Arcs in Galois ring planes invariant under a Singer cycle
 Joint work with Michael Kiermaier

Thomas Honold
Institute of Information and Communication Engineering Zhejiang University

Fq9
University College Dublin
12.7.-18.7. 2009

Arcs in Galois ring planes invariant under a Singer cycle

Galois Ring

Planes
Singer's Theorem

Outline

(1) Galois Ring Planes

(2) Singer's Theorem

(3) Arcs Invariant under a Singer Cycle

Galois Rings

The uniform case $m=2$
Let $q=p^{r}>1$ be a prime power.
Galois rings of length 2
$\mathbb{G}_{q}:=\mathbb{Z}_{p^{2}}[X] /(h)$, where $h \in \mathbb{Z}_{p^{2}}[X]$ is monic of degree r and irreducible $\bmod p$.
The polynomial h (whose particular choice does not matter) may be chosen as a divisor of $X^{q-1}-1$.

Basic properties of \mathbb{G}_{q}

- $\mathbb{G}_{q} \supset(p) \supset\{0\}$ are the ideals of \mathbb{G}_{q};
- $\mathbb{G}_{q} /(p) \cong \mathbb{F}_{q}$ (as rings) and $(p) \cong \mathbb{F}_{q}$ as \mathbb{F}_{q}-spaces;
- $\left|\mathbb{G}_{q}\right|=q^{2}$;
- $\operatorname{Char}\left(\mathbb{G}_{q}\right)=p^{2}$.

The last property characterizes \mathbb{G}_{q} among the chain rings of length 2 with residue field \mathbb{F}_{q}. (The other r such rings have characteristic p.)

Galois Ring Planes

The projective Hjelmslev plane over \mathbb{G}_{q}

$\operatorname{PHG}\left(2, \mathbb{G}_{q}\right):=(\mathcal{P}, \mathcal{L}, \subseteq)$, where \mathcal{P} ("points") and \mathcal{L} ("lines") denote the sets of free rank 1 (resp., free rank 2) submodules of \mathbb{G}_{q}^{3} (or any other free \mathbb{G}_{q}-module of rank 3).
Since \mathbb{G}_{q} is commutative, we need not distinguish between left and right projective Hjelmslev planes over \mathbb{G}_{q}.
Basic properties of $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$

- $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$ is a symmetric divisible design with parameters $\left(m, n, k, \lambda_{1}, \lambda_{2}\right)=\left(q^{2}+q+1, q^{2}, q^{2}+q, q, 1\right)$.
- Lines intersect point classes in either 0 or q points, and dually points are on either 0 or q lines of each line class.

Thus $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$ is an example of a uniform projective Hjelmslev plane of order q.

Galois Ring Planes (Cont'd)

$$
\overline{\mathcal{P}}=\{[p] ; p \in \mathcal{P}\}, \quad \bar{L}=\{[L] ; L \in L\}
$$

Structural properties of $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$

- $(\overline{\mathcal{P}}, \bar{L}, \bar{l}) \cong \mathrm{PG}\left(2, \mathbb{F}_{q}\right)$
- $[p] \cong \mathrm{AG}\left(2, \mathbb{F}_{q}\right)$
- $[L] \cong \mathrm{AG}\left(2, \mathbb{F}_{q}\right)^{*} \cong \mathrm{PG}\left(2, \mathbb{F}_{q}\right) \backslash\{p\}$

Nonempty point sets of the form $L \cap[p]$ are called line segments. All line segments have size q.
The lines of $[p]$, as well as the points of $[L]$ are line segments.

