APN Polynomials: An Update

J. F. Dillon
National Security Agency
Fort George G. Meade, MD USA

Fq9, International Conference on Finite Fields and their Applications
University College Dublin
July 2009

Background from Banff

APN Polynomials and Related Codes

J. F. Dillon
National Security Agency
Fort George G. Meade, MD
email:jfdillon@gmail.com

Polynomials over Finite Fields
and Applications
Banff International Research Station
November 2006

What's an APN?

A map $f: V:=G F\left(2^{m}\right) \rightarrow V$ satisfying any of the following:

- $x \mapsto f(x+a)-f(x)$ is 2-to-1 for all $a \neq 0$.

What's an APN?

A map $f: V:=G F\left(2^{m}\right) \rightarrow V$ satisfying any of the following:

- $x \mapsto f(x+a)-f(x)$ is 2-to-1 for all $a \neq 0$.
- \forall distinct a, b, c, d,

$$
a+b+c+d=0 \Rightarrow f(a)+f(b)+f(c)+f(d) \neq 0
$$

i.e. f does not sum to 0 on any 2-flat.

What's an APN?

A map $f: V:=G F\left(2^{m}\right) \rightarrow V$ satisfying any of the following:

- $x \mapsto f(x+a)-f(x)$ is 2-to-1 for all $a \neq 0$.
- \forall distinct a, b, c, d,

$$
a+b+c+d=0 \Rightarrow f(a)+f(b)+f(c)+f(d) \neq 0
$$

i.e. f does not sum to 0 on any 2 -flat.

- If $f(0)=0$ (which we assume from now on) the binary code with parity check matrix

$$
H_{f}:=\left[\begin{array}{ccc}
\cdots & \omega^{j} & \cdots \\
\cdots & f\left(\omega^{j}\right) & \cdots
\end{array}\right]
$$

is double-error-correcting (no fewer than 5 cols sum to 0).

What's an APN?

A map $f: V:=G F\left(2^{m}\right) \rightarrow V$ satisfying any of the following:

- $x \mapsto f(x+a)-f(x)$ is 2-to- 1 for all $a \neq 0$.
- \forall distinct a, b, c, d,

$$
a+b+c+d=0 \Rightarrow f(a)+f(b)+f(c)+f(d) \neq 0
$$

i.e. f does not sum to 0 on any 2 -flat.

- If $f(0)=0$ (which we assume from now on) the binary code with parity check matrix

$$
H_{f}:=\left[\begin{array}{ccc}
\cdots & \omega^{j} & \cdots \\
\cdots & f\left(\omega^{j}\right) & \cdots
\end{array}\right]
$$

is double-error-correcting (no fewer than 5 cols sum to 0).

Example

The BCH $f(x)=x^{3}$ is APN for all dimensions m.

Exceptional APNs

What's known?

monomials $f(x):=x^{d}$

$$
\begin{aligned}
& \# f(x+a)+f(x)+f(a)=b \\
= & \#(x+a)^{d}+x^{d}+a^{d}=b \\
= & \#(x+1)^{d}+x^{d}+1=a^{-d} b
\end{aligned}
$$

Exceptional x^{d} APN for infinitely many fields.
Gold $d=2^{k}+1, \operatorname{gcd}(k, m)=1$

$$
(x+1)^{d}+x^{d}+1=x^{2^{k}}+x \quad 2-\text { to }-1 .
$$

Kasami-WeIch $d=4^{k}-2^{k}+1, \operatorname{gcd}(k, m)=1$

$$
(x+1)^{d}+x^{d}+1=\frac{\left(x+x^{2^{k}}\right)^{2^{k}+1}}{\left(x+x^{2}\right)^{2^{k}}}=\operatorname{MCM}_{k, 2^{k}+1}\left(x+x^{2}\right)
$$

Conjecture (JW etal).
These are the only exceptional exponents.
ref. Janwa, Wilson, McGuire, Jedlicka, Rodier

Exceptional APNs

Theorem (Hernando and McGuire 2009)
 The conjecture is true.

Exceptional APNs

Theorem (Hernando and McGuire 2009)
The conjecture is true.
We look forward to Fernando's talk to hear the details of this milestone result!

The Dual Code

We'll identify the dual code with the binary row space of the matrix $\left[\begin{array}{c}x \\ f(x)\end{array}\right]$, where x ranges over all of L.

