Metric Diophantine Approximation for Formal Laurent Series over Finite Fields

Michael Fuchs

Department of Applied Mathematics
National Chiao Tung University

Fq9, July 16th, 2009

Notation

- Field of formal Laurent series:

$$
\mathbb{F}_{q}\left(\left(T^{-1}\right)\right)=\left\{f=a_{n} T^{n}+a_{n-1} T^{n-1}+\cdots: a_{j} \in \mathbb{F}_{q}, a_{n} \neq 0\right\} \cup\{0\}
$$

- Valuation induced by the general degree function:

$$
|f|=q^{n}, \quad|0|=0
$$

- Analogue of $[0,1)$:

$$
\mathbb{L}=\left\{f \in \mathbb{F}_{q}\left(\left(T^{-1}\right)\right):|f|<1\right\}
$$

- Restricting $|\cdot|$ to \mathbb{L} gives compact topological group. Denote by m the unique, translation-invariant (Haar) probability measure.

Approximation Problem - Coprime Solutions

For $f \in \mathbb{L}$ consider:

$$
\begin{equation*}
\left|f-\frac{P}{Q}\right|<\frac{1}{q^{n+l_{n}}}, \operatorname{deg} Q=n, Q \text { monic, } \tag{AP}
\end{equation*}
$$

where

- $P, Q \in \mathbb{F}_{q}[T], Q \neq 0$;
- l_{n} is a sequence of non-negative integers.

Approximation Problem - Coprime Solutions

For $f \in \mathbb{L}$ consider:

$$
\begin{equation*}
\left|f-\frac{P}{Q}\right|<\frac{1}{q^{n+l_{n}}}, \operatorname{deg} Q=n, Q \text { monic }, \tag{AP}
\end{equation*}
$$

where

- $P, Q \in \mathbb{F}_{q}[T], Q \neq 0$;
- l_{n} is a sequence of non-negative integers.

Question:

For a "typical" f (with respect to m), what can be said about the number of pairs (P, Q) with $\operatorname{gcd}(P, Q)=1$ solving the above Diophantine inequality?

Two Results of Inoue \& Nakada

Theorem (Inoue \& Nakada; 2003)
AP has either finitely or infinitely many coprime solutions for almost all f. The latter holds iff

$$
\sum_{n} q^{n-l_{n}}=\infty
$$

Two Results of Inoue \& Nakada

Theorem (Inoue \& Nakada; 2003)
AP has either finitely or infinitely many coprime solutions for almost all f.
The latter holds iff

$$
\sum_{n} q^{n-l_{n}}=\infty
$$

Theorem (Inoue \& Nakada; 2003)
Let $l_{n} \geq n$. Then, the number of coprime solutions of $A P$ with $n \leq N$ satisfies

$$
\left(1-q^{-1}\right) \Psi(N)+\mathcal{O}\left(\Psi(N)^{1 / 2}(\log \Psi(N))^{3 / 2+\epsilon}\right) \quad \text { a.s. }
$$

where $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$.

Some Notation

Assume that

$$
\sum_{n} q^{n-l_{n}}=\infty \quad \text { and } \quad l_{n} \text { increasing. }
$$

Note that the latter implies that $l_{n} \geq n$ and $l_{n}-n$ is non-decreasing.

Some Notation

Assume that

$$
\sum_{n} q^{n-l_{n}}=\infty \quad \text { and } \quad l_{n} \text { increasing. }
$$

Note that the latter implies that $l_{n} \geq n$ and $l_{n}-n$ is non-decreasing.
Define

$$
F(N)= \begin{cases}q^{-2 l-2}\left(q^{l+1}(q-1)-(2 l+1)(q-1)^{2}\right) N, & \text { if } l_{n}-n \rightarrow l \\ \left(1-q^{-1}\right) \Psi(N), & \text { if } l_{n}-n \rightarrow \infty\end{cases}
$$

where $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$.

