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Galois Rings

The uniform case m = 2
Let g =p" > 1 be a prime power.
Galois rings of length 2
Gq := Zy2[X]/(h), where h € Z,2[X] is monic of degree r and
irreducible mod p.
The polynomial h (whose particular choice does not matter) may
be chosen as a divisor of X471 — 1.

Basic properties of Gq

e Gq D (p) D {0} are the ideals of Gg;
e Gq/(p) =2 Fy (as rings) and (p) = Fy as Fy-spaces;
* |Gql =a?
o Char(Gq) = p?.
The last property characterizes G4 among the chain rings of

length 2 with residue field IFq. (The other r such rings have
characteristic p.)



Arcs in Galois
ring planes
invariant under
a Singer cycle

Galois Ring
Planes

Galois Ring Planes

The projective Hjelmslev plane over G

PHG(2,Gq) := (P, L,C), where P (“points”) and L (“lines”)
denote the sets of free rank 1 (resp., free rank 2) submodules of
Gg (or any other free G4-module of rank 3).

Since G is commutative, we need not distinguish between left
and right projective Hjelmslev planes over G

Basic properties of PHG(2,Gq)

° PHG(Z,Gq) is a symmetric divisible design with parameters
(m.n,k,A1,A2) = (a* +a+1,9%,9°+9,q,1).

e Lines intersect point classes in either O or g points, and dually
points are on either 0 or g lines of each line class.

Thus PHG(2, G4) is an example of a uniform projective Hjelmslev
plane of order q.
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Galois Ring Planes (Cont'd)

P={llipe?} L={liLeL}

Structural properties of PHG(2, Gq)

Nonempty point sets of the form LN [p] are called line segments.
All line segments have size q.
The lines of [p], as well as the points of [L] are line segments.
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Theorem (Singer 1938)
Sigers PG(2,IFq) admits a cyclic collineation group G acting regularly (i.e.
Theorem sharply transitive) on the points (and lines) of PG(2,Fy).
This leads to a simplified representation PG(2,F,) = (?', L/, €)
with

where D := {g € S;d(po) € Lo} for some fixed point-line pair
(po,Lo) EPxL.

Proof.

Represent the ambient space Fg as s (the cubic extension field
of IF4). Choose a primitive element 3 of F4s and consider the
collineation 0 induced by Fys — Fgs, x +— Bx (which has the same
order g +q -+ 1 as the quotient group Fis/Fg). LetG=(0). O
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Singer’s Theorem for PHG(2,Gq)

Theorem (Hale-Jungnickel 1978)
PHG(2,Gq) admits a regular collineation group

Proof.

Represent the ambient space Gg as Ggs (the cubic Galois
extension of G4). Here we use the fact that Gs is a free
Gg-module of rank 3.

o Ggx € Piffx € an\qus = G;;
* Ggx =Gyy iffy € Ggx
This implies that
G:= ;<3/(G’>< = Zqz-l—t1+1 X (qu+) X (Fq7+)

acts regularly on P.
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Coordinate-Free Representation

In the classical case the trace Tr = TrFq3 /F, Serves this purpose
via the trace form

Fos xFgs — Fg, (x,y) = Tr(xy)
and the associated polarity
P— L, Foxr (Fox)" ={y € Fg; Tr(xy) = 0}.
Using Singer’s Theorem this simplifies to

_FQBi :oi(po)v
Li = {x € Fg; Tr(B~'x) = 0} = 0'(Lo),
piEL < i—jeD={i€Zgyqr1:Pi eLo}
={i € Zgo1qs1;: Tr(B') =0}.
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Coordinate-Free Representation

(Contd)
Teichmdiller coordinates
={xeG;xit=1} (Teichmiiller group)
Tq={x €Gq;x9=x} =T5 U{0} (Teichmiller set)

Every x € G4 has a unique representation x = Xg -+ px; with
Xo,X1 € Tq.

Trace of the extension Gz /Gq

The trace Tr = Tqu3 /Gy Ggz — Gy is defined by

2 ) )
Tr(xo+px1) = z (xé1 +pr>.