The Dual Code

We'll identify the dual code with the binary row space of the matrix $\left[\begin{array}{c}x \\ f(x)\end{array}\right]$, where x ranges over all of L.

The columns comprise the graph Γ_{f} of f.

The Dual Code

We'll identify the dual code with the binary row space of the matrix $\left[\begin{array}{c}x \\ f(x)\end{array}\right]$, where x ranges over all of L.

The columns comprise the graph Γ_{f} of f.

The codewords are

$$
\{\operatorname{Trace}(a x): a \in L\} \oplus\{\operatorname{Trace}(b f(x)): b \in L\} .
$$

CCZ-Equivalence

f and g are CCZ-equivalent if $\Gamma_{g}=\mathcal{L} \Gamma_{f}$ for some \mathcal{L} in $G L\left(L^{2}\right)$.

CCZ-Equivalence

f and g are CCZ-equivalent if $\Gamma_{g}=\mathcal{L} \Gamma_{f}$ for some \mathcal{L} in $G L\left(L^{2}\right)$.
This means that $g=f_{2} \circ f_{1}^{-1}$, where

$$
\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x)
\end{array}\right]=\mathcal{L}\left[\begin{array}{c}
x \\
f(x)
\end{array}\right]
$$

CCZ-Equivalence

f and g are $C C Z$-equivalent if $\Gamma_{g}=\mathcal{L} \Gamma_{f}$ for some \mathcal{L} in $G L\left(L^{2}\right)$.
This means that $g=f_{2} \circ f_{1}^{-1}$, where

$$
\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x)
\end{array}\right]=\mathcal{L}\left[\begin{array}{c}
x \\
f(x)
\end{array}\right]
$$

For $S=\Gamma_{f}$ or $S=\Delta_{f}:=\{(a, b): \#(f(x+a)+f(x)=b)=2\}$ the S-rank of f is the 2-rank of the matrix $[S(X+Y)], X, Y \in L^{2}$, where we identify S with its characteristic function.

CCZ-Equivalence

f and g are $C C Z$-equivalent if $\Gamma_{g}=\mathcal{L} \Gamma_{f}$ for some \mathcal{L} in $G L\left(L^{2}\right)$.
This means that $g=f_{2} \circ f_{1}^{-1}$, where

$$
\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x)
\end{array}\right]=\mathcal{L}\left[\begin{array}{c}
x \\
f(x)
\end{array}\right]
$$

For $S=\Gamma_{f}$ or $S=\Delta_{f}:=\{(a, b): \#(f(x+a)+f(x)=b)=2\}$ the S-rank of f is the 2-rank of the matrix $[S(X+Y)], X, Y \in L^{2}$, where we identify S with its characteristic function.

The Г-rank and the Δ-rank are useful CCZ-invariants introduced by Edel, Kyureghyan and Pott.

The Banff APNs in dimension 6

$\operatorname{dim} 6$
Fourier coefficients:
I. $\quad 0(48), 16(10),-16(6)\}(21)$,
$\{0(63), 64\}$
II. $\left\{\begin{array}{l}-8(28), 8(36)\}(46), \\ 0(48), 16(10),-16(6)\}(16), \\ 0(60),-32,32(3)\},\end{array}\right.$
$0(63), 64$ \}

