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Problem

Problem: Estimate the weights of codewords of cyclic codes!

Available bounds: BCH, Hartmann-Tzeng, van Lint-Wilson.

Also, one can put divisibility constraints on the weights of cyclic
codes (McEliece, Wilson).

Goal: Write a general algebraic geometric bound for weights.
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Setting

Consider Fq with q = pe . Let n = qm − 1 and F∗qm =< α >.

Let C ⊂ Fq[x ]/ < xn − 1 > be a cyclic code such that its dual has

{αi1 , . . . , αis}

as a defining zero set, where ij > 0 for all j .

This means that

C⊥ =< g1(x) · · · gs(x) >,

where gj(x) ∈ Fq[x ] is the minimal polynomial of αij for all j .
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Trace Representation of Cyclic Codes

Theorem. For any codeword c ∈ C , there exists c1, . . . cs ∈ Fqm

such that for
fc(x) := c1x i1 + · · ·+ csx is ,

we have

c =
(
Tr(fc(α)),Tr(fc(α2)), . . . ,Tr(fc(αqm−1))

)
=

(
Tr
(
fc(u)

))
u∈F∗

qm

.

Here, Tr denotes the trace function from Fqm to Fq.
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Problem Restated
So, for any c ∈ C there exists fc(x) := c1x i1 + · · ·+ csx is such that
the weight of c is

w(c) = (qm − 1)− |{u ∈ F∗qm : Tr(fc(u)) = 0}|

= (qm − 1)− |X
af
c (Fqm)| − q

q
(Hilbert’s Theorem 90),

where |X af
c (Fqm)| denotes the number of affine Fqm -rational points

on the curve Xc defined by

yq − y = fc(x).

Problem: Bound the number of affine Fqm -rational points of each
member in the family

F =
{

yq − y = c1x i1 + · · ·+ csx is : c1, . . . , cs ∈ Fqm

}
.
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Artin-Schreier Curves
Suppose f (x) ∈ Fqm [x ] is a polynomial such that (deg f , p) = 1.
Then, the equation

yq − y = f (x)

defines an irreducible curve X (called a degree q A-S curve) over
Fqm whose genus is

g(X ) =
(q − 1)(deg f − 1)

2
.

So, if we assume that a basic zero set for the dual of a cyclic code
is

{αi1 , . . . , αis},
where (ij , p) = 1 for all j , then each nontrivial member in the
family

F =
{

yq − y = c1x i1 + · · ·+ csx is : c1, . . . , cs ∈ Fqm

}
defines an irreducible curve whose genus can be found by the
formula above.
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Wolfmann’s Bound
Theorem (Wolfmann). Let C be a q-ary cyclic code of length
n = qm − 1 such that the dual code has a basic zero set of the
form {αi1 , . . . , αis}, where i1 < · · · < is and (ij , p) = 1 for all j .
Then, the nonzero weights w of C satisfy∣∣w − (qm − qm−1)

∣∣ ≤ (q − 1)(is − 1)q
m
2
−1.

Proof. An arbitrary nonzero weight w in C satisfies

w = qm − |X
af (Fqm)|

q
,

where the curve X is defined by yq − y = c1x i1 + · · ·+ csx is . By
Hasse-Weil bound, we have

|X af (Fqm)− qm| ≤ 2g(X )q
m
2 .

The result follows from the largest genus among such curves. 2
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Good for p-ary Codes

Let q = p be prime. Say i = rpa, where (r , p) = 1. Then
“Fp-conjugates” of αi are

αrpa
, αrpa+1

, . . . , αrpm
= αr , . . . .

i.e. the minimal exponent among the conjugates is necessarily
relatively prime to p.

So for p-ary cyclic codes, one can choose the dual’s defining set in
a way that Wolfmann’s bound is applicable.

This is not necessarily the case if q is not prime.
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Ore Ring and Cyclic Codes : Cem Güneri (Sabancı University) 9 / 19



Good for p-ary Codes

Let q = p be prime. Say i = rpa, where (r , p) = 1. Then
“Fp-conjugates” of αi are

αrpa
, αrpa+1

, . . . , αrpm
= αr , . . . .

i.e. the minimal exponent among the conjugates is necessarily
relatively prime to p.

So for p-ary cyclic codes, one can choose the dual’s defining set in
a way that Wolfmann’s bound is applicable.

This is not necessarily the case if q is not prime.

Ore Ring and Cyclic Codes : Cem Güneri (Sabancı University) 9 / 19
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Example

Let q = 4 and n = 43 − 1 = 63. Let α be a primitive element for
F64.