Singer's Classical Theorem

Theorem (Singer 1938)

$\mathrm{PG}\left(2, \mathbb{F}_{q}\right)$ admits a cyclic collineation group G acting regularly (i.e. sharply transitive) on the points (and lines) of $\mathrm{PG}\left(2, \mathbb{F}_{q}\right)$.
This leads to a simplified representation $\operatorname{PG}\left(2, \mathbb{F}_{q}\right) \cong\left(\mathcal{P}^{\prime}, L^{\prime}, \in\right)$ with

$$
\mathcal{P}^{\prime}:=G \cong \mathbb{Z}_{q^{2}+q+1}, \quad \mathcal{L}^{\prime}:=\left\{D+i ; i \in \mathbb{Z}_{q^{2}+q+1}\right\}
$$

where $D:=\left\{g \in S ; g\left(p_{0}\right) \in L_{0}\right\}$ for some fixed point-line pair $\left(p_{0}, L_{0}\right) \in \mathcal{P} \times \mathcal{L}$.

Proof.

Represent the ambient space \mathbb{F}_{q}^{3} as $\mathbb{F}_{q^{3}}$ (the cubic extension field of \mathbb{F}_{q}). Choose a primitive element β of $\mathbb{F}_{q^{3}}$ and consider the collineation σ induced by $\mathbb{F}_{q^{3}} \rightarrow \mathbb{F}_{q^{3}}, x \mapsto \beta x$ (which has the same order $q^{2}+q+1$ as the quotient group $\left.\mathbb{F}_{q^{3}}^{\times} / \mathbb{F}_{q}^{\times}\right)$. Let $G=\langle\sigma\rangle$.

Singer's Theorem for PHG(2, $\left.\mathbb{G}_{q}\right)$

Theorem (Hale-Jungnickel 1978)
$\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$ admits a regular collineation group
$G \cong \mathbb{Z}_{q^{2}+q+1} \times\left(\mathbb{F}_{q},+\right) \times\left(\mathbb{F}_{q},+\right)$.
Proof.
Represent the ambient space \mathbb{G}_{q}^{3} as $\mathbb{G}_{q^{3}}$ (the cubic Galois extension of \mathbb{G}_{q}). Here we use the fact that $\mathbb{G}_{q^{3}}$ is a free \mathbb{G}_{q}-module of rank 3.

- $\mathbb{G}_{q} x \in \mathcal{P}$ iff $x \in \mathbb{G}_{q^{3}} \backslash p \mathbb{G}_{q^{3}}=\mathbb{G}_{q^{3}}^{\times}$
- $\mathbb{G}_{q} x=\mathbb{G}_{q} y$ iff $y \in \mathbb{G}_{q}^{\times} x$

This implies that

$$
G:=\mathbb{G}_{q^{3}}^{\times} / \mathbb{G}_{q}^{\times} \cong \mathbb{Z}_{q^{2}+q+1} \times\left(\mathbb{F}_{q},+\right) \times\left(\mathbb{F}_{q},+\right)
$$

acts regularly on \mathcal{P}.

Coordinate-Free Representation

In the classical case the trace $\operatorname{Tr}=\operatorname{Tr}_{\mathbb{F}_{q^{3}}} / \mathbb{F}_{q}$ serves this purpose via the trace form

$$
\mathbb{F}_{q^{3}} \times \mathbb{F}_{q^{3}} \rightarrow \mathbb{F}_{q}, \quad(x, y) \mapsto \operatorname{Tr}(x y)
$$

and the associated polarity

$$
\mathcal{P} \rightarrow \mathcal{L}, \quad \mathbb{F}_{q} x \mapsto\left(\mathbb{F}_{q} x\right)^{\perp}=\left\{y \in \mathbb{F}_{q^{3}} ; \operatorname{Tr}(x y)=0\right\}
$$

Using Singer's Theorem this simplifies to

$$
\begin{aligned}
p_{i} & =\mathbb{F}_{q} \beta^{i}=\sigma^{i}\left(p_{0}\right), \\
L_{i} & =\left\{x \in \mathbb{F}_{q^{3}} ; \operatorname{Tr}\left(\beta^{-i} x\right)=0\right\}=\sigma^{i}\left(L_{0}\right), \\
p_{i} \in L_{j} \Longleftrightarrow i-j \in D & =\left\{i \in \mathbb{Z}_{q^{2}+q+1} ; p_{i} \in L_{0}\right\} \\
& =\left\{i \in \mathbb{Z}_{q^{2}+q+1} ; \operatorname{Tr}\left(\beta^{i}\right)=0\right\} .
\end{aligned}
$$

