Classification of Rosenbloom-Tsfasman Block Codes

Marcelo Firer Luciano Panek Marcelo Muniz

July 15, 2009

Rosenbloom-Tsfasman Block Spaces and Codes

Rosenbloom-Tsfasman Block Spaces and Codes

Classification

Rosenbloom-Tsfasman Block Spaces and Codes

Classification

Fundamental Properties of π -Codes

Packing Radius and Perfect Codes Covering Radius and Quasi-Perfect Codes

Syndromes and Decoding

Rosenbloom-Tsfasman Block Spaces and Codes

Classification

Fundamental Properties of π-Codes
Packing Radius and Perfect Codes
Covering Radius and Quasi-Perfect Codes
Syndromes and Decoding

[Brualdi, Graves, Lawrence, 1995]

Notation and Definitions

▶ P a poset (in general, on $[n] = \{1, 2, ..., n\}$).

[Brualdi, Graves, Lawrence, 1995]

Notation and Definitions

- ▶ P a poset (in general, on $[n] = \{1, 2, ..., n\}$).
- $V = \mathbb{F}^n$

[Brualdi, Graves, Lawrence, 1995]

Notation and Definitions

- ▶ P a poset (in general, on $[n] = \{1, 2, ..., n\}$).
- $V = \mathbb{F}^n$
- ▶ P-weight on \mathbb{F}^n :

$$\omega_P(v) = |\langle supp(v) \rangle|$$

[Brualdi, Graves, Lawrence, 1995]

Notation and Definitions

- ▶ *P* a poset (in general, on $[n] = \{1, 2, ..., n\}$).
- $V = \mathbb{F}^n$
- ▶ P-weight on \mathbb{F}^n :

$$\omega_P(v) = |\langle supp(v) \rangle|$$

• where $supp(v) = \{i; v_i \neq 0\}$

[Brualdi, Graves, Lawrence, 1995]

Notation and Definitions

- ▶ *P* a poset (in general, on $[n] = \{1, 2, ..., n\}$).
- $V = \mathbb{F}^n$
- ▶ P-weight on \mathbb{F}^n :

$$\omega_P(v) = |\langle supp(v) \rangle|$$

- where $supp(v) = \{i; v_i \neq 0\}$
- $ightharpoonup \langle supp(v) \rangle = ideal generated by <math>supp(v)$

Particular Cases

▶ Particular case 1: Hamming metric

- ▶ Particular case 1: **Hamming metric**
- \blacktriangleright $i \le j \Leftrightarrow i = j$

- ▶ Particular case 1: **Hamming metric**
- \triangleright $i \le j \Leftrightarrow i = j$
- Particular case 2: Rosenbloom Tsfasman

- ▶ Particular case 1: Hamming metric
- \triangleright $i \le j \Leftrightarrow i = j$
- Particular case 2: Rosenbloom Tsfasman
- ▶ $1 < 2 < \cdots < n$

- ▶ Particular case 1: **Hamming metric**
- \triangleright $i \le j \Leftrightarrow i = j$
- ► Particular case 2: Rosenbloom Tsfasman
- ▶ $1 < 2 < \cdots < n$

$$\omega_P(v) = \max\{i; v_i \neq 0\}$$

[Feng, Xu and Hickernell, 2006]

Notation and Definitions

• $\pi = (k_1, k_2, \dots, k_n)$ a partition of $N \in \mathbb{N}$

[Feng, Xu and Hickernell, 2006]

Notation and Definitions

- ▶ $\pi = (k_1, k_2, \dots, k_n)$ a partition of $N \in \mathbb{N}$
- $V_i = \mathbb{F}^{k_i}$

[Feng, Xu and Hickernell, 2006]

Notation and Definitions

- \bullet $\pi = (k_1, k_2, \dots, k_n)$ a partition of $N \in \mathbb{N}$
- $V_i = \mathbb{F}^{k_i}$
- ▶ the π -metric on $V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$:

$$\omega_{\pi}(v) = |supp_{\pi}(v)|$$

[Feng, Xu and Hickernell, 2006]

Notation and Definitions

- \bullet $\pi = (k_1, k_2, \dots, k_n)$ a partition of $N \in \mathbb{N}$
- $V_i = \mathbb{F}^{k_i}$
- ▶ the π -metric on $V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$:

$$\omega_{\pi}(v) = |supp_{\pi}(v)|$$

where $v = v_1 + \cdots + v_n, v_i \in V_i$, and $supp_{\pi}(v) = \{i; v_i \neq 0\}$

