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Problem

Problem: Estimate the weights of codewords of cyclic codes!
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Problem: Estimate the weights of codewords of cyclic codes!

Available bounds: BCH, Hartmann-Tzeng, van Lint-Wilson.
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Problem

Problem: Estimate the weights of codewords of cyclic codes!
Available bounds: BCH, Hartmann-Tzeng, van Lint-Wilson.

Also, one can put divisibility constraints on the weights of cyclic
codes (McEliece, Wilson).

Goal: Write a general algebraic geometric bound for weights.
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Setting

Consider Fg with g = p®. Let n=q¢™ — 1 and Fyn =< a >.



Setting

Consider Fq with g = p®. Let n=q™ — 1 and Fym =< a >.

Let C C Fq[x]/ < x™ — 1 > be a cyclic code such that its dual has
{a, ... o}

as a defining zero set, where i; > 0 for all j.
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Setting

Consider Fq with g = p®. Let n=q™ — 1 and Fym =< a >.

Let C C Fq[x]/ < x™ — 1 > be a cyclic code such that its dual has
{a, ... o}

as a defining zero set, where i; > 0 for all j.

This means that
Ct =< g1(x) - gs(x) >,

where g;(x) € Fy[x] is the minimal polynomial of & for all j.
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Trace Representation of Cyclic Codes

Theorem. For any codeword c € C, there exists c1,...cs € Fgm
such that for
fe(x) == ax™ + -+ + cox”,

we have
(Te(fe(@)), Tr(he(0?)), .. Te(fe(a" 1))
(Te(e(w)) . -

Here, Tr denotes the trace function from Fgm to Fg.
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Problem Restated

So, for any ¢ € C there exists fo(x) := c1x + - - - + csx* such that
the weight of c is
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Problem Restated
So, for any ¢ € C there exists fo(x) := c1x + - - - + csx* such that
the weight of c is

w(e) = (4" —1) — {u € Fgm : Tr(fe(u)) = O}
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Problem Restated
So, for any ¢ € C there exists fo(x) := c1x + - - - + csx* such that
the weight of c is

w(e) = (4" —1) — {u € Fgm : Tr(fe(u)) = O}

af o
oy Xl —a

Hilbert's Theorem 90),
q

where |X2f(FF,m)| denotes the number of affine I m-rational points
on the curve X¢ defined by

vy —y = f(x).
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Problem Restated

So, for any ¢ € C there exists fo(x) := c1x + - - - + csx* such that
the weight of c is

w(e) = (4" —1) — {u € Fgm : Tr(fe(u)) = O}

af o
oy Xl —a

Hilbert's Theorem 90),
q

where |X2f(FF,m)| denotes the number of affine I m-rational points
on the curve X¢ defined by

y9 =y = fe(x).
Problem: Bound the number of affine IF;m-rational points of each
member in the family
F = {yq—y:clxi1+---+csxis : c1,...,cs€Iqu}.

Ore Ring and Cyclic Codes : Cem Giineri (Sabanci University) 6 /19



Artin-Schreier Curves
Suppose f(x) € Fgm[x] is a polynomial such that (deg f, p) = 1.
Then, the equation
yi—y=1(x)
defines an irreducible curve X (called a degree g A-S curve) over
Fgm whose genus is

g(X) =

(g —1)(degf —1)
> :
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Artin-Schreier Curves
Suppose f(x) € Fgm[x] is a polynomial such that (deg f, p) = 1.
Then, the equation
yi—y=1(x)
defines an irreducible curve X (called a degree g A-S curve) over
Fgm whose genus is

g(X) =

(g —1)(degf —1)
> :

So, if we assume that a basic zero set for the dual of a cyclic code
is

{ail, ce ais},

where (ij, p) = 1 for all j,
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Artin-Schreier Curves
Suppose f(x) € Fgm[x] is a polynomial such that (deg f, p) = 1.
Then, the equation
yi—y=1(x)
defines an irreducible curve X (called a degree g A-S curve) over
Fgm whose genus is

g(X) — (q - 1)(degf — 1)

