Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

Arcs in Galois ring planes invariant under a Singer cycle Joint work with Michael Kiermaier

Thomas Honold

Institute of Information and Communication Engineering Zhejiang University

> Fq9 University College Dublin 12.7.–18.7.2009

1 Galois Ring Planes

2 Singer's Theorem

3 Arcs Invariant under a Singer Cycle

Outline

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

Galois Rings

The uniform case m = 2

Let $q = p^r > 1$ be a prime power.

Galois rings of length 2

 $\mathbb{G}_q := \mathbb{Z}_{p^2}[X]/(h)$, where $h \in \mathbb{Z}_{p^2}[X]$ is monic of degree r and irreducible mod p.

The polynomial *h* (whose particular choice does not matter) may be chosen as a divisor of $X^{q-1} - 1$.

Basic properties of \mathbb{G}_q

- $\mathbb{G}_q \supset (p) \supset \{0\}$ are the ideals of \mathbb{G}_q ;
- $\mathbb{G}_q/(p)\cong\mathbb{F}_q$ (as rings) and $(p)\cong\mathbb{F}_q$ as \mathbb{F}_q -spaces;
- $|\mathbb{G}_q| = q^2;$
- Char(\mathbb{G}_q) = p^2 .

The last property characterizes \mathbb{G}_q among the chain rings of length 2 with residue field \mathbb{F}_q . (The other *r* such rings have characteristic *p*.)

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

The projective Hjelmslev plane over \mathbb{G}_q

 $\mathsf{PHG}(2, \mathbb{G}_q) := (\mathcal{P}, \mathcal{L}, \subseteq)$, where \mathcal{P} ("points") and \mathcal{L} ("lines") denote the sets of free rank 1 (resp., free rank 2) submodules of \mathbb{G}_q^3 (or any other free \mathbb{G}_q -module of rank 3).

Galois Ring Planes

Since \mathbb{G}_q is commutative, we need not distinguish between left and right projective Hjelmslev planes over \mathbb{G}_q .

Basic properties of $PHG(2, \mathbb{G}_q)$

- PHG(2, \mathbb{G}_q) is a symmetric divisible design with parameters $(m, n, k, \lambda_1, \lambda_2) = (q^2 + q + 1, q^2, q^2 + q, q, 1).$
- Lines intersect point classes in either 0 or *q* points, and dually points are on either 0 or *q* lines of each line class.

Thus $PHG(2, \mathbb{G}_q)$ is an example of a *uniform* projective Hjelmslev plane of order q.

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singe Cycle

Galois Ring Planes (Cont'd)

$$\overline{\mathcal{P}} = \big\{ [p]; p \in \mathcal{P} \big\}, \quad \overline{\mathcal{L}} = \big\{ [\mathcal{L}]; \mathcal{L} \in \mathcal{L} \big\}$$

Structural properties of $PHG(2, \mathbb{G}_q)$

- $(\overline{\mathcal{P}}, \overline{\mathcal{L}}, \overline{l}) \cong \mathsf{PG}(2, \mathbb{F}_q)$
- $[p] \cong AG(2, \mathbb{F}_q)$
- $[L] \cong \operatorname{AG}(2, \mathbb{F}_q)^* \cong \operatorname{PG}(2, \mathbb{F}_q) \setminus \{p\}$

Nonempty point sets of the form $L \cap [p]$ are called *line segments*. All line segments have size q.

The lines of [p], as well as the points of [L] are line segments.

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

Singer's Classical Theorem

Theorem (Singer 1938)

 $PG(2, \mathbb{F}_q)$ admits a cyclic collineation group G acting regularly (i.e. sharply transitive) on the points (and lines) of $PG(2, \mathbb{F}_q)$.

This leads to a simplified representation $\mathsf{PG}(2,\mathbb{F}_q)\cong(\mathscr{P}',\mathcal{L}',\in)$ with

$$\mathcal{P}' := \mathbf{G} \cong \mathbb{Z}_{q^2+q+1}, \quad \mathcal{L}' := \{\mathbf{D}+\mathbf{i}; \mathbf{i} \in \mathbb{Z}_{q^2+q+1}\},$$

where $D := \{g \in S; g(p_0) \in L_0\}$ for some fixed point-line pair $(p_0, L_0) \in \mathcal{P} \times \mathcal{L}$.

Proof.