Consider the 4-ary cyclic code C of length n whose dual’s
defining zero set is {α, α2},

i.e. C⊥ =< gα(x)gα2(x) >⊂ F4[x ]/ < x63 − 1 > .

Here is the related family of curves we have to study:

F =
{

y 4 − y = λx + µx2 : λ, µ ∈ F64

}
If only one of the coefficients λ or µ is nonzero, the resulting curve
is rational with 64 (affine) rational points over F64.

However, for some combination (which can be explicitely
determined) of nonzero λ, µ, the curve will be reducible.
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Ore Ring and Cyclic Codes : Cem Güneri (Sabancı University) 10 / 19



y 4 + y + x2 + x

= y 4 + y 2 + x2 + y 2 + y + x

=
(
y 2 + y + x

)2
+
(
y 2 + y + x

)
=

(
y 2 + y + x

) (
y 2 + y + x + 1

)
So, the curve defined by y 4 + y = x2 + x has 2 irreducible
components both of which are rational curves.

So, there are 128 (affine) rational points over F64. One can show
that the other reducible curves in F factor similarly.

Ore Ring and Cyclic Codes : Cem Güneri (Sabancı University) 11 / 19
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Another Example

y 16 + y + x8 + x2

= (y 8 + y 4 + y 2 + y + x4 + x2)2

+(y 8 + y 4 + y 2 + y + x4 + x2)

= (y 8 + y 4 + y 2 + y + x4 + x2)

(y 8 + y 4 + y 2 + y + x4 + x2 + 1︸︷︷︸
ν2+ν

)

= (y 4 + y + x2)(y 4 + y + x2 + 1)

(y 4 + y + x2 + ν)(y 4 + y + x2 + ν + 1)

Here, ν is defined as: F4 = F2(ν) with ν2 + ν + 1 = 0.
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Ore Ring and Cyclic Codes : Cem Güneri (Sabancı University) 12 / 19



Another Example

y 16 + y + x8 + x2 = (y 8 + y 4 + y 2 + y + x4 + x2)2

+(y 8 + y 4 + y 2 + y + x4 + x2)

= (y 8 + y 4 + y 2 + y + x4 + x2)

(y 8 + y 4 + y 2 + y + x4 + x2 + 1︸︷︷︸
ν2+ν

)

= (y 4 + y + x2)(y 4 + y + x2 + 1)

(y 4 + y + x2 + ν)(y 4 + y + x2 + ν + 1)

Here, ν is defined as: F4 = F2(ν) with ν2 + ν + 1 = 0.

Ore Ring and Cyclic Codes : Cem Güneri (Sabancı University) 12 / 19



Theorem (G. - Özbudak). Let q = pe , r be relatively prime to p, a ∈ F∗q and
λ ∈ Fqm . Assume that 0 ≤ i < j . Then the reducible polynomial

(∗) F (x , y) := yq − y − (λx rpi
− apj−i−1λpj−i

x rpj
) ∈ Fqm [x , y ]

factors into irreducibles as follows:

i. If c = gcd(e, j − i) = 1, then

F (x , y) =
∏
ω∈Fp

Hω(x , y),

where

Hω(x , y) =

e−1∑
k=0

(
apk−p−1

ypk
)

+

j−i−1∑
γ=0

(
apγ−p−1

λpγ x rpi+γ
)
− ωa−p−1

.

ii. If c = gcd(e, j − i) > 1, then each factor Hw above further factors as:
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Theorem (G. - Özbudak). Let q = pe , r be relatively prime to p, a ∈ F∗q and
λ ∈ Fqm . Assume that 0 ≤ i < j . Then the reducible polynomial

(∗) F (x , y) := yq − y − (λx rpi
− apj−i−1λpj−i

x rpj
) ∈ Fqm [x , y ]

factors into irreducibles as follows:
i. If c = gcd(e, j − i) = 1, then

F (x , y) =
∏
ω∈Fp

Hω(x , y),

where

Hω(x , y) =

e−1∑
k=0

(
apk−p−1

ypk
)

+

j−i−1∑
γ=0

(
apγ−p−1

λpγ x rpi+γ
)
− ωa−p−1

.

ii. If c = gcd(e, j − i) > 1, then each factor Hw above further factors as:

Hω(x , y) =
∏

TrFpc /Fp
(β)=0

(Aω(x , y)− β) ,

where

Aω(x , y) =

e/c−1∑
k=0

(
ypck

)
+

(j−i)/c−1∑
γ=0

(
(aλ)pcγ

x rpi+cγ
)
− vω

and TrFpc /Fp
(vω) = ω.