2

So, if we assume that a basic zero set for the dual of a cyclic code
is

{a, ... o},
where (ij, p) = 1 for all j, then each nontrivial member in the
family

f:{yq_y:C]_Xil_i_..-—i—CSXis: C]_,...,CSEqu}

defines an irreducible curve whose genus can be found by the

formula above.
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Wolfmann's Bound

Theorem (Wolfmann). Let C be a g-ary cyclic code of length
n = g™ — 1 such that the dual code has a basic zero set of the
form {a',...,a"}, where ii < --- < is and (i;, p) =1 for all j.
Then, the nonzero weights w of C satisfy

w—(q"—q" )] <(q-1)(is—1)g> "
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Wolfmann's Bound

Theorem (Wolfmann). Let C be a g-ary cyclic code of length
n = g™ — 1 such that the dual code has a basic zero set of the
form {a',...,a"}, where ii < --- < is and (i;, p) =1 for all j.
Then, the nonzero weights w of C satisfy

w—(q"—q" )] <(q-1)(is—1)g> "
Proof. An arbitrary nonzero weight w in C satisfies

Xame
g X E)]
q

where the curve X is defined by y9 — y = c;x + - - - + cox’. By
Hasse-Weil bound, we have

m
2,

X (Fgm) — q™| < 2g(X)q

The result follows from the largest genus among such curves. O
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Good for p-ary Codes

Let g = p be prime. Say i = rp?, where (r,p) = 1. Then
“Fp-conjugates” of ol are

a a+1
o, a®



Good for p-ary Codes

Let g = p be prime. Say i = rp?, where (r,p) = 1. Then
“F,-conjugates” of o' are

a a+1
aP o aP =al, .

i.e. the minimal exponent among the conjugates is necessarily
relatively prime to p.
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Good for p-ary Codes

Let g = p be prime. Say i = rp?, where (r,p) = 1. Then
“F,-conjugates” of o' are

a a+1
aP o adP =«

i.e. the minimal exponent among the conjugates is necessarily
relatively prime to p.

So for p-ary cyclic codes, one can choose the dual’s defining set in
a way that Wolfmann's bound is applicable.
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Good for p-ary Codes

Let g = p be prime. Say i = rp?, where (r,p) = 1. Then
“F,-conjugates” of o' are

a arpaJrl

rp
a'P -

i.e. the minimal exponent among the conjugates is necessarily
relatively prime to p.

So for p-ary cyclic codes, one can choose the dual’s defining set in
a way that Wolfmann's bound is applicable.

This is not necessarily the case if g is not prime.
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Example

Feq.

Let g =4 and n =43 — 1 = 63. Let a be a primitive element for
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Example

Let g =4 and n =43 — 1 = 63. Let a be a primitive element for
Fe4. Consider the 4-ary cyclic code C of length n whose dual’s
defining zero set is {a, a2},
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Example

Let g =4 and n =43 — 1 = 63. Let a be a primitive element for
Fe4. Consider the 4-ary cyclic code C of length n whose dual’s
defining zero set is {a, a2},

ie. Ch=<ga(x)gae(x) >CFylx]/ < x® -1>.
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Example

Let g =4 and n =43 — 1 = 63. Let a be a primitive element for
Fe4. Consider the 4-ary cyclic code C of length n whose dual’s
defining zero set is {a, a2},

ie. Ch=<ga(x)gae(x) >CFylx]/ < x® -1>.

Here is the related family of curves we have to study:

F={y"—y=M+px*: A\ p€Fes}
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Example

Let g =4 and n =43 — 1 = 63. Let a be a primitive element for
Fe4. Consider the 4-ary cyclic code C of length n whose dual’s
defining zero set is {a, a2},

e, Ct =< ga(X)gae(x) >C Fylx]/ < xB —1> .
Here is the related family of curves we have to study:
f:{y4—y:AX+/LX22 )\,MGF(M}

If only one of the coefficients A or u is nonzero, the resulting curve
is rational with 64 (affine) rational points over Fgg.
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Example

Let g =4 and n =43 — 1 = 63. Let a be a primitive element for
Fe4. Consider the 4-ary cyclic code C of length n whose dual’s
defining zero set is {a, a2},

e, Ct =< ga(X)gae(x) >C Fylx]/ < xB —1> .
Here is the related family of curves we have to study:
f:{y4—y:AX+/LX22 /\7M€F64}

If only one of the coefficients A or u is nonzero, the resulting curve
is rational with 64 (affine) rational points over Fgg.