f	$\Gamma-$ rank	$\Delta-$ rank	$\mid A u t(\widetilde{\mathcal{C}(f)) \mid}$
x^{3}	1102	94	$2^{6} \cdot 6 \cdot 63$
$x^{3}+u^{11} x^{6}+u x^{9}$	1146	94	$2^{6} \cdot 63$
$u x^{5}+x^{9}+u^{4} x^{17}+u x^{18}$			
$+u^{4} x^{20}+u x^{24}+u^{4} x^{34}+u x^{40}$	1158	96	$2^{6} \cdot 5$
$u^{7} x^{3}+x^{5}+u^{3} x^{9}+u^{4} x^{10}+x^{17}+u^{6} x^{18}$	1166	94	$2^{6} \cdot 7$
$x^{3}+u x^{24}+x^{10}$	1166	96	$2^{6} \cdot 14$
$x^{3}+u^{17}\left(x^{17}+x^{18}+x^{20}+x^{24}\right)$	1168	96	2^{6}
$x^{3}+u^{11} x^{5}+u^{13} x^{9}$			
$+x^{17}+u^{17} x^{33}+x^{48}$	1170	96	$2^{6} \cdot 5^{\dagger}$
$u^{25} x^{5}+x^{9}+u^{38} x^{12}$			
$+u^{25} x^{18}+u^{25} x^{36}$	1170	96	2^{6}
$u^{40} x^{5}+u^{10} x^{6}+u^{62} x^{20}+u^{35} x^{33}$		1170	96
$+u^{15} x^{34}+u^{29} x^{48}$			2^{6}
$u^{34} x^{6}+u^{52} x^{9}+u^{48} x^{12}+u^{6} x^{20}$	1170	96	2^{6}
$+u^{9} x^{33}+u^{23} x^{34}+u^{25} x^{40}$			
$x^{9}+u^{4}\left(x^{10}+x^{18}\right)$			
$+u^{9}\left(x^{12}+x^{20}+x^{40}\right.$	1172	96	2^{6}
$u^{52} x^{3}+u^{47} x^{5}+u x^{6}+u^{9} x^{9}+u^{44} x^{12}$	1172	96	2^{6}
$+u^{47} x^{33}+u^{10} x^{34}+u^{33} x^{40}$			
$u\left(x^{6}+x^{10}+x^{24}+x^{33}\right)+x^{9}+u^{4} x^{17}$	1174	96	2^{6}

Quadratic and Bilinear Maps

$$
\begin{aligned}
& V=L=G F\left(2^{m}\right) \\
& \qquad f(X)=\sum_{0 \leq i \leq j \leq m-1} c_{i, j} X^{2^{i}+2^{j}} \in G F\left(2^{m}\right)[X]
\end{aligned}
$$

Quadratic and Bilinear Maps

$$
\begin{aligned}
& V=L=G F\left(2^{m}\right) \\
& f(X)=\sum_{0 \leq i \leq j \leq m-1} c_{i, j} X^{2^{i}+2^{j}} \in G F\left(2^{m}\right)[X] \\
& \beta_{f}(X, Y):=f(X+Y)+f(X)+f(Y) \\
&=\sum_{0 \leq i<j \leq m-1} c_{i, j}\left[X^{2^{i}} Y^{2^{j}}+X^{2^{j}} Y^{2^{i}}\right]
\end{aligned}
$$

β_{f} is bi-additive (i.e. $G F(2)$-bilinear) and alternating.

The Quadratic Forms

Let $f: L \rightarrow L$ be any map.
The Boolean functions $f_{b}(x):=\operatorname{Trace}(b f(x)), b \in L$, are the components of f.
If f is a quadratic map, then the components f_{b} are quadratic forms on L.
Recall:

- $q: V \rightarrow G F(2)$ a quadratic form;

The Quadratic Forms

Let $f: L \rightarrow L$ be any map.
The Boolean functions $f_{b}(x):=\operatorname{Trace}(b f(x)), b \in L$, are the components of f.
If f is a quadratic map, then the components f_{b} are quadratic forms on L.
Recall:

- $q: V \rightarrow G F(2)$ a quadratic form;
- $\beta_{q}(x, y):=q(x+y)+q(x)+q(y)$ is an alternating bilinear form;

The Quadratic Forms

Let $f: L \rightarrow L$ be any map.
The Boolean functions $f_{b}(x):=\operatorname{Trace}(b f(x)), b \in L$, are the components of f.
If f is a quadratic map, then the components f_{b} are quadratic forms on L.
Recall:

- $q: V \rightarrow G F(2)$ a quadratic form;
- $\beta_{q}(x, y):=q(x+y)+q(x)+q(y)$ is an alternating bilinear form;
- $\operatorname{rad}_{q}:=\left\{y \in V: \beta_{q}(x, y)=0 \forall x \in V\right\} ;$

The Quadratic Forms

Let $f: L \rightarrow L$ be any map.
The Boolean functions $f_{b}(x):=\operatorname{Trace}(b f(x)), b \in L$, are the components of f.
If f is a quadratic map, then the components f_{b} are quadratic forms on L.
Recall:

- $q: V \rightarrow G F(2)$ a quadratic form;
- $\beta_{q}(x, y):=q(x+y)+q(x)+q(y)$ is an alternating bilinear form;
- $\operatorname{rad}_{q}:=\left\{y \in V: \beta_{q}(x, y)=0 \forall x \in V\right\}$;
- $\operatorname{dim} \operatorname{rad}_{q} \equiv \operatorname{dim} V \bmod 2$.