Represent the ambient space \mathbb{F}_q^3 as \mathbb{F}_{q^3} (the cubic extension field of \mathbb{F}_q). Choose a primitive element β of \mathbb{F}_{q^3} and consider the collineation σ induced by $\mathbb{F}_{q^3} \to \mathbb{F}_{q^3}$, $x \mapsto \beta x$ (which has the same order $q^2 + q + 1$ as the quotient group $\mathbb{F}_{q^3}^{\times}/\mathbb{F}_q^{\times}$). Let $G = \langle \sigma \rangle$. \Box

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singe Cycle

Singer's Theorem for $PHG(2, \mathbb{G}_q)$

Theorem (Hale-Jungnickel 1978)

 $\mathsf{PHG}(2,\mathbb{G}_q)$ admits a regular collineation group $G \cong \mathbb{Z}_{q^2+q+1} \times (\mathbb{F}_q,+) \times (\mathbb{F}_q,+).$

Proof.

Represent the ambient space \mathbb{G}_q^3 as \mathbb{G}_{q^3} (the cubic Galois extension of \mathbb{G}_q). Here we use the fact that \mathbb{G}_{q^3} is a free \mathbb{G}_q -module of rank 3.

• $\mathbb{G}_q x \in \mathcal{P}$ iff $x \in \mathbb{G}_{q^3} \setminus p\mathbb{G}_{q^3} = \mathbb{G}_{q^3}^{\times}$

•
$$\mathbb{G}_q x = \mathbb{G}_q y$$
 iff $y \in \mathbb{G}_q^{\times} x$

This implies that

$$\boldsymbol{G} := \mathbb{G}_{\boldsymbol{q}^3}^{\times}/\mathbb{G}_{\boldsymbol{q}}^{\times} \cong \mathbb{Z}_{\boldsymbol{q}^2+\boldsymbol{q}+1} \times (\mathbb{F}_{\boldsymbol{q}},+) \times (\mathbb{F}_{\boldsymbol{q}},+)$$

acts regularly on \mathcal{P} .

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singe Cycle

Coordinate-Free Representation

In the classical case the trace $Tr=Tr_{\mathbb{F}_{q^3}/\mathbb{F}_q}$ serves this purpose via the trace form

$$\mathbb{F}_{q^3} \times \mathbb{F}_{q^3} \to \mathbb{F}_q, \quad (x, y) \mapsto \operatorname{Tr}(xy)$$

and the associated polarity

$$\mathscr{P} \to \mathscr{L}, \quad \mathbb{F}_q \mathbf{x} \mapsto (\mathbb{F}_q \mathbf{x})^{\perp} = \big\{ \mathbf{y} \in \mathbb{F}_{q^3}; \operatorname{Tr}(\mathbf{x}\mathbf{y}) = \mathbf{0} \big\}.$$

Using Singer's Theorem this simplifies to

$$p_{i} = \mathbb{F}_{q}\beta^{i} = \sigma^{i}(p_{0}),$$

$$L_{i} = \left\{ x \in \mathbb{F}_{q^{3}}; \operatorname{Tr}(\beta^{-i}x) = 0 \right\} = \sigma^{i}(L_{0}),$$

$$p_{i} \in L_{j} \iff i - j \in D = \left\{ i \in \mathbb{Z}_{q^{2}+q+1}; p_{i} \in L_{0} \right\}$$

$$= \left\{ i \in \mathbb{Z}_{q^{2}+q+1}; \operatorname{Tr}(\beta^{i}) = 0 \right\}.$$

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singe Cycle

Coordinate-Free Representation (Cont'd)

Teichmüller coordinates

$$\begin{split} T_q^* &= \{ x \in \mathbb{G}_q^*; x^{q-1} = 1 \} \\ T_q &= \{ x \in \mathbb{G}_q; x^q = x \} = T_q^{\times} \cup \{ 0 \} \end{split} \tag{Teichmüller group} \end{split}$$

Every $x \in \mathbb{G}_q$ has a unique representation $x = x_0 + px_1$ with $x_0, x_1 \in T_q$.

Trace of the extension $\mathbb{G}_{q^3}/\mathbb{G}_q$

The trace $Tr=Tr_{\mathbb{G}_{q^3}/\mathbb{G}_q}\colon\mathbb{G}_{q^3}\to\mathbb{G}_q$ is defined by

$$\operatorname{Tr}(x_0 + \rho x_1) = \sum_{i=0}^{2} \left(x_0^{q^i} + \rho x_1^{q^i} \right).$$

Tr is \mathbb{G}_q -linear, onto, and ker(Tr) contains no nonzero ideal of \mathbb{G}_{q^3} .