Coordinate-Free Representation

(Cont'd)

Teichmüller coordinates

$$
\begin{aligned}
\mathrm{T}_{q}^{*} & =\left\{x \in \mathbb{G}_{q}^{*} ; x^{q-1}=1\right\} \\
\mathrm{T}_{q} & =\left\{x \in \mathbb{G}_{q} ; x^{q}=x\right\}=\mathrm{T}_{q}^{\times} \cup\{0\}
\end{aligned}
$$

(Teichmüller set)
Every $x \in \mathbb{G}_{q}$ has a unique representation $x=x_{0}+p x_{1}$ with $x_{0}, x_{1} \in \mathrm{~T}_{q}$.

Trace of the extension $\mathbb{G}_{q^{3}} / \mathbb{G}_{q}$
The trace $\operatorname{Tr}=\operatorname{Tr}_{\mathbb{G}_{q^{3}} / \mathbb{G}_{q}}: \mathbb{G}_{q^{3}} \rightarrow \mathbb{G}_{q}$ is defined by

$$
\operatorname{Tr}\left(x_{0}+p x_{1}\right)=\sum_{i=0}^{2}\left(x_{0}^{q^{i}}+p x_{1}^{q^{i}}\right) .
$$

Tr is \mathbb{G}_{q}-linear, onto, and $\operatorname{ker}(\mathrm{Tr})$ contains no nonzero ideal of $\mathbb{G}_{q^{3}}$.

Coordinate-Free Representation

(Cont'd)

Theorem

(i) For every line L of $\operatorname{PHG}\left(\mathbb{G}_{q^{3}}\right)$ there exists a unit $\alpha \in \mathbb{G}_{q^{3}}^{\times}$such that

$$
L=\left\{\mathbb{G}_{q} x \in \mathscr{P} ; \operatorname{Tr}(\alpha x)=0\right\} .
$$

(ii) The equations $\operatorname{Tr}(\alpha x)=0$ and $\operatorname{Tr}(\beta x)=0\left(\alpha, \beta \in \mathbb{G}_{q^{3}}^{\times}\right)$ determine the same line iff $\alpha=u \beta$ for some unit $u \in \mathbb{G}_{q}^{\times}$.

Sketch of proof.
(i) Consider the $\mathbb{G}_{q^{-}}$-module $M=\operatorname{Hom}_{\mathbb{G}_{q}}\left(\mathbb{G}_{q^{3}}, \mathbb{G}_{q}\right)$ (the dual of the $\mathbb{G}_{q^{-}}$-module $\mathbb{G}_{q^{3}}$).
M is also a module over $\mathbb{G}_{q^{3}}$ relative to the action $(\phi a)(x):=\phi(a x)\left(\phi \in \operatorname{Hom}_{\mathbb{G}_{q}}\left(\mathbb{G}_{q^{3}}, \mathbb{G}_{q}\right), a, x \in \mathbb{G}_{q^{3}}\right)$.
Show that M is freely generated by Tr as a $\mathbb{G}_{q^{3}}$-module.

Proof cont'd.

(ii) Since Tr is \mathbb{G}_{q}-linear, $\operatorname{Tr}(\alpha x)=0$ and $\operatorname{Tr}(\beta x)=0$ determine the same line whenever $\alpha \mathbb{G}_{q}^{\times}=\beta \mathbb{G}_{q}^{\times}$.
"Only if" then follows from $|\mathcal{P}|=q^{2}\left(q^{2}+q+1\right)=\left|\mathbb{G}_{q^{3}}^{\times} / \mathbb{G}_{q}^{\times}\right|$.