Rosenbloom-Tsfaman Block Codes

Definition

► The Rosenbloom-Tsfasman block weight w_{π} (π -weight) of a vector $0 \neq v = v_1 + v_2 + ... + v_n \in V$ is

$$w_{\pi}(v) = \max\{i : v_i \neq \mathbf{0}\};$$

Rosenbloom-Tsfaman Block Codes

Definition

► The Rosenbloom-Tsfasman block weight w_{π} (π -weight) of a vector $0 \neq v = v_1 + v_2 + ... + v_n \in V$ is

$$w_{\pi}(v) = \max\{i : v_i \neq \mathbf{0}\};$$

► The Rosenbloom-Tsfasman block metric (or simply π -metric):

$$d_{\pi}(u,v) := w_{\pi}(u-v)$$
.

Rosenbloom-Tsfaman Block Codes

Definition

► The Rosenbloom-Tsfasman block weight w_{π} (π -weight) of a vector $0 \neq v = v_1 + v_2 + ... + v_n \in V$ is

$$w_{\pi}(v) = \max\{i : v_i \neq \mathbf{0}\};$$

► The Rosenbloom-Tsfasman block metric (or simply π -metric):

$$d_{\pi}(u,v):=w_{\pi}(u-v)$$
.

► The π -Rosenbloom-Tsfasman space (or simply a π -space): (V, d_{π})

Minimal Weight

► Definition

The π -minimal distance of a linear code $C \subseteq V$:

$$d_{\pi}=d_{\pi}\left(\mathcal{C}\right):=\min\left\{ d_{\pi}\left(c,c'
ight):c
eq c'\in\mathcal{C}
ight\}$$

Minimal Weight

▶ Definition

The π -minimal distance of a linear code $C \subseteq V$:

$$d_{\pi}=d_{\pi}\left(\mathcal{C}\right):=\min\left\{ d_{\pi}\left(c,c'
ight):c
eq c'\in\mathcal{C}
ight\}$$

▶ Definition

The π -minimal weight of C:

$$w_{\pi}\left(C\right):=\min\left\{ w_{\pi}\left(c\right):c\neq\mathbf{0}\in C\right\} .$$

▶ Definition

The generalized Rosenbloom-Tsfasman block weight (or π -weight) of $D \subseteq V$:

$$||D|| := \max\{w_{\pi}(x) : x \in D\};$$

▶ Definition

The generalized Rosenbloom-Tsfasman block weight (or π -weight) of $D \subseteq V$:

$$||D||:=\max\left\{ w_{\pi}\left(x
ight):x\in D
ight\} ;$$

Definition

The *r*-th Rosenbloom-Tsfasman block weight (or *r*-th π -weight) of a linear code $C \subseteq V$:

$$d_r = d_r(C) := \min \{ ||D|| : D \subseteq C, \dim(D) = r \}$$

▶ Definition

The π -generalized weight hierarchy (d_1, d_2, \ldots, d_k) of an $[N; k; d_1, \ldots, d_k]$ linear code.

▶ Definition

The π -generalized weight hierarchy (d_1, d_2, \ldots, d_k) of an $[N; k; d_1, \ldots, d_k]$ linear code.

▶ **Remark:** The generalized weight hierarchy is increasing but not necessarily strict.

Rosenbloom-Tsfasman Block Spaces and Codes

Classification

Fundamental Properties of π -Codes

Packing Radius and Perfect Codes

Covering Radius and Quasi-Periect Code

Syndromes and Decoding

Best looking generating matrix

BEST LOOKING GENERATING MATRIX

$$\begin{pmatrix} 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & (\operatorname{Id}_{s_m \times s_m} | \mathbf{0}) \\ 0 & \cdots & 0 & 0 & \cdots & (\operatorname{Id}_{s_{m-1} \times s_{m-1}} | \mathbf{0}) & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & (\operatorname{Id}_{s_1 \times s_1} | \mathbf{0}) & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \end{pmatrix}$$

(Kind of) Triangular Generating Matrix

Theorem (Extension of Ozen and Siap - 2004)