However, for some combination (which can be explicitely
determined) of nonzero A, i, the curve will be reducible.
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Vi y+xP4+x = V424 x4+ 2y +x

wa



= Py 40T+ Py )
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Yy +y+x
P ty+x)7+ (2 +y+x)
= (V+y+x) (Y +y+x+1)

Yy 4+ x4 x

o & = = z 9ace



Yty +x3+x = vy Py y+x
= (P+y+x) 7+ (P +y+x)
= (V+y+x) (Y +y+x+1)

So, the curve defined by y* + y = x? + x has 2 irreducible
components both of which are rational curves.

Ore Ring and Cyclic Codes : Cem Giineri (Sabanci University)

11 /19



Yty +x3+x = vy Py y+x
= (P+y+x) 7+ (P +y+x)
= (V+y+x) (Y +y+x+1)

So, the curve defined by y* + y = x? + x has 2 irreducible
components both of which are rational curves.

So, there are 128 (affine) rational points over Fgs. One can show
that the other reducible curves in F factor similarly.
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Another Example

y16+y+X8+X2
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Another Example

yRay = (TR et ol

+P+y Py XX

wa
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Another Example

y16+y+x8—|—x2 — (y8+y4+y2+y+x4+xz)2

+E vy Y+t + 5P
P +y + 2 +y+x+x7)

8 4 ; 4 2
Gy ry et 1)

v24v



Another Example

YOy x84 = (B4t Py 5t 3
+(B+y* + 2+ y + x4 X7)
= VP +y+ 2y +xt+xP)
8 4 2 4 2
Yy +y +y+x"+x+ 1)
v24v
= (' Hy+) 0 +Hy+x*+1)
Oy +xP )y X v )
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Another Example

YOy 4B = (Pt P4y + x4
+(P Y+ Hy )
= (P Hyt iy Xt
8, 4, 2 4, 2
Yy +y +y+x"+x+ 1)
v2+4v
= (VHy Ay Hx 1)
Oy +xP )y X v )

Here, v is defined as: Fy = Fo(v) with 12 + v+ 1 =0.
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Theorem (G. - 6zbudak). Let g = p®, r be relatively prime to p, a € F3 and
A € Fgm. Assume that 0 < i < j. Then the reducible polynomial

(1) Fxy) =y —y — (™ — 770 xP) € Fynlx, y]

factors into irreducibles as follows:
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Theorem (G. - 6zbudak). Let g = p®, r be relatively prime to p, a € F3 and
A € Fgm. Assume that 0 < i < j. Then the reducible polynomial
() Flxoy) =y —y = (w® =7 TP P e Fonlx,y]
factors into irreducibles as follows:
i. If c =gcd(e,j— i) =1, then
Fx,y) = ] Holx ),
wel,
where

e—1 j—i—1

Hw(X,)’):Z (apk_p ! )+ Z (apv_p ' pr,piM) —wa_"il.

k=0
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Theorem (G. - 6zbudak). Let g = p®, r be relatively prime to p, a € F3 and
A € Fgm. Assume that 0 < i < j. Then the reducible polynomial
() Flxoy) =y —y = (w® =7 TP P e Fonlx,y]
factors into irreducibles as follows:
i. If c =gcd(e,j— i) =1, then
Fx,y) = ] Holx ),
wel,
where

e—1 j—i—1

Hw(X,)’):Z (apk_p ' )+ Z (apv_p ' pr,piM) —wa P

k=0
ii. If c =gcd(e,j— i) > 1, then each factor Hy, above further factors as:

Ho(x,y) = II (Aw(x,y) = B),

Trg c /i, (B)=0

where
e/c—1 (—i)/c—1 )
Au(x,y) = Z (ypck) + Z <(a)\)pwx""+w> — Vo
k=0 v=0

and Trp JF,(Vw) = w.
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Previous Examples

1. ¢ = gcd(2,1 — 0) = 1 = one step factorization!
Vry+Pex = ¥ ry+x

1.21 + X1-2°

= (VP +y+x) (P +y+x+1)
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Previous Examples

1. ¢ = gcd(2,1 — 0) = 1 = one step factorization!
y4+y+x2+x _ y22+y+X1.21+X1.20

= (VPHy+x) (P +y+x+1)
2. ¢ =gcd(4,3 — 1) = 2 = two step factorization!

YLy N = y24+y+X1-23+X1.21
= (VB+y"+y Py +x+x7)
Py + Y2 +y+x+x7+1)
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Previous Examples

1. ¢ = gcd(2,1 — 0) = 1 = one step factorization!

Vvt ax = yF y et 0
= (VPHy+x) (P +y+x+1)

2. ¢ =gcd(4,3 — 1) = 2 = two step factorization!

YLy N = y24+y+X1-23+X1.21
= (B +y Py + x50
Py + Y2 +y+x+x7+1)
= 0y A0 +Hy P+
Oy )y P v+ 1)
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Remarks

1. If X denotes the reducible curve defined by
Flxy)i=y7 =y = (O™ = a5 € Fonlx, v,
then we have

X (Epem)| — po7 €| < (p° = p)(r — 1)V
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Remarks

1. If X denotes the reducible curve defined by
Flxy)i=y7 =y = (O™ = a5 € Fonlx, v,
then we have

X (Epem)| — po7 €| < (p° = p)(r — 1)V

2. Full form of the previous result, together with the Hasse-Weil
type bound, yields a minimum distance estimate for any cyclic
code over F, and F>. However, we cannot say the same thing for
cyclic codes [F 3, [F 4, . .. Obtaining such explicit factorizations to
estimate weights of all cyclic codes is hopeless!
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The Ring R

Let K be a perfect field of characteristic p > 0. A polynomial of
the form

A(T) = an.,.pn _|_an71TPn71 +"'+31TP+QOT c K[T]

is called an additive polynomial.
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The Ring R

Let K be a perfect field of characteristic p > 0. A polynomial of
the form

AT)=a TP +a, 1 TP 4+ a1 TP + 2T € K[T]
is called an additive polynomial.

The following identity is satisfied:

A(u+v) = A(u) + A(v)
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The Ring R

Let K be a perfect field of characteristic p > 0. A polynomial of
the form

A(T)=a,T?" +a, 1 TP 4+ a1 TP + a0 T € K[T]
is called an additive polynomial.
The following identity is satisfied:
A(u+v) = A(u) + A(v)

The sum and composition of two additive polynomials in K[T] are
again additive polynomials in K[T].
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The Ring R

Let K be a perfect field of characteristic p > 0. A polynomial of
the form

AT)=a TP +a, 1 TP 4+ a1 TP + 2T € K[T]
is called an additive polynomial.

The following identity is satisfied:
A(u+v) = A(u) + A(v)

The sum and composition of two additive polynomials in K[T] are
again additive polynomials in K[T].

The set R of additive polynomials in K[T] together with addition
and composition operations (R, +, o) forms a ring, called the ring
of additive polynomials (Ore ring).
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Division

Let A(T). B(T) € R:

A( T) - an TP" + an_l Tp,,_
B(T)

1+...+a1Tp+a0T,
bm TP'" + bm_lTpm_1

+- -+ b TP+ boT,



Division
Let A(T), B(T) € R:

AT) = anT? +a, TP 4 fa TP+ aT,
m—1

B(T) = mepm+bm—1Tp + o+ B TP+ BT,

We say that A is left divisible by B if there exists C(T) € R such
that A= Bo C.
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Division
Let A(T), B(T) € R:

AT) = anT? +a, TP 4 fa TP+ aT,
m—1

B(T) = mepm+bm—1Tp + o+ B TP+ BT,

We say that A is left divisible by B if there exists C(T) € R such
that A= Bo C.