Ore Ring and Cyclic Codes : Cem Güneri (Sabancı University) 13 / 19



Previous Examples

1. c = gcd(2, 1− 0) = 1⇒ one step factorization!

y 4 + y + x2 + x = y 22
+ y + x1·21

+ x1·20

=
(
y 2 + y + x

) (
y 2 + y + x + 1

)

2. c = gcd(4, 3− 1) = 2⇒ two step factorization!

y 16 + y + x8 + x2 = y 24
+ y + x1·23

+ x1·21

= (y 8 + y 4 + y 2 + y + x4 + x2)

(y 8 + y 4 + y 2 + y + x4 + x2 + 1)

= (y 4 + y + x2)(y 4 + y + x2 + 1)

(y 4 + y + x2 + ν)(y 4 + y + x2 + ν + 1)
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Remarks

1. If X denotes the reducible curve defined by

F (x , y) := yq − y − (λx rpi − apj−i−1λpj−i
x rpj

) ∈ Fqm [x , y ],

then we have∣∣∣|X af (Fpem)| − pem+c
∣∣∣ ≤ (pe − pc)(r − 1)

√
pem.

2. Full form of the previous result, together with the Hasse-Weil
type bound, yields a minimum distance estimate for any cyclic
code over Fp and Fp2 . However, we cannot say the same thing for
cyclic codes Fp3 ,Fp4 , . . . Obtaining such explicit factorizations to
estimate weights of all cyclic codes is hopeless!
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The Ring R

Let K be a perfect field of characteristic p > 0. A polynomial of
the form

A(T ) = anT pn
+ an−1T pn−1

+ · · ·+ a1T p + a0T ∈ K [T ]

is called an additive polynomial.

The following identity is satisfied:

A(u + v) = A(u) + A(v)

The sum and composition of two additive polynomials in K [T ] are
again additive polynomials in K [T ].

The set R of additive polynomials in K [T ] together with addition
and composition operations (R,+, ◦) forms a ring, called the ring
of additive polynomials (Ore ring).
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Division

Let A(T ),B(T ) ∈ R:

A(T ) = anT pn
+ an−1T pn−1

+ · · ·+ a1T p + a0T ,

B(T ) = bmT pm
+ bm−1T pm−1

+ · · ·+ b1T p + b0T ,

We say that A is left divisible by B if there exists C (T ) ∈ R such
that A = B ◦ C .

Assuming deg A ≥ deg B, we can write

A(T ) = B(T ) ◦
(

(an/bm)1/pm

T pn−m
+ · · ·

)
+ R(T ),

where R(T ) ∈ R is of degree less than deg B, unless R = 0.

Hence, over a perfect field K , the ring R has Euclidean algorithm.
In particular, two additive polynomials A,B ∈ R have a monic left
greatest common divisor lgcd(A,B) in R.

Ore Ring and Cyclic Codes : Cem Güneri (Sabancı University) 17 / 19
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Theorem (G. - Özbudak). Let A(T ),B1(T ), . . . ,Bt(T ) ∈ R be nonzero additive
polynomials and assume that A is monic, separable and splits in K.

Let r1, . . . , rt be
distinct positive integers with gcd(p, ri ) = 1, for all 1 ≤ i ≤ t. Set

L(T ) := lgcd(A(T ),B1(T ),B2(T ), . . . ,Bt(T )),

and denote by W the set of roots of L(T ). Then,
i.

A(y)−
t∑

i=1

Bi (x
ri ) is irreducible over K(x) if and only if L(T ) = T .

ii. If

A(T ) = L(T ) ◦ Â(T )

Bi (T ) = L(T ) ◦ B̂i (T ),

then we have following factorization into irreducibles:

A(y)−
t∑

i=1

Bi (x
ri ) =

∏
w∈W

(
Â(y)−

t∑
i=1

B̂i (x
ri )− w

)
.
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Corollary. Let K = F` be a finite field of characteristic p and
consider the curve X defined by

A(y) =
t∑

i=1

Bi (x ri ).

If deg A = pn and deg L = pµ, then∣∣∣|X af (F`)| − `pµ
∣∣∣ ≤ (pn − pµ)(R − 1)

√
` ,

where R = max{r1, . . . , rt}.

Conclusion. With this theorem, finding bounds for the weights of
cyclic codes reduces to computing left greatest common divisor in
the ring of additive polynomials over finite fields.
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