Let C be an [N; k] linear code. Then C admits a generating matrix of the form

$$\begin{pmatrix} G_{s_{m}\pi_{1}} & \cdots & G_{s_{m}\pi_{t_{1}}} & G_{s_{m}\pi_{t_{1}+1}} & \cdots & G_{s_{m}\pi_{t_{m-1}}} & G_{s_{m}\pi_{t_{m-1}+1}} & \cdots \\ G_{s_{m-1}\pi_{1}} & \cdots & G_{s_{m-1}\pi_{t_{1}}} & G_{s_{m-1}\pi_{t_{1}+1}} & \cdots & G_{s_{m-1}\pi_{t_{m-1}}} & \mathbf{0} & \cdots \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ G_{s_{1}\pi_{1}} & \cdots & G_{s_{1}\pi_{t_{1}}} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \cdots \end{pmatrix}$$

where G_{st} is an $s \times t$ matrix with $s \leq t$, for each $1 \leq i \leq m$ the rank of $G_{s_i\pi_{t_i}}$ is s_i and $s_1 + s_2 + \ldots + s_m = k$.

▶ Definition

A matrix like the one in Theorem 7 is called a matrix of **type** $((s_1, t_1), \ldots, (s_m, t_m))$.

▶ Definition

A matrix like the one in Theorem 7 is called a matrix of **type** $((s_1, t_1), \ldots, (s_m, t_m))$.

▶ Definition

A matrix of type $((s_1, t_1), \ldots, (s_m, t_m))$ is said to be in a **canonical form** if $G_{s_i\pi_j} = \mathbf{0}$ for $1 \le j \le t_i - 1$ and $G_{s_i\pi_{t_i}} = \left(\operatorname{Id}_{s_i\times s_i}|\mathbf{0}_{s_i\times \left(\pi_{t_i}-s_i\right)}\right)$ for every $i=1,\ldots,m$.

Best looking form generating matrix = Canonical Form

$$\begin{pmatrix} 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & (\operatorname{Id}_{s_m \times s_m} | \boldsymbol{0}) \\ 0 & \cdots & 0 & 0 & \cdots & (\operatorname{Id}_{s_{m-1} \times s_{m-1}} | \boldsymbol{0}) & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & (\operatorname{Id}_{s_1 \times s_1} | \boldsymbol{0}) & \boldsymbol{0} & \cdots & \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{0} \end{pmatrix}$$

▶ Definition

A **linear isometry** T of the π -metric space (V, d_{π}) is a linear transformation $T: V \to V$ that preserves π -metric: $d_{\pi}(T(u), T(v)) = d_{\pi}(u, v)$ for every $u, v \in V$.

Definition

A **linear isometry** T of the π -metric space (V, d_{π}) is a linear transformation $T: V \to V$ that preserves π -metric: $d_{\pi}(T(u), T(v)) = d_{\pi}(u, v)$ for every $u, v \in V$.

▶ Definition

Two linear codes $C, C' \subseteq V$ are considered to be **equivalent** if there is a linear isometry $T: V \to V$ such that T(C) = C'.

Theorem (Canonical Form)

Let C be $[N; k; d_1, \ldots, d_k]$ linear code with generating matrix G of type $((s_1, t_1), \ldots, (s_m, t_m))$. Then there is a linear isometry T of (V, d_{π}) such that the linear code T(C) has a generating matrix in a canonical form of type $((s_1, t_1), \ldots, (s_m, t_m))$.

Proof:We start with a generating matrix $G = (g_{ij})$ of type $((s_1, t_1), \dots, (s_m, t_m))$ (existence ensured by previous Theorem).

Theorem (Canonical Form)

Let C be $[N; k; d_1, \ldots, d_k]$ linear code with generating matrix G of type $((s_1, t_1), \ldots, (s_m, t_m))$. Then there is a linear isometry T of (V, d_{π}) such that the linear code T(C) has a generating matrix in a canonical form of type $((s_1, t_1), \ldots, (s_m, t_m))$.

Proof: We start with a generating matrix $G = (g_{ij})$ of type $((s_1, t_1), \ldots, (s_m, t_m))$ (existence ensured by previous Theorem). v_i is the vector defined by the i-th row of G (counted from bottom to top).

