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Galois Rings
The uniform case m = 2

Let q = pr > 1 be a prime power.

Galois rings of length 2

Gq := Zp2 [X ]/(h), where h ∈ Zp2 [X ] is monic of degree r and
irreducible mod p.

The polynomial h (whose particular choice does not matter) may
be chosen as a divisor of X q−1 −1.

Basic properties of Gq

• Gq ⊃ (p) ⊃ {0} are the ideals of Gq;

• Gq/(p) ∼= Fq (as rings) and (p) ∼= Fq as Fq-spaces;

• |Gq| = q2;

• Char(Gq) = p2.

The last property characterizes Gq among the chain rings of
length 2 with residue field Fq. (The other r such rings have
characteristic p.)
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Galois Ring Planes

The projective Hjelmslev plane over Gq

PHG(2,Gq) := (P ,L ,⊆), where P (“points”) and L (“lines”)
denote the sets of free rank 1 (resp., free rank 2) submodules of
G3

q (or any other free Gq-module of rank 3).

Since Gq is commutative, we need not distinguish between left
and right projective Hjelmslev planes over Gq.

Basic properties of PHG(2,Gq)

• PHG(2,Gq) is a symmetric divisible design with parameters
(m,n,k ,λ1,λ2) = (q2 + q + 1,q2,q2 + q,q,1).

• Lines intersect point classes in either 0 or q points, and dually
points are on either 0 or q lines of each line class.

Thus PHG(2,Gq) is an example of a uniform projective Hjelmslev
plane of order q.
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Galois Ring Planes (Cont’d)

P =
{

[p];p ∈ P
}

, L =
{

[L];L ∈ L
}

Structural properties of PHG(2,Gq)

• (P ,L , I) ∼= PG(2,Fq)

• [p] ∼= AG(2,Fq)

• [L] ∼= AG(2,Fq)
∗ ∼= PG(2,Fq)\{p}

Nonempty point sets of the form L∩ [p] are called line segments.
All line segments have size q.
The lines of [p], as well as the points of [L] are line segments.
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Singer’s Classical Theorem

Theorem (Singer 1938)

PG(2,Fq) admits a cyclic collineation group G acting regularly (i.e.
sharply transitive) on the points (and lines) of PG(2,Fq).

This leads to a simplified representation PG(2,Fq) ∼= (P ′,L ′,∈)
with

P
′ := G ∼= Zq2+q+1, L

′ := {D + i; i ∈ Zq2+q+1},

where D := {g ∈ S;g(p0) ∈ L0} for some fixed point-line pair
(p0,L0) ∈ P ×L .

Proof.
Represent the ambient space F3

q as Fq3 (the cubic extension field
of Fq). Choose a primitive element β of Fq3 and consider the
collineation σ induced by Fq3 → Fq3 , x 7→ βx (which has the same
order q2 + q + 1 as the quotient group F×

q3/F×
q ). Let G = 〈σ〉.



Arcs in Galois
ring planes

invariant under
a Singer cycle

Galois Ring
Planes

Singer’s
Theorem

Arcs Invariant
under a Singer
Cycle

Singer’s Theorem for PHG(2,Gq)

Theorem (Hale-Jungnickel 1978)

PHG(2,Gq) admits a regular collineation group
G ∼= Zq2+q+1 × (Fq,+)× (Fq,+).

Proof.
Represent the ambient space G3

q as Gq3 (the cubic Galois
extension of Gq). Here we use the fact that Gq3 is a free
Gq-module of rank 3.

• Gqx ∈ P iff x ∈ Gq3 \pGq3 = G×
q3

• Gqx = Gqy iff y ∈ G×
q x

This implies that

G := G×
q3/G×

q
∼= Zq2+q+1 × (Fq,+)× (Fq,+)

acts regularly on P .
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Coordinate-Free Representation

In the classical case the trace Tr = TrFq3/Fq
serves this purpose

via the trace form

Fq3 ×Fq3 → Fq, (x ,y) 7→ Tr(xy)

and the associated polarity

P → L , Fqx 7→ (Fqx)⊥ =
{

y ∈ Fq3 ;Tr(xy) = 0
}

.

Using Singer’s Theorem this simplifies to

pi = Fqβi = σi(p0),

Li =
{

x ∈ Fq3 ;Tr(β−ix) = 0
}

= σi(L0),

pi ∈ Lj ⇐⇒ i − j ∈ D =
{

i ∈ Zq2+q+1;pi ∈ L0

}

=
{

i ∈ Zq2+q+1;Tr(βi) = 0
}

.
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Coordinate-Free Representation
(Cont’d)

Teichmüller coordinates

T∗
q = {x ∈ G∗

q;x
q−1 = 1} (Teichmüller group)

Tq = {x ∈ Gq;x
q = x} = T×

q ∪{0} (Teichmüller set)

Every x ∈ Gq has a unique representation x = x0 + px1 with
x0,x1 ∈ Tq.