Assuming deg A > deg B, we can write
A(T) = B(T) o ((an/bm)"/"" T " 4 ) + R(T),

where R(T) € R is of degree less than deg B, unless R = 0.
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Division
Let A(T), B(T) € R:

AT) = anT? +a, TP 4 fa TP+ aT,
m—1

B(T) = mepm+bm—1Tp + o+ B TP+ BT,

We say that A is left divisible by B if there exists C(T) € R such
that A= Bo C.

Assuming deg A > deg B, we can write
A(T) = B(T) o ((an/bm)"/"" T " 4 ) + R(T),

where R(T) € R is of degree less than deg B, unless R = 0.

Hence, over a perfect field K, the ring R has Euclidean algorithm.
In particular, two additive polynomials A, B € R have a monic left
greatest common divisor 1gcd(A, B) in R.
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Theorem (G. - Ozbudak). Let A(T), B1(T),...,B:(T) € R be nonzero additive
polynomials and assume that A is monic, separable and splits in K.
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Theorem (G. - Ozbudak). Let A(T), Bi(T),...,B:(T) € R be nonzero additive
polynomials and assume that A is monic, separable and splits in K. Let r1,...,r: be
distinct positive integers with ged(p,r;) =1, for all 1 <i < t.
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Theorem (G. - Ozbudak). Let A(T), Bi(T),...,B:(T) € R be nonzero additive
polynomials and assume that A is monic, separable and splits in K. Let r,

..., rt be
distinct positive integers with ged(p, r;) =1, for all 1 < j < t. Set

L(T) :=1gcd(A(T), Bi(T), B2(T),...,B:(T)),

and denote by W the set of roots of L(T). Then,

Ore Ring and Cyclic Codes : Cem Giineri (Sabanci University) 18 /19



Theorem (G. - Ozbudak). Let A(T), Bi(T),...,B:(T) € R be nonzero additive
polynomials and assume that A is monic, separable and splits in K. Let r1,...,r: be
distinct positive integers with ged(p, r;) =1, for all 1 < j < t. Set

L(T) :=1gcd(A(T), Bi(T), B2(T),...,B:(T)),

and denote by W the set of roots of L(T). Then,

[
t

Aly) — z B;i(x"") is irreducible over K(x) if and only if L(T)=T.
i=1
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Theorem (G. - Ozbudak). Let A(T), Bi(T),...,B:(T) € R be nonzero additive
polynomials and assume that A is monic, separable and splits in K. Let r1,...,r: be
distinct positive integers with ged(p, r;) =1, for all 1 < j < t. Set

L(T) :=1gcd(A(T), Bi(T), B2(T),...,B:(T)),

and denote by W the set of roots of L(T). Then,

[
t

Aly) — z B;i(x"") is irreducible over K(x) if and only if L(T)=T.
i=1

ii. If

A(T) = L(T)oA(T)
Bi(T) = L(T)oBy(T),

then we have following factorization into irreducibles:

Ay) - S By = ] (A(y) ~ 3 Bi(x) - w) .
i=1 i=1

wew
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Corollary. Let K =, be a finite field of characteristic p and
consider the curve X defined by

t
Aly) =Y Bi(x").
i=1
If deg A = p" and deg L = p*, then
X (F)| ~ 00| < (p" = p*)(R 1)V,

where R = max{r,...,r}.

Ore Ring and Cyclic Codes : Cem Giineri (Sabanci University) 19 /19



Corollary. Let K =, be a finite field of characteristic p and
consider the curve X defined by

t
Aly) =Y Bi(x").
i=1
If deg A= p" and deg L = p*, then
X (F)| ~ 00| < (p" = p*)(R 1)V,

where R = max{r,...,r}.

Conclusion. With this theorem, finding bounds for the weights of
cyclic codes reduces to computing left greatest common divisor in
the ring of additive polynomials over finite fields.
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