Tris Gq-linear, onto, and ker(Tr) contains no nonzero ideal of Gs.
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Coordinate-Free Representation
(Contd)

Theorem
(i) For every line L of PHG(Gyz) there exists a unit a € G; such
that

L={Gqx € ?;Tr(ax) =0}.
(i) The equations Tr(ox) = 0 and Tr(Bx) =0 (a,B € G ;)
determine the same line iff a = uf3 for some unitu € G .

Sketch of proof.

(i) Consider the G4-module M = Homg, (G4s, Gq) (the dual of the
Gq-module Ggs).

M is also a module over G relative to the action

(@a)(x) := @(ax) (@€ Homg, (Gg3,Gyq), a,x € Ggs).

Show that M is freely generated by Tr as a G4z-module.
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Proof cont'd.
- (i) Since Tris Gq4-linear, Tr(ax) = 0 and Tr(Bx) = 0 determine
Themem the same line whenever aG, =BGy .

“Only if” then follows from |P| = g*(q® +q+1) =[Gy /Gy | O

Remark

The trace form (x,y) +— Tr(xy) has an associated orthogonal
polarity T: PU L — PU L, sending a free rank 1 or rank 2
submodule U of the G4-module G to

Ut :={x € Gg;Tr(xy) =0forally € U}. For any point

Gq0 € P we have T(G40) = Ly, Where Ly € L denotes the line
with equation Tr(ax) = 0.
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Fundamental Theorem of Projective Hjelmslev Geometry
_ AutPHG(2,G4) = PI'L(3,Gq), a group of order
Singer's 11 3 . 2 .
Theorem r-q (q 1)(q 1)

Projectivities of PHG(2, Gq)
PGL(3,Gq) =GL(3,Gq)/G¢, agroup of order
a1 (g® — 1)(g? — 1).

Notes

e Collineations preserve the partitions P, L of P resp. L into
neighbour classes, as well as the sets of line segments resp.
dual line segments.

e PGL(3,Gq) acts regularly on ordered quadrangles of
PHG(2,Gyq), i. e. sets of 4 points which form a quadrangle in
the quotient plane PG(2,F)
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Multisets in PHG(2, Gq) Arising
from a Singer Cycle

Singer Cycles of PHG(2,Gyq)

A collineation 0 of PHG(2,Gy) is called a Singer cycle, if 0 has
order 2 +q + 1 and permutes the point classes [p] € P in one
cycle.

Example
If T; =(n),then a: P — P, Ggx — GqNx (and dually for lines)
defines a Singer cycle of PHG(2,Gq) = PHG(Ggs).

Proposition

The Singer cycles generate a single conjugacy class of subgroups
of PGL(3,Gq).

Hence we need only consider a fixed Singer cycle G.
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Multisets Arising from a Singer
cycle (Cont'd)
We are interested in multisets (of points) in PHG(2, Gq) invariant
under a Singer cycle 0.
Observation
A o-invariant multiset & in PHG(2, G4) is complete determined by
its restriction £ to the point class [G41] =2 AG(2,F).
Definition
We say that £ is induced by €.
Proposition
Suppose that the multisets K1, £, in PHG(2,G4) are induced by
multisets £, resp. & in [Gq1].
(i) If R, and K, are equivalent then ¢, £, are equivalent.
(i) If ¢, & are translation-equivalent (i. e. there exists a

translation T of [G41] such that £, = £; oT), then £&; and &,
are equivalent.
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O-Invariant Arcs
First recall the following
Definition
A multiset 8 in PHG(2,Gy) is said to be a (k,n)-arc if
() 18] = &() = Tpeo A(p) =k, and
(i) R(L) :=YpeL R(p) <nforeverylinelL € L.

Notes and questions

e Our goal is to find maximal arcs (i.e. those which maximize k
for a given n) or, more generally,complete arcs (i.e. those
which cannot be extended without increasing n).

e Restricting attention to o-invariant arcs simplifies the
construction problem. (However, we may loose something.)

e Can we compute the line multiplicities &(L) from data about
the inducing multiset £? (The answer is a somewhat
restricted “yes”.)

e Which multisets in AG(2,F) give rise to good arcs?
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The Teichmiller Set

The simplest example of a O-invariant multiset
Definition
The multiset in PHG(2,G4) induced by {G41} is called
Teichmuller set and denoted by <.
We have T = {G4n';0 <i <qg?+q}.
Up to equivalence ¥ is just the multiset induced by a single point in
[Gq1] = AG(2,Fy).
Theorem (H.-Landjev, 2005)
T is amaximal (9% +q+ 1,2)-arc (“hyperoval”) iff q is even.