Trace of the extension Gq3/Gq

The trace Tr = TrGq3/Gq
: Gq3 → Gq is defined by

Tr(x0 + px1) =
2

∑
i=0

(

xqi

0 + pxqi

1

)

.

Tr is Gq-linear, onto, and ker(Tr) contains no nonzero ideal of Gq3 .
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Coordinate-Free Representation
(Cont’d)

Theorem
(i) For every line L of PHG(Gq3) there exists a unit α ∈ G×

q3 such
that

L =
{

Gqx ∈ P ;Tr(αx) = 0
}

.

(ii) The equations Tr(αx) = 0 and Tr(βx) = 0 (α,β ∈ G×
q3)

determine the same line iff α = uβ for some unit u ∈ G×
q .

Sketch of proof.

(i) Consider the Gq-module M = HomGq(Gq3 ,Gq) (the dual of the
Gq-module Gq3).

M is also a module over Gq3 relative to the action
(φa)(x) := φ(ax) (φ ∈ HomGq(Gq3 ,Gq), a,x ∈ Gq3).

Show that M is freely generated by Tr as a Gq3-module.
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Proof cont’d.
(ii) Since Tr is Gq-linear, Tr(αx) = 0 and Tr(βx) = 0 determine
the same line whenever αG×

q = βG×
q .

“Only if” then follows from |P | = q2(q2 + q + 1) = |G×
q3/G×

q |.

Remark
The trace form (x ,y) 7→ Tr(xy) has an associated orthogonal
polarity τ : P ∪L → P ∪L , sending a free rank 1 or rank 2
submodule U of the Gq-module Gq3 to
U⊥ :=

{

x ∈ Gq3 ;Tr(xy) = 0 for all y ∈ U
}

. For any point
Gqα ∈ P we have τ(Gqα) = Lα, where Lα ∈ L denotes the line
with equation Tr(αx) = 0.
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Collineations of PHG(2,Gq)

Fundamental Theorem of Projective Hjelmslev Geometry

AutPHG(2,Gq) ∼= PΓL(3,Gq), a group of order
r ·q11(q3 −1)(q2 −1).

Projectivities of PHG(2,Gq)

PGL(3,Gq) = GL(3,Gq)/G×
q , a group of order

q11(q3 −1)(q2 −1).

Notes

• Collineations preserve the partitions P , L of P resp. L into
neighbour classes, as well as the sets of line segments resp.
dual line segments.

• PGL(3,Gq) acts regularly on ordered quadrangles of
PHG(2,Gq), i. e. sets of 4 points which form a quadrangle in
the quotient plane PG(2,Fq)
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Multisets in PHG(2,Gq) Arising
from a Singer Cycle

Singer Cycles of PHG(2,Gq)

A collineation σ of PHG(2,Gq) is called a Singer cycle, if σ has
order q2 + q + 1 and permutes the point classes [p] ∈ P in one
cycle.

Example
If T×

q3 = 〈η〉, then σ : P → P , Gqx 7→ Gqηx (and dually for lines)

defines a Singer cycle of PHG(2,Gq) = PHG(Gq3).

Proposition
The Singer cycles generate a single conjugacy class of subgroups
of PGL(3,Gq).

Hence we need only consider a fixed Singer cycle σ.
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Multisets Arising from a Singer
cycle (Cont’d)

We are interested in multisets (of points) in PHG(2,Gq) invariant
under a Singer cycle σ.

Observation
A σ-invariant multiset K in PHG(2,Gq) is complete determined by
its restriction k to the point class [Gq1] ∼= AG(2,Fq).

Definition
We say that K is induced by k.

Proposition
Suppose that the multisets K1, K2 in PHG(2,Gq) are induced by
multisets k1, resp. k2 in [Gq1].

(i) If K1 and K2 are equivalent then k1, k2 are equivalent.

(ii) If k1, k2 are translation-equivalent (i. e. there exists a
translation τ of [Gq1] such that k2 = k1 ◦ τ), then K1 and K2

are equivalent.
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σ-Invariant Arcs
First recall the following

Definition
A multiset K in PHG(2,Gq) is said to be a (k ,n)-arc if

(i) |K| := K(P ) := ∑p∈P K(p) = k , and

(ii) K(L) := ∑p∈L K(p) ≤ n for every line L ∈ L .

Notes and questions

• Our goal is to find maximal arcs (i.e. those which maximize k
for a given n) or, more generally,complete arcs (i.e. those
which cannot be extended without increasing n).

• Restricting attention to σ-invariant arcs simplifies the
construction problem. (However, we may loose something.)

• Can we compute the line multiplicities K(L) from data about
the inducing multiset k ? (The answer is a somewhat
restricted “yes”.)

• Which multisets in AG(2,Fq) give rise to good arcs?
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The Teichmüller Set
The simplest example of a σ-invariant multiset

Definition
The multiset in PHG(2,Gq) induced by {Gq1} is called
Teichmüller set and denoted by T.