The Quadratic Forms

Let $f: L \rightarrow L$ be any map.
The Boolean functions $f_{b}(x):=\operatorname{Trace}(b f(x)), b \in L$, are the components of f.
If f is a quadratic map, then the components f_{b} are quadratic forms on L.
Recall:

- $q: V \rightarrow G F(2)$ a quadratic form;
- $\beta_{q}(x, y):=q(x+y)+q(x)+q(y)$ is an alternating bilinear form;
- $\operatorname{rad}_{q}:=\left\{y \in V: \beta_{q}(x, y)=0 \forall x \in V\right\} ;$
- $\operatorname{dim} \operatorname{rad}_{q} \equiv \operatorname{dim} V \bmod 2$.

Let's call $r d_{q}^{*}:=\operatorname{rad}_{q} \backslash\{0\}$ the pointed radical.

The Radicals of a Quadratic APN

Theorem
Let f be a quadratic $A P N$ on $L=G F\left(2^{m}\right)$.
Then the nonempty pointed radicals rad $f_{f_{b}}^{*}$ partition L^{\times}.

The Radicals of a Quadratic APN

Theorem

Let f be a quadratic $A P N$ on $L=G F\left(2^{m}\right)$.
Then the nonempty pointed radicals rad f_{b}^{*} partition L^{\times}.

Corollary (Nyberg's Theorem 1994)

- If m is odd, then all components $f_{b}, b \neq 0$, are near-bent;i.e. $\operatorname{dim} \operatorname{rad}_{f_{b}}=1$;
- If m is even, then at least two-thirds of the $f_{b}, b \neq 0$, are bent; i.e. $\operatorname{rad}_{f_{b}}=0$;

What Boolean functions can be added?

Observation. $f: L \rightarrow L$ APN; $g: L \rightarrow G F(2)$ Boolean. TFAE:

- $h:=f+g$ is APN;
- g sums to 0 on every 2 -flat on which f sums to 1 .

What Boolean functions can be added?

Observation. $f: L \rightarrow L$ APN; $g: L \rightarrow G F(2)$ Boolean. TFAE:

- $h:=f+g$ is APN;
- g sums to 0 on every 2 -flat on which f sums to 1 .

Budaghyan and Carlet discovered the beautiful general example

$$
x^{3}+\operatorname{Trace}\left(x^{9}\right)
$$

What Boolean functions can be added?

Observation. $f: L \rightarrow L$ APN; $g: L \rightarrow G F(2)$ Boolean. TFAE:

- $h:=f+g$ is APN;
- g sums to 0 on every 2 -flat on which f sums to 1 .

Budaghyan and Carlet discovered the beautiful general example

$$
x^{3}+\operatorname{Trace}\left(x^{9}\right)
$$

Such g's constitute the dual of the binary code spanned by (the characteristic functions of) the 2-flats on which f sums to 1 .

What Boolean functions can be added?

Observation. $f: L \rightarrow L$ APN; $g: L \rightarrow G F(2)$ Boolean. TFAE:

- $h:=f+g$ is APN;
- g sums to 0 on every 2 -flat on which f sums to 1 .

Budaghyan and Carlet discovered the beautiful general example

$$
x^{3}+\operatorname{Trace}\left(x^{9}\right)
$$

Such g's constitute the dual of the binary code spanned by (the characteristic functions of) the 2-flats on which f sums to 1 . Some of the APNs in the Banff lists are related in this way...

What Boolean functions can be added?

Observation. $f: L \rightarrow L$ APN; $g: L \rightarrow G F(2)$ Boolean. TFAE:

- $h:=f+g$ is APN;
- g sums to 0 on every 2 -flat on which f sums to 1 .

Budaghyan and Carlet discovered the beautiful general example

$$
x^{3}+\operatorname{Trace}\left(x^{9}\right)
$$

Such g's constitute the dual of the binary code spanned by (the characteristic functions of) the 2-flats on which f sums to 1 . Some of the APNs in the Banff lists are related in this way...
but Edel and Pott had a better idea!!!