Sketch of proof.

O is transitive on line classes

— It suffices to check line multiplicities in one particular line
class, say [Tr(x) = 0]. This class consists of the lines
Tr((1+pv)x) =0, where v € (Fge,+)/(Fq,+).

A direct computation using the isomorphism G4 = W, (Fq) (Witt
vectors of length 2 over [Fy) yields the result. O
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Viewing Everything Within AG(2,F)
Consider again fixed line class, say [L] = [Tr(x) = 0].
Define | C {0,1,...,q°+q} by
:={i;Tr(n') =0 (mod p)} = {i; [Gqn'] is on [L]}.
o' induces an isomorphism [G41] 2 [G4n'] of affine planes
= 0' maps a unique parallel class of lines in [G41] onto the
parallel class of lines in [G4Nn'] having direction [L].

Observations

e Putting these maps together gives a bijection | from the set of
lines of [G41] =2 AG(2,F) to the set of line segments
incident with [L] (points of [L]).

e Under | every line L’ € [L] corresponds to a set of g + 1 lines
of AG(2,Fq) having different directions. The g2 sets | ~*(L’),
L’ € [L], form a single translation equivalence class.

e Knowing one such set 1~ %(L) enables us to compute the
spectrum of € w.r.t. to the whole class, and in turn the
spectrum of R.
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Observations cont'd

e The spectrum of T w.r.t. the lines in [L] equals the spectrum
of 171(L) w.r.t. to the points in [G41].

Example

We give a computer-free proof of the existence of a (maximal)
(39,5)-arc R in the plane over G3 = Zo.

|| = 3-13 = 3 x #points of PG(2,[F3)
suggests inducing K from a triangle in AG(2,F3).

An easy hand computation (omitted) reveals that ¥ is a (proper)
3-arc. Hence 1 ~1(L) consists of 3 lines Ly, Ly, L3 in AG(2,FF3)
passing through a common point p and another line Ly with p ¢ Ly
and Lg Jf L for1 <i <3.

° There exists a triangle ¢ in AG(2,F3)
meeting | ~*(L) in at most 5 points. The
multiset in PHG(2,Zg) induced by ¢ is the
required (39,5)-arc.
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Generalization

The (39,5)-arc meets every line in either 2 or 5 points.

Theorem
Let g be an odd prime. There exist (3(q* —q), 3(a*+q —2))-arcs
in PHG(2,Gq) with only two line multiplicities 1(g® +q — 2).

Proof.
Use Singer induction from so-called triangle sets in AG(2,Fy).



Arcs in Galois
ring planes

invariant under Trlang |e Sets

a Singer cycle

Definition Example

Suppose q is prime. A set of points of A triangle set in AG(2,Fs).
AG(2,Fy) is called a triangle set if it is

Arcs Invariant ] ] e 6 6 o o
gnyfilegaSmger affinely equivalent to o o °
e o 0 0 o

A:={(x,y) eFax+y <q—1}.
e o 0 0 o
e o 0 0 o

Theorem

(i) The characteristic function of a triangle set in AG(Z,IFq) is
constant on q — 2 parallel classes of lines and takes the
values 0,1,...,q — 1 exactly once on each of the remaining 3
parallel classes of lines.

(i) If S is a set of points of AG(2,F,) with the foregoing
properties, then q is necessarily prime and S is a triangle set.
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Observations Example
A triangle set in

e The mod-g-value t of the sum of the
AG(2,F5s).

multiplicities of any 3 lines in the 3
exceptional directions depends only on
the translation equivalence class.

e The sum is 2-valued precisely for
t = q — 2 (Example on the right) and
t =q — 1 (3 concurrent lines).

Proof cont'd.
Induct from a triangle set £ such that the 3 exceptional lines of

171(L) have t = q — 2 (i.e. multiplicities g — 2 and 2q — 2).

Remark
Sets of points whose characteristic function is constant on all but

three parallel classes of lines exist also in the affine planes
AG(2,Fy), g =2, and give rise to arcs with two line multiplicities
in the corresponding Hjelmslev planes PHG(2, Gq).

O
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