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Notation

Field of formal Laurent series:

Fq((T−1)) = {f = anTn + an−1T
n−1 + · · · : aj ∈ Fq, an 6= 0} ∪ {0}.

Valuation induced by the general degree function:

|f | = qn, |0| = 0.

Analogue of [0, 1):

L = {f ∈ Fq((T−1)) : |f | < 1}.

Restricting | · | to L gives compact topological group. Denote by m
the unique, translation-invariant (Haar) probability measure.
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Approximation Problem - Coprime Solutions

For f ∈ L consider:∣∣∣∣f − P

Q

∣∣∣∣ <
1

qn+ln
, deg Q = n, Q monic, (AP)

where

P,Q ∈ Fq[T ], Q 6= 0;

ln is a sequence of non-negative integers.

Question:

For a “typical” f (with respect to m), what can be said about the number
of pairs (P,Q) with gcd(P,Q) = 1 solving the above Diophantine
inequality?
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Two Results of Inoue & Nakada

Theorem (Inoue & Nakada; 2003)

AP has either finitely or infinitely many coprime solutions for almost all f .
The latter holds iff ∑

n

qn−ln = ∞.

Theorem (Inoue & Nakada; 2003)

Let ln ≥ n. Then, the number of coprime solutions of AP with n ≤ N
satisfies

(1− q−1)Ψ(N) +O
(
Ψ(N)1/2 (log Ψ(N))3/2+ε

)
a.s.,

where Ψ(N) =
∑

n≤N qn−ln .
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Some Notation

Assume that ∑
n

qn−ln = ∞ and ln increasing.

Note that the latter implies that ln ≥ n and ln − n is non-decreasing.

Define

F (N) =

{
q−2l−2

(
ql+1(q − 1)− (2l + 1)(q − 1)2

)
N, if ln − n → l;

(1− q−1)Ψ(N), if ln − n →∞,

where Ψ(N) =
∑

n≤N qn−ln .

Finally set

ZN (f) = # coprime solutions of AP with n ≤ N.

Michael Fuchs (NCTU) MDA in positive characteristic Fq9, July 16th, 2009 5 / 20



Some Notation

Assume that ∑
n

qn−ln = ∞ and ln increasing.

Note that the latter implies that ln ≥ n and ln − n is non-decreasing.

Define

F (N) =

{
q−2l−2

(
ql+1(q − 1)− (2l + 1)(q − 1)2

)
N, if ln − n → l;

(1− q−1)Ψ(N), if ln − n →∞,

where Ψ(N) =
∑

n≤N qn−ln .

Finally set

ZN (f) = # coprime solutions of AP with n ≤ N.

Michael Fuchs (NCTU) MDA in positive characteristic Fq9, July 16th, 2009 5 / 20



Some Notation

Assume that ∑
n

qn−ln = ∞ and ln increasing.

Note that the latter implies that ln ≥ n and ln − n is non-decreasing.

Define

F (N) =

{
q−2l−2

(
ql+1(q − 1)− (2l + 1)(q − 1)2

)
N, if ln − n → l;

(1− q−1)Ψ(N), if ln − n →∞,

where Ψ(N) =
∑

n≤N qn−ln .

Finally set

ZN (f) = # coprime solutions of AP with n ≤ N.

Michael Fuchs (NCTU) MDA in positive characteristic Fq9, July 16th, 2009 5 / 20



CLT and LIL

Theorem (Deligero & Nakada; 2004)

As N →∞,
ZN − (1− q−1)Ψ(N)√

F (N)
d−→ N (0, 1),

where Ψ(N) =
∑

n≤N qn−ln .

Theorem (Deligero, F., Nakada; 2007)

We have,

lim sup
N→∞

|ZN (f)− (1− q−1)Ψ(N)|√
2F (N) log log F (N)

= 1 a.s.,

where Ψ(N) =
∑

n≤N qn−ln .
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Approximation Problem - All Solutions

For f ∈ L consider:∣∣∣∣f − P

Q

∣∣∣∣ <
1

qn+ln
, deg Q = n, Q monic, (AP)

where

P,Q ∈ Fq[T ], Q 6= 0;

ln is a sequence of non-negative integers.

Question:

For a “typical” f (with respect to m), what can be said about the number
of pairs (P,Q) solving the above Diophantine inequality?
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A Result of Nakada & Natsui

Theorem (Nakada & Natsui; 2006)

Assume that

(i) ln is increasing,
∑

n qn−ln = ∞;

(ii) The sequence recursively defined by

j1 = min{n ≥ 2 : ln − ln−1 > 1};
jk = min{n > jk−1 : ln − ln−1 > 1}

is lacunary.

Then, the number of solutions of AP with n ≤ N is asymptotic to

Ψ(N) =
∑
n≤N

qn−ln .
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An improved Result

Theorem (F.)

Let ln ≥ n. Then, the number of solutions of AP with n ≤ N satisfies

Ψ(N) +O
(
Ψ(N)1/2 (log Ψ(N))2+ε

)
a.s.,

where
Ψ(N) =

∑
n≤N

qn−ln .
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Inhomogeneous Diophantine Approximation

For f, g ∈ L consider:

|Qf − g − P | < 1
qln

, deg Q = n, Q monic, (IAP)

where P,Q and ln are as before.

Different cases:

(D) Double metric case: both f, g random;

(S) Single metric cases:

(S1) g fixed, f random;

(S2) f fixed, g random.
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Double Metric Case

Theorem (Ma & Su; 2008)

IAP for (D) has either finitely or infinitely many solutions for almost all
(f, g). The latter holds iff ∑

n

qn−ln = ∞.