Switching

Replace JFD's Boolean function g by $c g$ for c any element in L^{\times}. The above proposition and coding interpretation remain true on replacing 1 by c.

Switching

Replace JFD's Boolean function g by $c g$ for c any element in L^{\times}. The above proposition and coding interpretation remain true on replacing 1 by c.
But this switching operation can be iterated with different c's!!! Edel and Pott applied this idea to the Banff lists of APNs.

Switching

Replace JFD's Boolean function g by $c g$ for c any element in L^{\times}. The above proposition and coding interpretation remain true on replacing 1 by c.
But this switching operation can be iterated with different c's!!! Edel and Pott applied this idea to the Banff lists of APNs.

Some results:

For $m=6$ the Banff list of 13 APNs breaks into TWO switching classes represented by

- x^{3} (2 members)
- $x^{3}+x^{10}+u * x^{24}$ (11 members).

Switching

Replace JFD's Boolean function g by $c g$ for c any element in L^{\times}. The above proposition and coding interpretation remain true on replacing 1 by c.
But this switching operation can be iterated with different c's!!! Edel and Pott applied this idea to the Banff lists of APNs. Some results:
For $m=6$ the Banff list of 13 APNs breaks into TWO switching classes represented by

- x^{3} (2 members)
- $x^{3}+x^{10}+u * x^{24}$ (11 members).

We call these maps the cube map and the Kim map, the latter because it is the first new APN found by Kim Browning when we began to study APNs.

Switching

Replace JFD's Boolean function g by $c g$ for c any element in L^{\times}. The above proposition and coding interpretation remain true on replacing 1 by c.
But this switching operation can be iterated with different c's!!! Edel and Pott applied this idea to the Banff lists of APNs. Some results:
For $m=6$ the Banff list of 13 APNs breaks into TWO switching classes represented by

- x^{3} (2 members)
- $x^{3}+x^{10}+u * x^{24}$ (11 members).

We call these maps the cube map and the Kim map, the latter because it is the first new APN found by Kim Browning when we began to study APNs.
EP also discovered in the $\operatorname{kim}(x)$ switching class a new APN which is cubic and not CCZ-equivalent to any quadratic or power map!

Combinatorial Properties of the Kim Map

$$
\operatorname{kim}(x)=x^{3}+x^{10}+u * x^{24} \in L[x], L=G F\left(2^{6}\right) .
$$

Theorem

The image $D:=\operatorname{kim}(L)$ is a $(64,36,20)-d s$ in L. Its characteristic function is a cubic bent function.

Combinatorial Properties of the Kim Map

$$
\operatorname{kim}(x)=x^{3}+x^{10}+u * x^{24} \in L[x], L=G F\left(2^{6}\right) .
$$

Theorem

The image $D:=\operatorname{kim}(L)$ is a $(64,36,20)-d s$ in L.
Its characteristic function is a cubic bent function.

Proof.

It's not too hard to show that $x=0$ is the unique zero of $\operatorname{kim}(x)$.

Combinatorial Properties of the Kim Map

$$
\operatorname{kim}(x)=x^{3}+x^{10}+u * x^{24} \in L[x], L=G F\left(2^{6}\right) .
$$

Theorem

The image $D:=\operatorname{kim}(L)$ is a $(64,36,20)-d s$ in L.
Its characteristic function is a cubic bent function.

Proof.

It's not too hard to show that $x=0$ is the unique zero of $\operatorname{kim}(x)$.
For all $\lambda \in K:=G F\left(2^{3}\right), \operatorname{kim}(\lambda z)=\lambda^{3} \operatorname{kim}(z)$.

Combinatorial Properties of the Kim Map

$$
\operatorname{kim}(x)=x^{3}+x^{10}+u * x^{24} \in L[x], L=G F\left(2^{6}\right) .
$$

Theorem

The image $D:=\operatorname{kim}(L)$ is a $(64,36,20)-d s$ in L.
Its characteristic function is a cubic bent function.

Proof.

It's not too hard to show that $x=0$ is the unique zero of $\operatorname{kim}(x)$.
For all $\lambda \in K:=G F\left(2^{3}\right), \operatorname{kim}(\lambda z)=\lambda^{3} \operatorname{kim}(z)$. Thus, $\operatorname{kim}(x)$ maps the subspace $K z$ to the subspace $\operatorname{Kkim}(z)$.