Some Notation

Assume that

$$
\sum_{n} q^{n-l_{n}}=\infty \quad \text { and } \quad l_{n} \text { increasing. }
$$

Note that the latter implies that $l_{n} \geq n$ and $l_{n}-n$ is non-decreasing.
Define

$$
F(N)= \begin{cases}q^{-2 l-2}\left(q^{l+1}(q-1)-(2 l+1)(q-1)^{2}\right) N, & \text { if } l_{n}-n \rightarrow l \\ \left(1-q^{-1}\right) \Psi(N), & \text { if } l_{n}-n \rightarrow \infty\end{cases}
$$

where $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$.
Finally set

$$
Z_{N}(f)=\# \text { coprime solutions of AP with } n \leq N
$$

CLT and LIL

Theorem (Deligero \& Nakada; 2004)
As $N \rightarrow \infty$,

$$
\frac{Z_{N}-\left(1-q^{-1}\right) \Psi(N)}{\sqrt{F(N)}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)
$$

where $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$.

CLT and LIL

Theorem (Deligero \& Nakada; 2004)
As $N \rightarrow \infty$,

$$
\frac{Z_{N}-\left(1-q^{-1}\right) \Psi(N)}{\sqrt{F(N)}} \xrightarrow{d} \mathcal{N}(0,1)
$$

where $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$.

Theorem (Deligero, F., Nakada; 2007)
We have,

$$
\limsup _{N \rightarrow \infty} \frac{\left|Z_{N}(f)-\left(1-q^{-1}\right) \Psi(N)\right|}{\sqrt{2 F(N) \log \log F(N)}}=1 \quad \text { a.s., }
$$

where $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$.

Approximation Problem - All Solutions

For $f \in \mathbb{L}$ consider:

$$
\begin{equation*}
\left|f-\frac{P}{Q}\right|<\frac{1}{q^{n+l_{n}}}, \operatorname{deg} Q=n, Q \text { monic, } \tag{AP}
\end{equation*}
$$

where

- $P, Q \in \mathbb{F}_{q}[T], Q \neq 0$;
- l_{n} is a sequence of non-negative integers.

Question:

For a "typical" f (with respect to m), what can be said about the number of pairs (P, Q) solving the above Diophantine inequality?

A Result of Nakada \& Natsui

Theorem (Nakada \& Natsui; 2006)
Assume that
(i) l_{n} is increasing, $\sum_{n} q^{n-l_{n}}=\infty$;
(ii) The sequence recursively defined by

$$
\begin{aligned}
& j_{1}=\min \left\{n \geq 2: l_{n}-l_{n-1}>1\right\} \\
& j_{k}=\min \left\{n>j_{k-1}: l_{n}-l_{n-1}>1\right\}
\end{aligned}
$$

is lacunary.
Then, the number of solutions of $A P$ with $n \leq N$ is asymptotic to

$$
\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}
$$

An improved Result

Theorem (F.)
Let $l_{n} \geq n$. Then, the number of solutions of $A P$ with $n \leq N$ satisfies

$$
\Psi(N)+\mathcal{O}\left(\Psi(N)^{1 / 2}(\log \Psi(N))^{2+\epsilon}\right) \quad \text { a.s. }
$$

where

$$
\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}
$$

Inhomogeneous Diophantine Approximation

For $f, g \in \mathbb{L}$ consider:

$$
\begin{equation*}
|Q f-g-P|<\frac{1}{q^{l_{n}}}, \operatorname{deg} Q=n, Q \text { monic, } \tag{IAP}
\end{equation*}
$$

where P, Q and l_{n} are as before.

Inhomogeneous Diophantine Approximation

For $f, g \in \mathbb{L}$ consider:

$$
\begin{equation*}
|Q f-g-P|<\frac{1}{q^{l_{n}}}, \operatorname{deg} Q=n, Q \text { monic, } \tag{IAP}
\end{equation*}
$$

where P, Q and l_{n} are as before.