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singe Cycle

Coordinate-Free Representation (Cont'd)

Theorem

(i) For every line L of PHG(\mathbb{G}_{q^3}) there exists a unit $\alpha \in \mathbb{G}_{q^3}^{\times}$ such that

$$\mathbf{L} = \big\{ \mathbb{G}_q \mathbf{x} \in \mathcal{P}; \operatorname{Tr}(\alpha \mathbf{x}) = \mathbf{0} \big\}.$$

(ii) The equations $\operatorname{Tr}(\alpha x) = 0$ and $\operatorname{Tr}(\beta x) = 0$ ($\alpha, \beta \in \mathbb{G}_{q^3}^{\times}$) determine the same line iff $\alpha = u\beta$ for some unit $u \in \mathbb{G}_q^{\times}$.

Sketch of proof.

(i) Consider the \mathbb{G}_q -module $M = \operatorname{Hom}_{\mathbb{G}_q}(\mathbb{G}_{q^3}, \mathbb{G}_q)$ (the dual of the \mathbb{G}_q -module \mathbb{G}_{q^3}).

M is also a module over \mathbb{G}_{q^3} relative to the action $(\phi a)(x) := \phi(ax) \ (\phi \in \operatorname{Hom}_{\mathbb{G}_q}(\mathbb{G}_{q^3}, \mathbb{G}_q), \ a, x \in \mathbb{G}_{q^3}).$

Show that *M* is freely generated by Tr as a \mathbb{G}_{q^3} -module.

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

Proof cont'd.

(ii) Since Tr is \mathbb{G}_q -linear, $\operatorname{Tr}(\alpha x) = 0$ and $\operatorname{Tr}(\beta x) = 0$ determine the same line whenever $\alpha \mathbb{G}_q^{\times} = \beta \mathbb{G}_q^{\times}$.

"Only if" then follows from $|\mathcal{P}| = q^2(q^2 + q + 1) = |\mathbb{G}_{q^3}^{\times}/\mathbb{G}_q^{\times}|$.

Remark

The trace form $(x, y) \mapsto \operatorname{Tr}(xy)$ has an associated orthogonal polarity $\tau \colon \mathscr{P} \cup \mathscr{L} \to \mathscr{P} \cup \mathscr{L}$, sending a free rank 1 or rank 2 submodule U of the \mathbb{G}_q -module \mathbb{G}_{q^3} to $U^{\perp} := \{x \in \mathbb{G}_{q^3}; \operatorname{Tr}(xy) = 0 \text{ for all } y \in U\}$. For any point $\mathbb{G}_q \alpha \in \mathscr{P}$ we have $\tau(\mathbb{G}_q \alpha) = L_\alpha$, where $L_\alpha \in \mathscr{L}$ denotes the line with equation $\operatorname{Tr}(\alpha x) = 0$.

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singe Cycle

Collineations of $PHG(2, \mathbb{G}_q)$

Fundamental Theorem of Projective Hjelmslev Geometry AutPHG $(2, \mathbb{G}_q) \cong P\Gamma L(3, \mathbb{G}_q)$, a group of order $r \cdot q^{11}(q^3 - 1)(q^2 - 1)$.

Projectivities of PHG(2, \mathbb{G}_q) PGL(3, \mathbb{G}_q) = GL(3, \mathbb{G}_q)/ \mathbb{G}_q^{\times} , a group of order $q^{11}(q^3-1)(q^2-1)$.

Notes

- Collineations preserve the partitions \$\overline{P}\$, \$\overline{L}\$ of \$P\$ resp. \$\mathcal{L}\$ into neighbour classes, as well as the sets of line segments resp. dual line segments.
- PGL(3, 𝔅_q) acts regularly on ordered quadrangles of PHG(2, 𝔅_q), i. e. sets of 4 points which form a quadrangle in the quotient plane PG(2, 𝔅_q)

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

Multisets in $PHG(2, \mathbb{G}_q)$ Arising from a Singer Cycle

Singer Cycles of $PHG(2, \mathbb{G}_q)$

A collineation σ of PHG(2, \mathbb{G}_q) is called a *Singer cycle*, if σ has order $q^2 + q + 1$ and permutes the point classes $[p] \in \overline{\mathcal{P}}$ in one cycle.

Example

If $T_{q^3}^{\times} = \langle \eta \rangle$, then $\sigma \colon \mathscr{P} \to \mathscr{P}$, $\mathbb{G}_q \mathbf{x} \mapsto \mathbb{G}_q \eta \mathbf{x}$ (and dually for lines) defines a Singer cycle of PHG(2, $\mathbb{G}_q) = PHG(\mathbb{G}_{q^3})$.