Theorem (Canonical Form)

Let C be $[N; k; d_1, \ldots, d_k]$ linear code with generating matrix G of type $((s_1, t_1), \ldots, (s_m, t_m))$. Then there is a linear isometry T of (V, d_{π}) such that the linear code T(C) has a generating matrix in a canonical form of type $((s_1, t_1), \ldots, (s_m, t_m))$.

Proof:We start with a generating matrix $G = (g_{ij})$ of type $((s_1, t_1), \ldots, (s_m, t_m))$ (existence ensured by previous Theorem). v_i is the vector defined by the i-th row of G (counted from bottom to top). $\delta = \{v_1, \ldots, v_k\}$ is a base of C.

▶ Consider the π -decomposition

$$v_i = v_{i1} + \ldots + v_{in},$$

with
$$v_{ij} \in V_j$$

▶ Consider the π -decomposition

$$v_i = v_{i1} + \ldots + v_{in},$$

with $v_{ij} \in V_j$

Define

$$w_i = v_{it_i} = v_i - p_{(1,2,\ldots,t_l-1)}(v_i).$$

with $p_{(1,2,...,t_l-1)}$ projection in the coordinate space.

Notation:

▶ Consider the π -decomposition

$$v_i = v_{i1} + \ldots + v_{in},$$

with $v_{ij} \in V_j$

Define

$$w_i = v_{it_l} = v_i - p_{(1,2,\ldots,t_l-1)}(v_i).$$

with $p_{(1,2,\ldots,t_l-1)}$ projection in the coordinate space.

Notation:

$$v_t^i = v_{s_1 + \dots + s_{t-1} + i}$$
 and $w_t^i = w_{s_1 + \dots + s_{t-1} + i}$

$$\alpha_\iota = \left\{ v_\iota^1, v_\iota^2, \dots, v_\iota^{s_\iota} \right\} \text{ and } \beta_\iota = \left\{ w_\iota^1, w_\iota^2, \dots, w_\iota^{s_\iota} \right\}$$
 are both linearly independent.

$$\alpha_\iota = \left\{ \textit{v}_\iota^1, \textit{v}_\iota^2, \dots, \textit{v}_\iota^{\textit{s}_\iota} \right\} \text{ and } \beta_\iota = \left\{ \textit{w}_\iota^1, \textit{w}_\iota^2, \dots, \textit{w}_\iota^{\textit{s}_\iota} \right\}$$

are both linearly independent.

▶ Let $\widetilde{\beta}_{\iota} = \left\{u_{\iota}^{1}, \ldots, u_{\iota}^{\pi_{t_{\iota}} - s_{\iota}}\right\}$ be such that $\beta_{\iota} \cup \widetilde{\beta}_{\iota}$ is a base for $V_{t_{\iota}}$.

$$\alpha_\iota = \left\{ \mathbf{v}_\iota^1, \mathbf{v}_\iota^2, \dots, \mathbf{v}_\iota^{\mathbf{s}_\iota} \right\} \text{ and } \beta_\iota = \left\{ \mathbf{w}_\iota^1, \mathbf{w}_\iota^2, \dots, \mathbf{w}_\iota^{\mathbf{s}_\iota} \right\}$$

are both linearly independent.

- ▶ Let $\widetilde{\beta}_{\iota} = \left\{u_{\iota}^{1}, \ldots, u_{\iota}^{\pi_{t_{\iota}} s_{\iota}}\right\}$ be such that $\beta_{\iota} \cup \widetilde{\beta}_{\iota}$ is a base for $V_{t_{\iota}}$.
- ▶ It follows that $\alpha_{\iota} \cup \widetilde{\beta}_{\iota}$ is also a base for $V_{t_{\iota}}$.

$$\alpha_\iota = \left\{ \mathbf{v}_\iota^1, \mathbf{v}_\iota^2, \dots, \mathbf{v}_\iota^{\mathbf{s}_\iota} \right\} \text{ and } \beta_\iota = \left\{ \mathbf{w}_\iota^1, \mathbf{w}_\iota^2, \dots, \mathbf{w}_\iota^{\mathbf{s}_\iota} \right\}$$

are both linearly independent.

