New caps in $P G(k, 5)$

Yves Edel

Department of Pure Mathematics and Computer Algebra Ghent University

Fq9 Dublin, 2009

Joint work with Jürgen Bierbrauer

Definition: Caps

A n-cap in $P G(k, q)$ is a set of n points in $P G(k, q)$ no three of which are collinear.
A cap C is called affine If there is a hyperplane containing no points of C.

A n-cap in $P G(k, q)$ is equivalent to a linear q-ary code

$$
[n, n-k-1,4]_{q}
$$

What is the maximum size of a cap in $P G(k, q)$?

Known exact values of $m_{2}(k, q)$:

- $m_{2}(k, 2)=2^{k}$
- $m_{2}(2, q)=q+1$ for q odd.
- $m_{2}(2, q)=q+2$ for q even.
- $m_{2}(3, q)=q^{2}+1$
- $m_{2}(4,3)=20, \quad m_{2}(5,3)=56, \quad m_{2}(4,4)=41$.

What is the maximum size of a cap in $P G(k, q)$?

Lower bounds (constructions) on $m_{2}(4, q), q$ odd:
Theorem (B. E. 2000)
Let q be an odd prime-power. Then there exist in $P G(4, q)$ caps of the following cardinality:

$$
\begin{array}{ll}
\left(5 q^{2}-2 q-7\right) / 2 & \text { if } q \equiv 1(\bmod 8), \\
\left(5 q^{2}-8 q-13\right) / 2 & \text { if } 3<q \equiv 3(\bmod 8), \\
\left(5 q^{2}-6 q-11\right) / 2 & \text { if } q \equiv 5(\bmod 8), \\
\left(5 q^{2}-4 q-9\right) / 2 & \text { if } q \equiv 7(\bmod 8) .
\end{array}
$$

Theorem (B. E. 2001)

There exists a 66 -cap in $P G(4,5)$.

What is the maximum size of a cap in $P G(k, q)$?

Lower bounds (constructions) on $m_{2}(5, q), q$ odd:

Theorem (B. E. 1999; Kroll, Vincenti 2008)

There is a $\left\{(q+1)\left(q^{2}+3\right)\right\}-$ cap in $P G(5, q)$.

Theorem (B. E. 2001)

There exists a 186 -cap in $P G(5,5)$.

A new cap in $P G(5,5)$

Theorem (B. E.)
There exists a 195 -cap in $P G(5,5)$.

Consequences

Theorem (B. E. 1999)

Assume the following exist:

- An n-cap $K_{1} \subset P G(k, q)$ possessing a tangent hyperplane, and
- an m-cap $K_{2} \subset P G(I, q)$ possessing a tangent hyperplane. Then there is an $\{n m-1\}$-cap in $P G(k+l, q)$.

The 26-cap in $P G(3,5)$, the 66 -cap in $P G(4,5)$ and the 195-cap in $P G(5,5)$ each possess a tangent hyperplane.

Corollary (B. E.)

There exists an

- 5069-cap in $P G(8,5)$
- 130951-cap in $P G(11,5) \quad\left(130951=\left(26^{*} 26-1\right)^{*} 194+1\right)$

Lower bounds on $m_{2}(k, 5)$

$k \backslash q$	5	
2	6	
3	26	
4	66	
5	195	186
6	675	
7	1715	
8	5069	4700
9	17124	
10	43876	
11	130951	120740

Notation

Definition

The parity of a nonzero element of \mathbb{F}_{q} is its quadratic remainder symbol.

Definition

With slight abuse of notation we say that $B \subset \mathbb{F}_{q}^{k}$ is an affine cap, if any nontrivial affine linear combination of at most three vectors of B is non-zero.