Different cases:

(D) Double metric case: both f, g random;

Inhomogeneous Diophantine Approximation

For $f, g \in \mathbb{L}$ consider:

$$
\begin{equation*}
|Q f-g-P|<\frac{1}{q^{l_{n}}}, \operatorname{deg} Q=n, Q \text { monic, } \tag{IAP}
\end{equation*}
$$

where P, Q and l_{n} are as before.

Different cases:

(D) Double metric case: both f, g random;
(S) Single metric cases:
(S1) g fixed, f random;
(S2) f fixed, g random.

Double Metric Case

Theorem (Ma \& Su; 2008)
IAP for (D) has either finitely or infinitely many solutions for almost all (f, g). The latter holds iff

$$
\sum_{n} q^{n-l_{n}}=\infty
$$

Double Metric Case

Theorem (Ma \& Su; 2008)
IAP for (D) has either finitely or infinitely many solutions for almost all (f, g). The latter holds iff

$$
\sum_{n} q^{n-l_{n}}=\infty
$$

Theorem (F.)
Let $l_{n} \geq n$. Then, the number of solutions of IAP for (D) with $n \leq N$ satisfies

$$
\Psi(N)+\mathcal{O}\left(\Psi(N)^{1 / 2}(\log \Psi(N))^{3 / 2+\epsilon}\right) \quad \text { a.s. }
$$

where $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$.

Single Metric Cases

Theorem (F.)
Let $l_{n} \geq n$. Then, the number of all solutions of IAP for (S1) with $n \leq N$ satisfies

$$
\Psi(N)+\mathcal{O}\left(\Psi(N)^{1 / 2}(\log \Psi(N))^{2+\epsilon}\right) \quad \text { a.s. }
$$

where

$$
\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}
$$

Single Metric Cases

Theorem (F.)
Let $l_{n} \geq n$. Then, the number of all solutions of IAP for (S1) with $n \leq N$ satisfies

$$
\Psi(N)+\mathcal{O}\left(\Psi(N)^{1 / 2}(\log \Psi(N))^{2+\epsilon}\right) \quad \text { a.s. }
$$

where

$$
\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}
$$

Theorem (F.)

A similar result for (S2) cannot hold.
More precisely, for any l_{n} there exists an f such that the number of solutions of (S2) is finite almost surely.

Restricted Diophantine Approximation

For $f, g \in \mathbb{L}$ consider:

$$
\begin{equation*}
|F(Q) f-g-P|<\frac{1}{q^{l_{n}}}, \operatorname{deg} Q=n, Q \text { monic, } \tag{RAP}
\end{equation*}
$$

where P, Q, l_{n} are as before and F is a map from $\mathbb{F}_{q}[T]$ to $\mathbb{F}_{q}[T]$.

Restricted Diophantine Approximation

For $f, g \in \mathbb{L}$ consider:

$$
\begin{equation*}
|F(Q) f-g-P|<\frac{1}{q^{l_{n}}}, \operatorname{deg} Q=n, Q \text { monic, } \tag{RAP}
\end{equation*}
$$

where P, Q, l_{n} are as before and F is a map from $\mathbb{F}_{q}[T]$ to $\mathbb{F}_{q}[T]$.

Assumption and Notation:

- $\operatorname{deg} Q \leq \operatorname{deg} Q^{\prime} \quad \Rightarrow \quad F(Q) \leq F\left(Q^{\prime}\right)$;

Restricted Diophantine Approximation

For $f, g \in \mathbb{L}$ consider:

$$
\begin{equation*}
|F(Q) f-g-P|<\frac{1}{q^{l_{n}}}, \operatorname{deg} Q=n, Q \text { monic, } \tag{RAP}
\end{equation*}
$$

where P, Q, l_{n} are as before and F is a map from $\mathbb{F}_{q}[T]$ to $\mathbb{F}_{q}[T]$.