- ▶ Let $\widetilde{\beta}_{\iota} = \left\{u_{\iota}^{1}, \ldots, u_{\iota}^{\pi_{t_{\iota}} s_{\iota}}\right\}$ be such that $\beta_{\iota} \cup \widetilde{\beta}_{\iota}$ is a base for $V_{t_{\iota}}$.
- lacksquare It follows that $lpha_\iota \cup \widetilde{eta}_\iota$ is also a base for V_{t_ι} .

$$\beta = \bigcup_{\iota=1}^m \left(\beta_\iota \cup \widetilde{\beta}_\iota\right) \text{ and } \alpha = \bigcup_{\iota=1}^m \left(\alpha_\iota \cup \widetilde{\beta}_\iota\right)$$

are bases of $V_{t_1} \oplus V_{t_2} \oplus \ldots \oplus V_{t_m}$.

Let $\Lambda = \{t_1, \dots, t_m\}$, $\gamma_{\iota} = \{e_{\iota}^1, \dots, e_{\iota}^{\pi_{\iota}}\}$ is the canonical base for the block space V_{ι} and

$$\gamma = \bigcup_{\iota \notin \Lambda} \gamma_{\iota},$$

we conclude that

$$\alpha \cup \gamma$$
 and $\beta \cup \gamma$

are bases of V.

$$L\left(v_{\iota}^{i}\right)=w_{\iota}^{i}$$
, $L\left(u_{\iota}^{i}\right)=u_{\iota}^{i}$ and $L\left(e_{\iota}^{i}\right)=e_{\iota}^{i}$ if $\iota\notin\Lambda$.

and

$$L\left(v_{\iota}^{i}\right)=w_{\iota}^{i}$$
, $L\left(u_{\iota}^{i}\right)=u_{\iota}^{i}$ and $L\left(e_{\iota}^{i}\right)=e_{\iota}^{i}$ if $\iota\notin\Lambda$.

and

▶ L(G) = H is a matrix such that $H_{s_i\pi_i} = \mathbf{0}$ for $1 \le j \le t_i - 1$.

$$L\left(v_{\iota}^{i}\right)=w_{\iota}^{i},\ L\left(u_{\iota}^{i}\right)=u_{\iota}^{i}\ \mathrm{and}\ L\left(e_{\iota}^{i}\right)=e_{\iota}^{i}\ \mathrm{if}\ \iota\notin\Lambda.$$

and

- ▶ L(G) = H is a matrix such that $H_{s_i\pi_i} = \mathbf{0}$ for $1 \le j \le t_i 1$.
- ▶ $S: V \rightarrow V$ the L.T. defined by

$$S\left(w_{\iota}^{i}
ight)=e_{t_{\iota}}^{i}$$
, $S\left(u_{\iota}^{j}
ight)=e_{t_{\iota}}^{s_{\iota}+j}$ and $S\left(e_{\iota}^{i}
ight)=e_{\iota}^{i}$ if $\iota\notin\Lambda$.

$$L\left(v_{\iota}^{i}\right)=w_{\iota}^{i},\ L\left(u_{\iota}^{i}\right)=u_{\iota}^{i}\ \mathrm{and}\ L\left(e_{\iota}^{i}\right)=e_{\iota}^{i}\ \mathrm{if}\ \iota\notin\Lambda.$$

and

- ▶ L(G) = H is a matrix such that $H_{s_i\pi_i} = \mathbf{0}$ for $1 \le j \le t_i 1$.
- ▶ $S: V \rightarrow V$ the L.T. defined by

$$S\left(w_{\iota}^{i}
ight)=e_{t_{\iota}}^{i}$$
, $S\left(u_{\iota}^{j}
ight)=e_{t_{\iota}}^{s_{\iota}+j}$ and $S\left(e_{\iota}^{i}
ight)=e_{\iota}^{i}$ if $\iota\notin\Lambda$.

 \triangleright S(L(G)) is a matrix in canonical form.

$$L\left(v_{\iota}^{i}\right)=w_{\iota}^{i},\ L\left(u_{\iota}^{i}\right)=u_{\iota}^{i}\ \mathrm{and}\ L\left(e_{\iota}^{i}\right)=e_{\iota}^{i}\ \mathrm{if}\ \iota\notin\Lambda.$$

and

- ▶ L(G) = H is a matrix such that $H_{s_i\pi_i} = \mathbf{0}$ for $1 \le j \le t_i 1$.
- ▶ $S: V \rightarrow V$ the L.T. defined by

$$S\left(w_{\iota}^{i}\right)=e_{t_{\iota}}^{i}$$
, $S\left(u_{\iota}^{j}\right)=e_{t_{\iota}}^{s_{\iota}+j}$ and $S\left(e_{\iota}^{i}\right)=e_{\iota}^{i}$ if $\iota\notin\Lambda$.