Theorem (F.)

Let ln ≥ n. Then, the number of solutions of IAP for (D) with n ≤ N
satisfies

Ψ(N) +O
(
Ψ(N)1/2 (log Ψ(N))3/2+ε

)
a.s.,

where Ψ(N) =
∑

n≤N qn−ln .
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Single Metric Cases

Theorem (F.)

Let ln ≥ n. Then, the number of all solutions of IAP for (S1) with n ≤ N
satisfies

Ψ(N) +O
(
Ψ(N)1/2 (log Ψ(N))2+ε

)
a.s.,

where
Ψ(N) =

∑
n≤N

qn−ln .

Theorem (F.)

A similar result for (S2) cannot hold.

More precisely, for any ln there exists an f such that the number of
solutions of (S2) is finite almost surely.
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Restricted Diophantine Approximation

For f, g ∈ L consider:

|F (Q)f − g − P | < 1
qln

, deg Q = n, Q monic, (RAP)

where P,Q, ln are as before and F is a map from Fq[T ] to Fq[T ].

Assumption and Notation:

deg Q ≤ deg Q′ ⇒ F (Q) ≤ F (Q′);
Set

F = {Q : Q monic and F (Q) 6= 0}.

and
Fn = {Q : Q ∈ F ,deg Q = n}.
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A Theorem for Special F

Theorem (F.)

Let ln ≥ n and assume that F (Q) ∈ {Q, 0}. Then, the number of
solutions of RAP with Q ∈ F and n ≤ N satisfies

Ψ(N,F) +O
(
Ψ(N)1/2 (log Ψ(N))2+ε

)
a.s.,

where
Ψ(N) =

∑
n≤N

qn−ln , Ψ(N,F) =
∑
n≤N

#Fnq−ln .

Remark:

This gives a meaningful formula whenever

lim inf
n→∞

#Fnq−n > 0.
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Consequences

Corollary

Let ln ≥ n and set Ψ(N) =
∑

n≤N qn−ln .

(i) Let C,D ∈ Fq[T ] with deg C < deg D. Then, the number of
solutions of IAP with Q ≡ C (D) and n ≤ N satisfies

1
|D|

Ψ(N) +O
(
(Ψ(N))1/2 (log Ψ(N))2+ε

)
a.s.

(ii) The number of solutions of IAP with Q square-free and n ≤ N
satisfies

(1− q−1)Ψ(N) +O
(
(Ψ(N))1/2 (log Ψ(N))2+ε

)
a.s.
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A Theorem for General F

Theorem (F.)

Let ln ≥ n. Then, the number of solutions of RAP with Q ∈ F and
n ≤ N satisfies

Ψ(N,F) +O
(
Ψ0(N)1/2 (log Ψ0(N))3/2+ε

)
a.s.,

where
Ψ(N,F) =

∑
n≤N

#Fnq−ln

and

Ψ0(N) =
∑
n≤N

q−ln
∑
m≤n

∑
Q∈Fn

∑
Q′∈Fm

| gcd(F (Q), F (Q′))|
|F (Q)|
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Consequences

Corollary

Let ln ≥ n.

(i) The number of solutions of IAP with Q irreducible and n ≤ N
satisfies

Ψ1(N) +O
(
Ψ1(N)1/2 (log Ψ1(N))3/2+ε

)
a.s.,

where Ψ1(N) =
∑

n≤N n−1qn−ln .

(ii) Let F (Q) = Qt with t ≥ 2. Then, the number of solutions of RAP
with n ≤ N satisfies

Ψ(N) +O
(
Ψ(N)1/2 (log Ψ(N))3/2+ε

)
a.s.,

where Ψ(N) =
∑

n≤N qn−ln .
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Simultaneous Diophantine approximation

For (f1, . . . , fd) ∈ L× · · · × L consider:∣∣∣∣fj −
Pj

Q

∣∣∣∣ <
1

qn+l
(j)
n

, 1 ≤ j ≤ d, deg Q = n, Q monic, (SAP)

where Pj , Q and l
(j)
n are as before. Set ln =

∑
j l

(j)
n .

Theorem (F.)

Let ln ≥ n. Then, the number of all solutions of AP with n ≤ N satisfies

Ψ(N) +O
(
Ψ(N)1/2 (log Ψ(N))2+ε

)
a.s.,

where
Ψ(N) =

∑
n≤N

qn−ln .
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Back to the Case of Coprime Solutions

Theorem (F.)

SAP has either finitely or infinitely many coprime solutions for almost all
f . The latter holds iff ∑

n

qn−ln = ∞.

Theorem (F.)

Let ln ≥ n. Then, the number of coprime solutions of SAP with n ≤ N
satisfies

c0Ψ(N) +O
(
Ψ(N)1/2+ε

)
a.s.,

where Ψ(N) =
∑

n≤N qn−ln and c0 > 0 is some constant.

Michael Fuchs (NCTU) MDA in positive characteristic Fq9, July 16th, 2009 19 / 20



Back to the Case of Coprime Solutions

Theorem (F.)

SAP has either finitely or infinitely many coprime solutions for almost all
f . The latter holds iff ∑

n

qn−ln = ∞.

Theorem (F.)

Let ln ≥ n. Then, the number of coprime solutions of SAP with n ≤ N
satisfies

c0Ψ(N) +O
(
Ψ(N)1/2+ε

)
a.s.,

where Ψ(N) =
∑

n≤N qn−ln and c0 > 0 is some constant.

Michael Fuchs (NCTU) MDA in positive characteristic Fq9, July 16th, 2009 19 / 20



Thanks for Your Attention!
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