Classification of plane curves with infinitely many Galois points

Satoru Fukasawa

(Waseda University / JAPAN)

Plan

I. What is a Galois point?
II. How many Galois points are there ?
III. Classification of plane curves with infinitely many Galois points
I. What is a Galois point ?
K : alg. closed field
$p=\operatorname{char} K \geq 0$
$C \subset \mathbb{P}^{2}$: irred. plane curve of deg. $d \geq 3$
$R \in \mathbb{P}^{2}$: point

$$
\pi_{R}: C \mapsto \mathbb{P}^{1} ; \text { projection from } R
$$

Definition (Hisao Yoshihara, 1996)
R : Galois point (for C)
$\Leftrightarrow K(C) / \pi_{R}^{*} K\left(\mathbb{P}^{1}\right)$: Galois extension

Example
$p \neq 2,3$
$C \subset \mathbb{P}^{2}: X^{3} Z+Y^{4}+Z^{4}=0$
$R_{1}=(1: 0: 0) \in C$
$R_{2}=(0: 1: 0) \in \mathbb{P}^{2} \backslash C$
Galois points

The reason that R_{1} is Galois

$$
\begin{aligned}
& \pi_{R_{1}}=(Y: Z)=(y: 1): C \rightarrow \mathbb{P}^{1} \\
& K(C) / K\left(\mathbb{P}^{1}\right)=K(x, y) / K(y): x^{3}+y^{4}+1=0 .
\end{aligned}
$$

cyclic extension

Rem. $\pi_{R}: C \rightarrow \mathbb{P}^{1} ;$ point projection
(1) $P \in C_{\mathrm{sm}} \backslash\{R\}$

$$
\Rightarrow e_{P}=I_{P}(C, \overline{R P})
$$

[Rami. Index = Intersect. Multi.]
(2) R: Galois

$$
\begin{aligned}
& P, Q \in C_{\text {sm }} \backslash\{R\} \text { s.t. } \pi_{R}(P)=\pi_{R}(Q) \\
& \Rightarrow e_{P}=e_{Q}
\end{aligned}
$$

If R is Galois
$\Rightarrow R$: the intersect. pt of multi. tangent lines
(3) $p>0, \pi_{R}$ is NOT separable

$$
\Rightarrow R \in T_{P} C \text { for } \forall P \in C_{\mathrm{sm}}
$$

R is called a strange center.
C is said to be strange if \exists strange center.
II. How many Galois points are there ?

Notation
$\Delta(C)=\left\{R \in C_{\mathrm{sm}} \mid R\right.$: Galois $\}$
$\Delta^{\prime}(C)=\left\{R \in \mathbb{P}^{2} \backslash C \mid R:\right.$ Galois $\}$

Case A: $p=0 \& C$: smooth: Completely determined
Theorem (Yoshihara)
$p=0, C \subset \mathbb{P}^{2}$: smooth, deg. $d \geq 4$
(1) $\# \Delta(C)=0,1$ or 4 .
(2) $\# \Delta^{\prime}(C)=0,1$ or 3 .

Case B: $p=0$ \& C: singular: Unsoloved

However, we can prove:
Proposition
The number of Galois points is finite if $p=0$.

Case C: $p>0$ How about a Hermitian curve ?

$$
X^{q} Z+X Z^{q}=Y^{q+1}
$$

Theorem (Homma)

$$
\begin{aligned}
& p>0, q=p^{e} \geq 3, K=\overline{\mathbb{F}}_{p} . \\
& H \subset \mathbb{P}^{2}: X^{q} Z+X Z^{q}=Y^{q+1} \text { Hermitian curve } \\
& \qquad \Delta(H) \cup \Delta^{\prime}(H)=\mathbb{P}^{2}\left(\mathbb{F}_{q^{2}}\right)
\end{aligned}
$$

In particular, $\sharp \Delta(H)=q^{3}+1, \sharp \Delta^{\prime}(H)=q^{4}-q^{3}+q^{2}$. $q=3 \Rightarrow \sharp \Delta(H)=28, \sharp \Delta^{\prime}(H)=63$.

A curve having infinitely many Galois points
$q=p^{e} \geq 3$;
$C \subset \mathbb{P}^{2}: X Z^{q-1}-Y^{q}=0$
$P=(1: 0: 0)$: singular point
$Q=(0: 1: 0)$: strange center

Distribution of Galois points (F-Hasegawa)
(1) $\Delta(C)=C \backslash\{P\}$
(2) $\Delta^{\prime}(C)=\{Z=0\} \backslash\{P, Q\}$

IV Classification Theorems

Inner Case

Theorem (F-Hasegawa)
$C \subset \mathbb{P}^{2}$: irred. plane curve of deg. $d \geq 4$
The Followings Are Equivalent:
(1) $\Delta(C)$: non-empty Zariski open set of C.
(2) $p>0, q$: power of $p \& C \sim x-y^{q}=0$.

Outer Case

Main Theorem

$C \subset \mathbb{P}^{2}$: plane curve of deg. $d \geq 3$.
The Followings Are Equivalent:
(1) $\Delta^{\prime}(C)$: Infinite.
(2) C : Rational \& Strange with center Q; $\exists L \subset \mathbb{P}^{2}$: Line st.
$Q \in L \& L \cap \Delta^{\prime}(C)$: Infinite.
(3) $p>0, C \sim$
$\alpha_{e} X^{p^{e}}+\alpha_{e-1} x^{p^{e-1}}+\cdots+\alpha_{0} X$
$+\beta_{e} y^{p^{e}}+\beta_{e-1} y^{p^{e-1}}+\cdots+\beta_{1} y^{p}=0$.

Remark.

$C \subset \mathbb{P}^{2}:$
$x^{p^{e}}+\alpha_{e-1} x^{p^{e-1}}+\cdots+\alpha_{1} x^{p}+\alpha_{0} x+\beta_{e} y^{p^{e}}+\cdots+\beta_{1} y^{p}=0$.
$P \in \operatorname{Sing} C$,
Q : strange center. ($P=Q$ is possible.)

Then:

(i) $\Delta(C)= \begin{cases}C \backslash\{P\} \text { if } C \sim x-y^{q}=0 . \\ \emptyset & \text { otherwise } .\end{cases}$
(ii) $\Delta^{\prime}(C)=\{Z=0\} \backslash\{P, Q\}$.
(iii) G_{R} : cyclic group of order $p^{e}-1$ for $\forall R \in \Delta(C)$.
(iv) $G_{R} \cong(\mathbb{Z} / p \mathbb{Z})^{\oplus e}$ for $\forall R \in \Delta^{\prime}(C)$.