- \triangleright S(L(G)) is a matrix in canonical form.
- \triangleright [-, Muniz, Panek, 2007 ensures both L and S are isometries.

Classification Theorem

Theorem (Classification Theorem)

The canonical form of generating matrices classifies π -codes, in the sense that any equivalence class of codes contains a unique code that has a generating matrix in canonical form.

Proof.

The existence of a code that has a generating matrix in canonical form was proved in the Canonical Form Theorem. The uniqueness of such a code follows from the fact that different matrices in canonical form generate codes with different π -weight hierarchy.

Contents

Rosenbloom-Tsfasman Block Spaces and Codes

Classification

Fundamental Properties of π -Codes

Packing Radius and Perfect Codes Covering Radius and Quasi-Perfect Codes Syndromes and Decoding

Generalized Singleton Bound

Theorem (Generalized Singleton Bound)

Let C be an [N; k] linear code of type $((s_1, t_1), \ldots, (s_m, t_m))$. Then for each $1 \le j \le m$,

$$d_{s_1+s_2+\ldots+s_j}(C) \leq n-m+j$$

In particular, we have the Singleton Bound

$$d_1(C) \leq n - m + 1.$$

Spectrum

Theorem

Let C be a code of type $((s_1, t_1), \ldots, (s_m, t_m))$. If $j = t_i$ for some i, then

$$A_{j}^{(r)} = \sum_{s=1}^{\min\{s_{i},r\}} \frac{(q)_{\sigma_{i-1}}(q)_{s_{i}}}{(q)_{r-s}(q)_{\sigma_{i-1}-r+s}(q)_{s}(q)_{s_{i}-s}q^{(r-s)s(\sigma_{i-1}-r-s)(s_{i}-s)}}$$

and $A_j^{(r)} = 0$ otherwise.

Packing Radius

Definition

The **packing radius** R = R(C) of a linear code C is

$$R:=\max\left\{ r:B_{\pi}\left(c;r
ight)\cap B_{\pi}\left(c';r
ight)=arnothing ext{ for every }c
eq c'\in C
ight\} .$$

Theorem

The packing radius of an $[N; k; d_{\pi}]$ linear π -code is

$$R(C) = d_{\pi}(C) - 1.$$

MDS Codes

Theorem

Let (V, d_{π}) be the π -space with $\pi_i = 1$ for every $1 \le i \le n$ and let C be an [N; k] π -code. Then C is MDS iff C is π -perfect.

Covering Radius

Theorem

An $[N; k; d_1]$ π -code C is quasi-perfect iff

$$p_{(d_1+1,...,n)}(C) = V_{d_1+1} \oplus V_{d_1+2} \oplus ... \oplus V_n$$

and
$$p_{d_1}(C) \neq V_{d_1}$$
.

Syndromes and Decoding

Theorem

Let C be a π -code and $R(C) = d_{\pi}(C) - 1$ its packing radius. If $u \in V$ is a π -coset leader of a coset C_v and $w_{\pi}(u) \leq R(C)$, then u is the unique π -coset leader of C_v .

- M.M.S. Alves, L. Panek and M. Firer, **Error-block codes and poset metrics**, Advances in Mathematics of Communications 2 (2008) 95-111.
- R.A. Brualdi, J.S. Graves and K.M. Lawrence, **Codes with a poset metric**, Discrete Mathematics 147 (1995) 57-72.
- K. Feng, L. Xu and F.J. Hickernell, **Linear error-block codes**, Finite Fields and Their Applications 12 (2006) 638-652.
- S. Ling and F. Özbudak, **Constructions and bounds on linear error-block codes**, Designs, Codes and Cryptography (2007), doi:10.1007/s10623-007-9119-9.
- M. Ozen and I. Siap, On the estructure and decoding of linear codes with respect to Rosenbloom-Tsfasman metric, Selçuk Journal of Applied Mathematics 5 (2) (2004) 25-31.
- 🔋 L. Panek, M. Firer, H.K. Kim and J.Y. Hyun, **Groups of** 🕒 🛢 🗝 ૧૯