anj mod r(x)

[
|l
o

Conjugates &
Traces
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P=1
h=u?2 = x

A few definitions

Let:
g—1
= 5
a= ) ajx) mod r(x)
Jj=0
2g—1
Conjugates & = |:dk mOd (X - hk)
Traces k=0
qg—1
_ ik
dk = ath
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Conjugates

Let

qg—1
a= ajx’ mod r(x)

Jj=0 =

g 20—1 of = Z aijj mod r(x)
Conjae = [dk mod (x = K], 2, j=0

q—1

dk = ajh’k
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Let
qg—1
a= ajx’ mod r(x)
j=0
k\129—1
Con . = [di mod (x — H)], 7,
q—1
dk = ajh’k

Q

aQ -

-

= O

o

= h? mod r(x)

|
—

Conjugates

aix™ mod r(x)

ajh2jxj mod r(x)
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= h? mod r(x)

Conjugates
Let
g—1 q—1
a=)» ax mod r(x) of = ajx™ mod r(x)
j=0 ‘=
2g—1
Conjugstes & = [dk mod (X — hk)] kio g—1 .
races g1 = aj/.'j(2+k) mod (X _ hk)
di = E =0

J
j=0 = [dk+2 mod 2q]/2<q:_01
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Using the norm
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Simple Inverse Computation
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Using the norm

[d] ™t = N(a)™ H (i 125"




Summary

Parallel ODEF
Operations

@ Order dividing extension fields: GF(PY) where q|P — 1

@ Reviewed techniques for parallel extension field
multiplication (DFT)

@ Described new field reduction technique within the DFT
form

@ Described field traits exposed in DFT form

Summary
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