Proposition

The Singer cycles generate a single conjugacy class of subgroups of PGL(3, \mathbb{G}_q).

Hence we need only consider a fixed Singer cycle $\boldsymbol{\sigma}.$

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

Multisets Arising from a Singer cycle (Cont'd)

We are interested in multisets (of points) in $PHG(2, \mathbb{G}_q)$ invariant under a Singer cycle σ .

Observation

A σ -invariant multiset \mathfrak{K} in PHG $(2, \mathbb{G}_q)$ is complete determined by its restriction \mathfrak{k} to the point class $[\mathbb{G}_q 1] \cong AG(2, \mathbb{F}_q)$.

Definition

We say that \Re is induced by \mathfrak{k} .

Proposition

Suppose that the multisets \Re_1 , \Re_2 in PHG(2, \mathbb{G}_q) are induced by multisets \mathfrak{k}_1 , resp. \mathfrak{k}_2 in [\mathbb{G}_q 1].

- (i) If \mathfrak{K}_1 and \mathfrak{K}_2 are equivalent then \mathfrak{k}_1 , \mathfrak{k}_2 are equivalent.
- (ii) If \mathfrak{k}_1 , \mathfrak{k}_2 are translation-equivalent (i. e. there exists a translation τ of $[\mathbb{G}_q 1]$ such that $\mathfrak{k}_2 = \mathfrak{k}_1 \circ \tau$), then \mathfrak{K}_1 and \mathfrak{K}_2 are equivalent.

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

σ-Invariant Arcs

First recall the following

Definition

A multiset \mathfrak{K} in PHG(2, \mathbb{G}_q) is said to be a (k, n)-arc if

(i)
$$|\mathfrak{K}| := \mathfrak{K}(\mathscr{P}) := \sum_{\rho \in \mathscr{P}} \mathfrak{K}(\rho) = k$$
, and

(ii) $\mathfrak{K}(L) := \sum_{p \in L} \mathfrak{K}(p) \le n$ for every line $L \in \mathcal{L}$.

Notes and questions

- Our goal is to find *maximal arcs* (i.e. those which maximize *k* for a given *n*) or, more generally, *complete arcs* (i.e. those which cannot be extended without increasing *n*).
- Restricting attention to σ-invariant arcs simplifies the construction problem. (However, we may loose something.)
- Can we compute the line multiplicities R(L) from data about the inducing multiset t? (The answer is a somewhat restricted "yes".)
- Which multisets in AG(2, 𝔽_q) give rise to good arcs?

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

The Teichmüller Set

The simplest example of a $\sigma\text{-invariant}$ multiset

Definition

The multiset in PHG(2, \mathbb{G}_q) induced by { \mathbb{G}_q 1} is called *Teichmüller set* and denoted by \mathfrak{T} .

We have $\mathfrak{T} = \{\mathbb{G}_q \eta^i; 0 \leq i \leq q^2 + q\}.$

Up to equivalence \mathfrak{T} is just the multiset induced by a single point in $[\mathbb{G}_q1]\cong \mathsf{AG}(2,\mathbb{F}_q).$

Theorem (H.-Landjev, 2005)

 ${\mathfrak T}$ is a maximal (q²+q+1,2)-arc ("hyperoval") iff q is even.

Sketch of proof.

 σ is transitive on line classes

⇒ It suffices to check line multiplicities in one particular line class, say $[\operatorname{Tr}(x) = 0]$. This class consists of the lines $\operatorname{Tr}((1 + pv)x) = 0$, where $v \in (\mathbb{F}_{q^3}, +)/(\mathbb{F}_q, +)$. A direct computation using the isomorphism $\mathbb{G}_q \cong W_2(\mathbb{F}_q)$ (*Witt* vectors of length 2 over \mathbb{F}_q) yields the result.

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle Viewing Everything Within $AG(2, \mathbb{F}_q)$ Consider again fixed line class, say [L] = [Tr(x) = 0]. Define $I \subset \{0, 1, ..., q^2 + q\}$ by

 $I := \left\{ i; \operatorname{Tr}(\eta^{i}) \equiv 0 \pmod{p} \right\} = \left\{ i; [\mathbb{G}_{q}\eta^{i}] \text{ is on } [L] \right\}.$

 σ^i induces an isomorphism $[\mathbb{G}_q \mathbf{1}] \cong [\mathbb{G}_q \eta^i]$ of affine planes $\implies \sigma^i$ maps a unique parallel class of lines in $[\mathbb{G}_q \mathbf{1}]$ onto the parallel class of lines in $[\mathbb{G}_q \eta^i]$ having direction [L].