Assumption and Notation:

- $\operatorname{deg} Q \leq \operatorname{deg} Q^{\prime} \quad \Rightarrow \quad F(Q) \leq F\left(Q^{\prime}\right)$;
- Set

$$
\mathcal{F}=\{Q: Q \text { monic and } F(Q) \neq 0\}
$$

and

$$
\mathcal{F}_{n}=\{Q: Q \in \mathcal{F}, \operatorname{deg} Q=n\} .
$$

A Theorem for Special F

Theorem (F.)
Let $l_{n} \geq n$ and assume that $F(Q) \in\{Q, 0\}$. Then, the number of solutions of RAP with $Q \in \mathcal{F}$ and $n \leq N$ satisfies

$$
\Psi(N, \mathcal{F})+\mathcal{O}\left(\Psi(N)^{1 / 2}(\log \Psi(N))^{2+\epsilon}\right) \quad \text { a.s. }
$$

where

$$
\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}, \quad \Psi(N, \mathcal{F})=\sum_{n \leq N} \# \mathcal{F}_{n} q^{-l_{n}} .
$$

A Theorem for Special F

Theorem (F.)

Let $l_{n} \geq n$ and assume that $F(Q) \in\{Q, 0\}$. Then, the number of solutions of RAP with $Q \in \mathcal{F}$ and $n \leq N$ satisfies

$$
\Psi(N, \mathcal{F})+\mathcal{O}\left(\Psi(N)^{1 / 2}(\log \Psi(N))^{2+\epsilon}\right) \quad \text { a.s. }
$$

where

$$
\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}, \quad \Psi(N, \mathcal{F})=\sum_{n \leq N} \# \mathcal{F}_{n} q^{-l_{n}} .
$$

Remark:

This gives a meaningful formula whenever

$$
\liminf _{n \rightarrow \infty} \# \mathcal{F}_{n} q^{-n}>0
$$

Consequences

Corollary

Let $l_{n} \geq n$ and set $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$.
(i) Let $C, D \in \mathbb{F}_{q}[T]$ with $\operatorname{deg} C<\operatorname{deg} D$. Then, the number of solutions of IAP with $Q \equiv C(D)$ and $n \leq N$ satisfies

$$
\frac{1}{|D|} \Psi(N)+\mathcal{O}\left((\Psi(N))^{1 / 2}(\log \Psi(N))^{2+\epsilon}\right) \quad \text { a.s. }
$$

Consequences

Corollary

Let $l_{n} \geq n$ and set $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$.
(i) Let $C, D \in \mathbb{F}_{q}[T]$ with $\operatorname{deg} C<\operatorname{deg} D$. Then, the number of solutions of IAP with $Q \equiv C(D)$ and $n \leq N$ satisfies

$$
\frac{1}{|D|} \Psi(N)+\mathcal{O}\left((\Psi(N))^{1 / 2}(\log \Psi(N))^{2+\epsilon}\right) \quad \text { a.s. }
$$

(ii) The number of solutions of IAP with Q square-free and $n \leq N$ satisfies

$$
\left(1-q^{-1}\right) \Psi(N)+\mathcal{O}\left((\Psi(N))^{1 / 2}(\log \Psi(N))^{2+\epsilon}\right) \quad \text { a.s. }
$$

A Theorem for General F

Theorem (F.)

Let $l_{n} \geq n$. Then, the number of solutions of $R A P$ with $Q \in \mathcal{F}$ and $n \leq N$ satisfies

$$
\Psi(N, \mathcal{F})+\mathcal{O}\left(\Psi_{0}(N)^{1 / 2}\left(\log \Psi_{0}(N)\right)^{3 / 2+\epsilon}\right) \quad \text { a.s. }
$$

where

$$
\Psi(N, \mathcal{F})=\sum_{n \leq N} \# \mathcal{F}_{n} q^{-l_{n}}
$$

and

$$
\Psi_{0}(N)=\sum_{n \leq N} q^{-l_{n}} \sum_{m \leq n} \sum_{Q \in \mathcal{F}_{n}} \sum_{Q^{\prime} \in \mathcal{F}_{m}} \frac{\left|\operatorname{gcd}\left(F(Q), F\left(Q^{\prime}\right)\right)\right|}{|F(Q)|}
$$

Consequences

Corollary
Let $l_{n} \geq n$.
(i) The number of solutions of IAP with Q irreducible and $n \leq N$ satisfies

$$
\Psi_{1}(N)+\mathcal{O}\left(\Psi_{1}(N)^{1 / 2}\left(\log \Psi_{1}(N)\right)^{3 / 2+\epsilon}\right) \quad \text { a.s. }
$$

where $\Psi_{1}(N)=\sum_{n \leq N} n^{-1} q^{n-l_{n}}$.