Remark

The trace form $(x, y) \mapsto \operatorname{Tr}(x y)$ has an associated orthogonal polarity $\tau: \mathcal{P} \cup \mathcal{L} \rightarrow \mathcal{P} \cup \mathcal{L}$, sending a free rank 1 or rank 2 submodule U of the \mathbb{G}_{q}-module $\mathbb{G}_{q^{3}}$ to $U^{\perp}:=\left\{x \in \mathbb{G}_{q^{3}} ; \operatorname{Tr}(x y)=0\right.$ for all $\left.y \in U\right\}$. For any point $\mathbb{G}_{q} \alpha \in \mathscr{P}$ we have $\tau\left(\mathbb{G}_{q} \alpha\right)=L_{\alpha}$, where $L_{\alpha} \in \mathcal{L}$ denotes the line with equation $\operatorname{Tr}(\alpha x)=0$.

Collineations of PHG $\left(2, \mathbb{G}_{q}\right)$

Fundamental Theorem of Projective Hjelmslev Geometry
AutPHG $\left(2, \mathbb{G}_{q}\right) \cong \mathrm{P} \Gamma \mathrm{L}\left(3, \mathbb{G}_{q}\right)$, a group of order
$r \cdot q^{11}\left(q^{3}-1\right)\left(q^{2}-1\right)$.
Projectivities of $\mathrm{PHG}\left(2, \mathbb{G}_{q}\right)$
$\operatorname{PGL}\left(3, \mathbb{G}_{q}\right)=\operatorname{GL}\left(3, \mathbb{G}_{q}\right) / \mathbb{G}_{q}^{\times}$, a group of order
$q^{11}\left(q^{3}-1\right)\left(q^{2}-1\right)$.
Notes

- Collineations preserve the partitions $\overline{\mathcal{P}}, \overline{\mathcal{L}}$ of \mathcal{P} resp. \mathcal{L} into neighbour classes, as well as the sets of line segments resp. dual line segments.
- PGL $\left(3, \mathbb{G}_{q}\right)$ acts regularly on ordered quadrangles of $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$, i. e. sets of 4 points which form a quadrangle in the quotient plane $\mathrm{PG}\left(2, \mathbb{F}_{q}\right)$

Multisets in PHG(2, $\left.\mathbb{G}_{q}\right)$ Arising from a Singer Cycle

Singer Cycles of PHG $\left(2, \mathbb{G}_{q}\right)$

A collineation σ of $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$ is called a Singer cycle, if σ has order $q^{2}+q+1$ and permutes the point classes $[p] \in \overline{\mathcal{P}}$ in one cycle.

Example

If $T_{q^{3}}^{\times}=\langle\eta\rangle$, then $\sigma: \mathcal{P} \rightarrow \mathcal{P}, \mathbb{G}_{q} x \mapsto \mathbb{G}_{q} \eta x$ (and dually for lines) defines a Singer cycle of $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)=\operatorname{PHG}\left(\mathbb{G}_{q^{3}}\right)$.

Proposition

The Singer cycles generate a single conjugacy class of subgroups of $\operatorname{PGL}\left(3, \mathbb{G}_{q}\right)$.
Hence we need only consider a fixed Singer cycle σ.

Multisets Arising from a Singer cycle (Cont'd)

We are interested in multisets (of points) in $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$ invariant under a Singer cycle σ.
Observation
A σ-invariant multiset \mathfrak{K} in $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$ is complete determined by its restriction \mathfrak{k} to the point class $\left[\mathbb{G}_{q} 1\right] \cong A G\left(2, \mathbb{F}_{q}\right)$.

Definition

We say that \mathfrak{K} is induced by \mathfrak{k}.

Proposition

Suppose that the multisets $\mathfrak{K}_{1}, \mathfrak{K}_{2}$ in $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$ are induced by multisets \mathfrak{k}_{1}, resp. \mathfrak{k}_{2} in [$\left.\mathbb{G}_{q} 1\right]$.
(i) If \mathfrak{K}_{1} and \mathfrak{K}_{2} are equivalent then $\mathfrak{k}_{1}, \mathfrak{k}_{2}$ are equivalent.
(ii) If $\mathfrak{k}_{1}, \mathfrak{k}_{2}$ are translation-equivalent (i. e. there exists a translation τ of $\left[\mathbb{G}_{q} 1\right]$ such that $\left.\mathfrak{k}_{2}=\mathfrak{k}_{1} \circ \tau\right)$, then \mathfrak{K}_{1} and \mathfrak{K}_{2} are equivalent.

