# Classification of plane curves with infinitely many Galois points

Satoru Fukasawa

(Waseda University / JAPAN)

# Plan

- I. What is a Galois point?
- II. How many Galois points are there?
- III. Classification of plane curves with infinitely many Galois points

#### I. What is a Galois point?

K: alg. closed field

 $p = \text{char } K \ge 0$ 

 $C \subset \mathbb{P}^2$ : irred. plane curve of deg.  $d \geq 3$ 

 $R \in \mathbb{P}^2$ : point

 $\pi_R: C \longrightarrow \mathbb{P}^1$ ; projection from R



Definition (Hisao Yoshihara, 1996) -

R: Galois point (for C)

 $\Leftrightarrow K(C)/\pi_R^*K(\mathbb{P}^1)$ : Galois extension

#### Example

$$p \neq 2, 3$$

$$C \subset \mathbb{P}^2 : X^3Z + Y^4 + Z^4 = 0$$

$$R_1 = (1:0:0) \in C$$

$$R_2 = (0:1:0) \in \mathbb{P}^2 \setminus C$$

Galois points

# The reason that $R_1$ is Galois

$$\pi_{R_1} = (Y:Z) = (y:1):C \longrightarrow \mathbb{P}^1$$

$$K(C)/K(\mathbb{P}^1) = K(x, y)/K(y)$$
:  $x^3 + y^4 + 1 = 0$ .

cyclic extension

Rem.  $\pi_R: C \longrightarrow \mathbb{P}^1$ ; point projection

(1) 
$$P \in C_{sm} \setminus \{R\}$$
  
 $\Rightarrow e_P = I_P(C, \overline{RP})$   
[Rami. Index = Intersect. Multi.]

(2) R: Galois

$$P, Q \in C_{sm} \setminus \{R\} \text{ s.t. } \pi_R(P) = \pi_R(Q)$$
  
 $\Rightarrow e_P = e_Q$ 



(3) 
$$p > 0$$
,  $\pi_R$  is NOT separable  $\Rightarrow R \in T_P C$  for  $\forall P \in C_{sm}$ 

R is called a strange center.

C is said to be strange if  $\exists$  strange center.

#### II. How many Galois points are there?

#### Notation

$$\Delta(C) = \{R \in C_{sm} \mid R : Galois\}$$
  
 $\Delta'(C) = \{R \in \mathbb{P}^2 \setminus C \mid R : Galois\}$ 

Case A: p = 0 & C: smooth: Completely determined

Theorem (Yoshihara) -

$$p = 0$$
,  $C \subset \mathbb{P}^2$ : smooth, deg.  $d \ge 4$ 

(1) 
$$\sharp \Delta(C) = 0$$
, 1 or 4.

(2) 
$$\sharp \Delta'(C) = 0, 1 \text{ or } 3.$$

Case B: p = 0 & C: singular: Unsoloved

However, we can prove:

Proposition ———

The number of Galois points is finite if p = 0.

Case C: p > 0

How about a Hermitian curve ?

$$X^qZ + XZ^q = Y^{q+1}$$

Theorem (Homma) -

$$p > 0$$
,  $q = p^e \ge 3$ ,  $K = \overline{\mathbb{F}}_p$ .  
 $H \subset \mathbb{P}^2$ :  $X^q Z + X Z^q = Y^{q+1}$  Hermitian curve  
 $\Delta(H) \cup \Delta'(H) = \mathbb{P}^2(\mathbb{F}_{q^2})$ 

In particular,  $\sharp \Delta(H) = q^3 + 1$ ,  $\sharp \Delta'(H) = q^4 - q^3 + q^2$ .  $q = 3 \Rightarrow \sharp \Delta(H) = 28, \sharp \Delta'(H) = 63.$ 

# A curve having infinitely many Galois points

$$q = p^e \ge 3$$
;

$$C \subset \mathbb{P}^2$$
:  $XZ^{q-1} - Y^q = 0$ 

$$P = (1 : 0 : 0)$$
: singular point

$$Q = (0:1:0)$$
: strange center

Distribution of Galois points (F-Hasegawa)

$$(1) \Delta(C) = C \setminus \{P\}$$

(1) 
$$\Delta(C) = C \setminus \{P\}$$
  
(2)  $\Delta'(C) = \{Z = 0\} \setminus \{P, Q\}$ 

#### IV Classification Theorems

# **Inner Case**

Theorem (F-Hasegawa) -

 $C \subset \mathbb{P}^2$ : irred. plane curve of deg.  $d \geq 4$ 

The Followings Are Equivalent:

(1)  $\Delta(C)$ : non-empty Zariski open set of C.

(2) p > 0, q: power of  $p \& C \sim x - y^q = 0$ .

# **Outer Case**

# **Main Theorem**

 $C \subset \mathbb{P}^2$ : plane curve of deg.  $d \geq 3$ .

The Followings Are Equivalent:

- (1)  $\Delta'(C)$ : Infinite.
- (2) C: Rational & Strange with center Q;  $\exists L \subset \mathbb{P}^2$ : Line s.t.

 $Q \in L \& L \cap \Delta'(C)$ : Infinite.

(3) p > 0,  $C_{\sim}$ 

$$\alpha_{e}x^{p^{e}} + \alpha_{e-1}x^{p^{e-1}} + \dots + \alpha_{0}x$$
  
+ $\beta_{e}y^{p^{e}} + \beta_{e-1}y^{p^{e-1}} + \dots + \beta_{1}y^{p} = 0.$ 

#### Remark.

$$C \subset \mathbb{P}^2$$
:

$$x^{p^e} + \alpha_{e-1}x^{p^{e-1}} + \dots + \alpha_1x^p + \alpha_0x + \beta_ey^{p^e} + \dots + \beta_1y^p = 0.$$
  
 $P \in \text{Sing}C,$ 

Q: strange center. (P = Q is possible.)

Then:

(i) 
$$\Delta(C) = \begin{cases} C \setminus \{P\} \text{ if } C \sim x - y^q = 0. \\ \emptyset \text{ otherwise.} \end{cases}$$

(ii) 
$$\Delta'(C) = \{Z = 0\} \setminus \{P, Q\}.$$

(iii)  $G_R$ : cyclic group of order  $p^e - 1$  for  $\forall R \in \Delta(C)$ .

(iv) 
$$G_R \cong (\mathbb{Z}/p\mathbb{Z})^{\oplus e}$$
 for  $\forall R \in \Delta'(C)$ .