Observations

- Putting these maps together gives a bijection ι from the set of lines of [G_q1] ≅ AG(2, F_q) to the set of line segments incident with [L] (points of [L]).
- Under ι every line L' ∈ [L] corresponds to a set of q + 1 lines of AG(2, 𝔽_q) having different directions. The q² sets ι⁻¹(L'), L' ∈ [L], form a single translation equivalence class.
- Knowing one such set ι⁻¹(L) enables us to compute the spectrum of t w.r.t. to the whole class, and in turn the spectrum of *R*.

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

Observations cont'd

• The spectrum of \mathfrak{T} w.r.t. the lines in [*L*] equals the spectrum of $\iota^{-1}(L)$ w.r.t. to the points in [\mathbb{G}_q 1].

Example

We give a computer-free proof of the existence of a (maximal) (39,5)-arc \mathfrak{K} in the plane over $\mathbb{G}_3 = \mathbb{Z}_9$.

 $|\mathfrak{K}| = 3 \cdot 13 = 3 \times \#$ points of PG(2, \mathbb{F}_3) suggests inducing \mathfrak{K} from a triangle in AG(2, \mathbb{F}_3).

An easy hand computation (omitted) reveals that \mathfrak{T} is a (proper) 3-arc. Hence $\iota^{-1}(L)$ consists of 3 lines L_1, L_2, L_3 in AG(2, \mathbb{F}_3) passing through a common point p and another line L_4 with $p \notin L_4$ and $L_4 \not\parallel L_i$ for $1 \le i \le 3$.

There exists a triangle \mathfrak{k} in AG(2, \mathbb{F}_3) meeting $\iota^{-1}(L)$ in at most 5 points. The multiset in PHG(2, \mathbb{Z}_9) induced by \mathfrak{k} is the required (39,5)-arc.

Generalization

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle The (39,5)-arc meets every line in either 2 or 5 points.

Theorem

Let q be an odd prime. There exist $(\frac{1}{2}(q^4 - q), \frac{1}{2}(q^2 + q - 2))$ -arcs in PHG $(2, \mathbb{G}_q)$ with only two line multiplicities $\frac{1}{2}(q^2 \pm q - 2)$.

Proof.

Use Singer induction from so-called triangle sets in $AG(2, \mathbb{F}_q)$.

Galois Ring Planes

Singer's Theorem

Arcs Invariant under a Singer Cycle

Definition

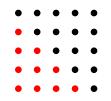
Suppose *q* is prime. A set of points of $AG(2, \mathbb{F}_q)$ is called a *triangle set* if it is affinely equivalent to

$$\Delta := \big\{ (x,y) \in \mathbb{F}_q^2; x + y < q-1 \big\}.$$

Triangle Sets

Example

A triangle set in $AG(2, \mathbb{F}_5)$.



Theorem

- (i) The characteristic function of a triangle set in AG(2, 𝔽_q) is constant on q − 2 parallel classes of lines and takes the values 0, 1, ..., q − 1 exactly once on each of the remaining 3 parallel classes of lines.
- (ii) If S is a set of points of AG(2, 𝔽_q) with the foregoing properties, then q is necessarily prime and S is a triangle set.

Galois Ring Planes

Singer's Theorem

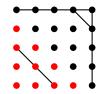
Arcs Invariant under a Singer Cycle

Observations

- The mod-*q*-value *t* of the sum of the multiplicities of any 3 lines in the 3 exceptional directions depends only on the translation equivalence class.
- The sum is 2-valued precisely for t = q 2 (Example on the right) and
 - t = q 1 (3 concurrent lines).

Example

A triangle set in $AG(2, \mathbb{F}_5)$.



Proof cont'd.

Induct from a triangle set \mathfrak{k} such that the 3 exceptional lines of $\iota^{-1}(L)$ have t = q - 2 (i.e. multiplicities q - 2 and 2q - 2).

Remark

Sets of points whose characteristic function is constant on all but three parallel classes of lines exist also in the affine planes $AG(2, \mathbb{F}_q), q = 2^r$, and give rise to arcs with two line multiplicities in the corresponding Hjelmslev planes $PHG(2, \mathbb{G}_q)$.