Definition

Let $A \subset \mathbb{F}_{q}^{k}, x \in \mathbb{F}_{q}^{k}$ and $U \subset \mathbb{F}_{q}^{\prime}$ then we define:

$$
\begin{gathered}
(A, U):=\left\{(a, u) \in \mathbb{F}_{q}^{k+\prime} \mid a \in A, u \in U\right\} \\
(x, U):=\left\{(x, u) \in \mathbb{F}_{q}^{k+\prime} \mid u \in U\right\}
\end{gathered}
$$

Construction

Theorem

Let $A, B \subset \mathbb{F}_{q}^{k}$ such that A is a cap in $P G(k-1, q)$ and B is an affine cap.
Let $U, V \subset \mathbb{F}_{q}^{\prime}$ such that U is a cap in $P G(l-1, q)$ and V is an affine cap.
Furthermore let "condition C" be fulfilled Then

$$
C:=(A, V) \cup(B, U) \subset P G(k+I-1, q)
$$

is a $(|A| \cdot|V|+|B| \cdot|U|)$-cap.

The "condition C"

(... some technical conditions) and for

- any vanishing linear combination of two distinct vectors of A and one vector of B, the coefficients of the two vectors in A have different parity.
- any vanishing linear combination of two vectors of B, which are no multiples of each other, and one vector of A, the coefficients of the two vectors in B have different parity.
- any vanishing linear combination of two distinct vectors of U and one vector of V, the coefficients of the two vectors in U have the same parity.
- any vanishing linear combination of two vectors of V, which are no multiples of each other, and one vector of U, the coefficients of the two vectors in V have the same parity

The Barlotti arc

The arc is the conic section $\mathcal{Q}=V\left(Y^{2}-X Z\right)$ are the points $(x: y: z) \in P G(2, q)$ satisfying $y^{2}-x z=0$.
\mathcal{Q} is a $q+1$-cap in $\operatorname{PG}(2, q)$.

The exterior points are the points on the tangents of \mathcal{Q}, for these:

$$
y^{2}-x z \text { is a non-zero square. }
$$

The remaining points are called the interior points of
 \mathcal{Q}, for these:

The pair A, B

Lemma

Let $q=5$, A the following representatives of the points the arc \mathcal{Q} :

$$
A:=\left\{\left(1, y, y^{2}\right) \mid y \in \mathbb{F}_{q}\right\} \cup\{(0,0,1)\}
$$

and B the following two representatives for each interior point of \mathcal{Q} :

$$
B:=\left\{\left(x, x v, x v^{2}+2 / x\right) \mid x \in \mathbb{F}_{q}^{*}, v \in \mathbb{F}_{q}\right\}
$$

This pair A, B has the needed properties for the construction.

The pair U, V for $I=3$

Lemma
Let $\mathcal{Q}^{\prime}=V\left((X-Z)^{2}-2 Y(X+Z)\right)$.
For $q=5$ the points of \mathcal{Q}^{\prime} are exterior points of \mathcal{Q} and vice versa.

Lemma

Let $q=5$, and U be the following set of represenatives of the $\operatorname{arc} \mathcal{Q}$:

$$
U:=\left\{\left(1, y, y^{2}\right) \mid y \in \mathbb{F}_{q}\right\} \cup\{(0: 0: 1)\}
$$

Let W be the following set of represenatives of \mathcal{Q}^{\prime} :

$$
W=\{(1,0,1),(0,1,0),(0,1,2),(2,1,0),(1,1,2),(2,1,1)\}
$$

Let $V:=W \cup-W$. The pair U, V has the needed properties for the construction.

The pair U, V for $I=2$

Lemma

Let $q=5$,

$$
\begin{gathered}
U:=\{(1,0),(0,1)\} \\
V:=\{(1,1),(-1,1),(1,-1),(-1,-1)\}
\end{gathered}
$$

This pair U, V has the needed properties for the construction.

Extension points

For $q=5, I=2$ the construction leads to a cap with $(q-1)(q+1)+2 q(q-1)=64$ points in $P G(4,5)$.
This cap is extendable by the two points

$$
(0: 0: 0: 1: \pm 2)
$$

For $q=5, I=3$ the construction leads to a cap with $2(q+1)^{2}+(q+1) q(q-1)=192$ points in $P G(5,5)$.
This cap is extendable by the three points of the form

$$
(0: 0: 0: 1: *: *)
$$