σ-Invariant Arcs

First recall the following

Definition

A multiset \mathfrak{K} in $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$ is said to be a (k, n)-arc if
(i) $|\mathfrak{K}|:=\mathfrak{K}(\mathcal{P}):=\sum_{p \in \mathcal{P}} \mathfrak{K}(p)=k$, and
(ii) $\mathfrak{K}(L):=\sum_{p \in L} \mathfrak{K}(p) \leq n$ for every line $L \in \mathcal{L}$.

Notes and questions

- Our goal is to find maximal arcs (i.e. those which maximize k for a given n) or, more generally, complete arcs (i.e. those which cannot be extended without increasing n).
- Restricting attention to σ-invariant arcs simplifies the construction problem. (However, we may loose something.)
- Can we compute the line multiplicities $\mathfrak{K}(L)$ from data about the inducing multiset \mathfrak{k} ? (The answer is a somewhat restricted "yes".)
- Which multisets in $\mathrm{AG}\left(2, \mathbb{F}_{q}\right)$ give rise to good arcs?

The Teichmüller Set

The simplest example of a σ-invariant multiset

Definition

The multiset in $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$ induced by $\left\{\mathbb{G}_{q} 1\right\}$ is called Teichmüller set and denoted by \mathfrak{T}.
We have $\mathfrak{T}=\left\{\mathbb{G}_{q} \eta^{i} ; 0 \leq i \leq q^{2}+q\right\}$.
Up to equivalence \mathfrak{T} is just the multiset induced by a single point in $\left[\mathbb{G}_{q} 1\right] \cong A G\left(2, \mathbb{F}_{q}\right)$.
Theorem (H.-Landjev, 2005)
\mathfrak{T} is a maximal $\left(q^{2}+q+1,2\right)$-arc ("hyperoval") iff q is even.

Sketch of proof.

σ is transitive on line classes
\Longrightarrow It suffices to check line multiplicities in one particular line class, say $[\operatorname{Tr}(x)=0]$. This class consists of the lines $\operatorname{Tr}((1+p v) x)=0$, where $v \in\left(\mathbb{F}_{q^{3}},+\right) /\left(\mathbb{F}_{q},+\right)$.
A direct computation using the isomorphism $\mathbb{G}_{q} \cong \mathrm{~W}_{2}\left(\mathbb{F}_{q}\right)$ (Witt vectors of length 2 over \mathbb{F}_{q}) yields the result.

Viewing Everything Within $A G\left(2, \mathbb{F}_{q}\right)$

Consider again fixed line class, say $[L]=[\operatorname{Tr}(x)=0]$.
Define $I \subset\left\{0,1, \ldots, q^{2}+q\right\}$ by

$$
I:=\left\{i ; \operatorname{Tr}\left(\eta^{\prime}\right) \equiv 0(\bmod p)\right\}=\left\{i ;\left[\mathbb{G}_{q} \eta^{i}\right] \text { is on }[L]\right\} .
$$

σ^{i} induces an isomorphism $\left[\mathbb{G}_{q} 1\right] \cong\left[\mathbb{G}_{q} \eta^{i}\right]$ of affine planes
$\Longrightarrow \sigma^{i}$ maps a unique parallel class of lines in $\left[\mathbb{G}_{q} 1\right]$ onto the parallel class of lines in $\left[\mathbb{G}_{q} \eta^{\prime}\right]$ having direction $[L]$.
Observations

- Putting these maps together gives a bijection 1 from the set of lines of $\left[\mathbb{G}_{q} 1\right] \cong A G\left(2, \mathbb{F}_{q}\right)$ to the set of line segments incident with $[L]$ (points of $[L]$).
- Under 1 every line $L^{\prime} \in[L]$ corresponds to a set of $q+1$ lines of $A G\left(2, \mathbb{F}_{q}\right)$ having different directions. The q^{2} sets $\mathfrak{r}^{-1}\left(L^{\prime}\right)$, $L^{\prime} \in[L]$, form a single translation equivalence class.
- Knowing one such set $\mathrm{r}^{-1}(L)$ enables us to compute the spectrum of \mathfrak{k} w.r.t. to the whole class, and in turn the spectrum of \mathfrak{K}.