We have T = {Gqηi ;0 ≤ i ≤ q2 + q}.
Up to equivalence T is just the multiset induced by a single point in
[Gq1] ∼= AG(2,Fq).

Theorem (H.-Landjev, 2005)
T is a maximal (q2 + q + 1,2)-arc (“hyperoval”) iff q is even.

Sketch of proof.
σ is transitive on line classes
=⇒ It suffices to check line multiplicities in one particular line
class, say [Tr(x) = 0]. This class consists of the lines
Tr

(

(1+ pv)x
)

= 0, where v ∈ (Fq3 ,+)/(Fq ,+).
A direct computation using the isomorphism Gq

∼= W2(Fq) (Witt
vectors of length 2 over Fq) yields the result.
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Viewing Everything Within AG(2,Fq)
Consider again fixed line class, say [L] = [Tr(x) = 0].
Define I ⊂ {0,1, . . . ,q2 + q} by

I :=
{

i;Tr(ηi) ≡ 0 (mod p)
}

=
{

i; [Gqηi ] is on [L]
}

.

σi induces an isomorphism [Gq1] ∼= [Gqηi ] of affine planes
=⇒ σi maps a unique parallel class of lines in [Gq1] onto the
parallel class of lines in [Gqηi ] having direction [L].

Observations
• Putting these maps together gives a bijection ι from the set of

lines of [Gq1] ∼= AG(2,Fq) to the set of line segments
incident with [L] (points of [L]).

• Under ι every line L′ ∈ [L] corresponds to a set of q + 1 lines
of AG(2,Fq) having different directions. The q2 sets ι−1(L′),
L′ ∈ [L], form a single translation equivalence class.

• Knowing one such set ι−1(L) enables us to compute the
spectrum of k w.r.t. to the whole class, and in turn the
spectrum of K.



Arcs in Galois
ring planes

invariant under
a Singer cycle

Galois Ring
Planes

Singer’s
Theorem

Arcs Invariant
under a Singer
Cycle

Observations cont’d

• The spectrum of T w.r.t. the lines in [L] equals the spectrum
of ι−1(L) w.r.t. to the points in [Gq1].

Example
We give a computer-free proof of the existence of a (maximal)
(39,5)-arc K in the plane over G3 = Z9.

|K| = 3 ·13 = 3×#points of PG(2,F3)
suggests inducing K from a triangle in AG(2,F3).

An easy hand computation (omitted) reveals that T is a (proper)
3-arc. Hence ι−1(L) consists of 3 lines L1,L2,L3 in AG(2,F3)
passing through a common point p and another line L4 with p /∈ L4

and L4 ∦ Li for 1 ≤ i ≤ 3.

b b b

b b b

b b b

b b

b

There exists a triangle k in AG(2,F3)
meeting ι−1(L) in at most 5 points. The
multiset in PHG(2,Z9) induced by k is the
required (39,5)-arc.
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Generalization

The (39,5)-arc meets every line in either 2 or 5 points.

Theorem
Let q be an odd prime. There exist

(

1
2(q4 −q), 1

2(q2 +q−2)
)

-arcs
in PHG(2,Gq) with only two line multiplicities 1

2(q2 ±q−2).

Proof.
Use Singer induction from so-called triangle sets in AG(2,Fq).
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Triangle Sets

Definition
Suppose q is prime. A set of points of
AG(2,Fq) is called a triangle set if it is
affinely equivalent to

∆ :=
{

(x ,y) ∈ F2
q;x + y < q−1

}

.

Example
A triangle set in AG(2,F5).

b

b b

b b b

b b b b

b b b b b

b b b b

b b b

b b

b

Theorem

(i) The characteristic function of a triangle set in AG(2,Fq) is
constant on q−2 parallel classes of lines and takes the
values 0,1, . . . ,q −1 exactly once on each of the remaining 3
parallel classes of lines.

(ii) If S is a set of points of AG(2,Fq) with the foregoing
properties, then q is necessarily prime and S is a triangle set.
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Observations

• The mod-q-value t of the sum of the
multiplicities of any 3 lines in the 3
exceptional directions depends only on
the translation equivalence class.

• The sum is 2-valued precisely for
t = q −2 (Example on the right) and
t = q −1 (3 concurrent lines).

Example
A triangle set in
AG(2,F5).

b

b b

b b b

b b b b

b b b b b

b b b b

b b b

b b

b

Proof cont’d.
Induct from a triangle set k such that the 3 exceptional lines of
ι−1(L) have t = q−2 (i.e. multiplicities q−2 and 2q −2).

Remark
Sets of points whose characteristic function is constant on all but
three parallel classes of lines exist also in the affine planes
AG(2,Fq), q = 2r , and give rise to arcs with two line multiplicities
in the corresponding Hjelmslev planes PHG(2,Gq).
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