Consequences

Corollary

Let $l_{n} \geq n$.
(i) The number of solutions of IAP with Q irreducible and $n \leq N$ satisfies

$$
\Psi_{1}(N)+\mathcal{O}\left(\Psi_{1}(N)^{1 / 2}\left(\log \Psi_{1}(N)\right)^{3 / 2+\epsilon}\right) \quad \text { a.s. }
$$

where $\Psi_{1}(N)=\sum_{n \leq N} n^{-1} q^{n-l_{n}}$.
(ii) Let $F(Q)=Q^{t}$ with $t \geq 2$. Then, the number of solutions of RAP with $n \leq N$ satisfies

$$
\Psi(N)+\mathcal{O}\left(\Psi(N)^{1 / 2}(\log \Psi(N))^{3 / 2+\epsilon}\right) \quad \text { a.s. }
$$

where $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$.

Simultaneous Diophantine approximation

For $\left(f_{1}, \ldots, f_{d}\right) \in \mathbb{L} \times \cdots \times \mathbb{L}$ consider:

$$
\begin{equation*}
\left|f_{j}-\frac{P_{j}}{Q}\right|<\frac{1}{q^{n+l_{n}^{(j)}}}, 1 \leq j \leq d, \operatorname{deg} Q=n, Q \text { monic }, \tag{SAP}
\end{equation*}
$$

where P_{j}, Q and $l_{n}^{(j)}$ are as before. Set $l_{n}=\sum_{j} l_{n}^{(j)}$.

Simultaneous Diophantine approximation

For $\left(f_{1}, \ldots, f_{d}\right) \in \mathbb{L} \times \cdots \times \mathbb{L}$ consider:

$$
\begin{equation*}
\left|f_{j}-\frac{P_{j}}{Q}\right|<\frac{1}{q^{n+l_{n}^{(j)}}}, 1 \leq j \leq d, \operatorname{deg} Q=n, Q \text { monic, } \tag{SAP}
\end{equation*}
$$

where P_{j}, Q and $l_{n}^{(j)}$ are as before. Set $l_{n}=\sum_{j} l_{n}^{(j)}$.
Theorem (F.)
Let $l_{n} \geq n$. Then, the number of all solutions of $A P$ with $n \leq N$ satisfies

$$
\Psi(N)+\mathcal{O}\left(\Psi(N)^{1 / 2}(\log \Psi(N))^{2+\epsilon}\right) \quad \text { a.s. }
$$

where

$$
\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}
$$

Back to the Case of Coprime Solutions

Theorem (F.)
SAP has either finitely or infinitely many coprime solutions for almost all
f. The latter holds iff

$$
\sum_{n} q^{n-l_{n}}=\infty
$$

Back to the Case of Coprime Solutions

Theorem (F.)
SAP has either finitely or infinitely many coprime solutions for almost all f. The latter holds iff

$$
\sum_{n} q^{n-l_{n}}=\infty
$$

Theorem (F.)
Let $l_{n} \geq n$. Then, the number of coprime solutions of SAP with $n \leq N$ satisfies

$$
c_{0} \Psi(N)+\mathcal{O}\left(\Psi(N)^{1 / 2+\epsilon}\right) \quad \text { a.s. }
$$

where $\Psi(N)=\sum_{n \leq N} q^{n-l_{n}}$ and $c_{0}>0$ is some constant.

Thanks for Your Attention!