Observations cont'd

- The spectrum of \mathfrak{T} w.r.t. the lines in [L] equals the spectrum of $\mathfrak{i}^{-1}(L)$ w.r.t. to the points in $\left[\mathbb{G}_{q} 1\right]$.

Example

We give a computer-free proof of the existence of a (maximal) $(39,5)$-arc \mathfrak{K} in the plane over $\mathbb{G}_{3}=\mathbb{Z}_{9}$.
$|\mathfrak{K}|=3 \cdot 13=3 \times \#$ points of PG($2, \mathbb{F}_{3}$)
suggests inducing \mathfrak{K} from a triangle in $\mathrm{AG}\left(2, \mathbb{F}_{3}\right)$.
An easy hand computation (omitted) reveals that \mathfrak{T} is a (proper) 3 -arc. Hence $r^{-1}(L)$ consists of 3 lines L_{1}, L_{2}, L_{3} in $\operatorname{AG}\left(2, \mathbb{F}_{3}\right)$ passing through a common point p and another line L_{4} with $p \notin L_{4}$ and $L_{4} \nmid L_{i}$ for $1 \leq i \leq 3$.

There exists a triangle \mathfrak{k} in $\mathrm{AG}\left(2, \mathbb{F}_{3}\right)$ meeting $\mathrm{t}^{-1}(L)$ in at most 5 points. The multiset in $\operatorname{PHG}\left(2, \mathbb{Z}_{9}\right)$ induced by \mathfrak{k} is the required $(39,5)$-arc.

Generalization

The (39,5)-arc meets every line in either 2 or 5 points.
Theorem
Let q be an odd prime. There exist $\left(\frac{1}{2}\left(q^{4}-q\right), \frac{1}{2}\left(q^{2}+q-2\right)\right)$-arcs in $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$ with only two line multiplicities $\frac{1}{2}\left(q^{2} \pm q-2\right)$.

Proof.
Use Singer induction from so-called triangle sets in $\mathrm{AG}\left(2, \mathbb{F}_{q}\right)$.

Triangle Sets

Definition

Suppose q is prime. A set of points of $A G\left(2, \mathbb{F}_{q}\right)$ is called a triangle set if it is affinely equivalent to

$$
\Delta:=\left\{(x, y) \in \mathbb{F}_{q}^{2} ; x+y<q-1\right\}
$$

Example

A triangle set in $\mathrm{AG}\left(2, \mathbb{F}_{5}\right)$.

Theorem
(i) The characteristic function of a triangle set in $\mathrm{AG}\left(2, \mathbb{F}_{q}\right)$ is constant on q-2 parallel classes of lines and takes the values $0,1, \ldots, q-1$ exactly once on each of the remaining 3 parallel classes of lines.
(ii) If S is a set of points of $A G\left(2, \mathbb{F}_{q}\right)$ with the foregoing properties, then q is necessarily prime and S is a triangle set.

Observations

- The mod- q-value t of the sum of the multiplicities of any 3 lines in the 3 exceptional directions depends only on the translation equivalence class.
- The sum is 2-valued precisely for $t=q-2$ (Example on the right) and $t=q-1$ (3 concurrent lines).

Proof cont'd.

Induct from a triangle set \mathfrak{k} such that the 3 exceptional lines of $\mathrm{l}^{-1}(L)$ have $t=q-2$ (i.e. multiplicities $q-2$ and $2 q-2$).

Remark

Sets of points whose characteristic function is constant on all but three parallel classes of lines exist also in the affine planes $\mathrm{AG}\left(2, \mathbb{F}_{q}\right), q=2^{r}$, and give rise to arcs with two line multiplicities in the corresponding Hjelmslev planes $\operatorname{PHG}\left(2, \mathbb{G}_{q}\right)$.