Combinatorial Properties of the Kim Map

$$
\operatorname{kim}(x)=x^{3}+x^{10}+u * x^{24} \in L[x], L=G F\left(2^{6}\right) .
$$

Theorem

The image $D:=\operatorname{kim}(L)$ is a $(64,36,20)-d s$ in L.
Its characteristic function is a cubic bent function.

Proof.

It's not too hard to show that $x=0$ is the unique zero of $\operatorname{kim}(x)$.
For all $\lambda \in K:=G F\left(2^{3}\right), \operatorname{kim}(\lambda z)=\lambda^{3} \operatorname{kim}(z)$. Thus, $\operatorname{kim}(x)$ maps the subspace $K z$ to the subspace $K k i m(z)$.

The nine subspaces $K z$ comprise the components of a spread for L;

Combinatorial Properties of the Kim Map

$$
\operatorname{kim}(x)=x^{3}+x^{10}+u * x^{24} \in L[x], L=G F\left(2^{6}\right) .
$$

Theorem

The image $D:=\operatorname{kim}(L)$ is a $(64,36,20)-d s$ in L.
Its characteristic function is a cubic bent function.

Proof.

It's not too hard to show that $x=0$ is the unique zero of $\operatorname{kim}(x)$.
For all $\lambda \in K:=G F\left(2^{3}\right), \operatorname{kim}(\lambda z)=\lambda^{3} \operatorname{kim}(z)$. Thus, $\operatorname{kim}(x)$ maps the subspace $K z$ to the subspace $K k i m(z)$.

The nine subspaces $K z$ comprise the components of a spread for L; and $\operatorname{kim}(\mathrm{x})$ hits exactly five of them.

Combinatorial Properties of the Kim Map

$$
\operatorname{kim}(x)=x^{3}+x^{10}+u * x^{24} \in L[x], L=G F\left(2^{6}\right) .
$$

Theorem

The image $D:=\operatorname{kim}(L)$ is a $(64,36,20)-d s$ in L.
Its characteristic function is a cubic bent function.

Proof.

It's not too hard to show that $x=0$ is the unique zero of $\operatorname{kim}(x)$.
For all $\lambda \in K:=G F\left(2^{3}\right), \operatorname{kim}(\lambda z)=\lambda^{3} \operatorname{kim}(z)$. Thus, $\operatorname{kim}(x)$ maps the subspace $K z$ to the subspace $K k i m(z)$.

The nine subspaces $K z$ comprise the components of a spread for L; and $\operatorname{kim}(x)$ hits exactly five of them.
Therefore, $\operatorname{kim}(L)$ is a partial-spread difference set of type $\mathcal{P} \mathcal{S}^{(+)}$.

Line Spread and Affine Design

If f is any quadratic APN with exactly $\frac{2\left(2^{m}-1\right)}{3}$ bent components, then the $\frac{2^{m}-1}{3}$ pointed nonzero radicals give a line spread for $L^{\times}=P G(m-1,2)$.

Line Spread and Affine Design

If f is any quadratic APN with exactly $\frac{2\left(2^{m}-1\right)}{3}$ bent components, then the $\frac{2^{m}-1}{3}$ pointed nonzero radicals give a line spread for $L^{\times}=P G(m-1,2)$.
We know only one quadratic APN which does not share this property with x^{3}.

Line Spread and Affine Design

If f is any quadratic APN with exactly $\frac{2\left(2^{m}-1\right)}{3}$ bent components, then the $\frac{2^{m}-1}{3}$ pointed nonzero radicals give a line spread for $L^{\times}=P G(m-1,2)$.
We know only one quadratic APN which does not share this property with x^{3}.
A theorem of Rahilly gives an affine design with parameters same as $A G_{s-1}(s, 4), m=2 s$.

Line Spread and Affine Design

If f is any quadratic APN with exactly $\frac{2\left(2^{m}-1\right)}{3}$ bent components, then the $\frac{2^{m}-1}{3}$ pointed nonzero radicals give a line spread for $L^{\times}=P G(m-1,2)$.
We know only one quadratic APN which does not share this property with x^{3}.
A theorem of Rahilly gives an affine design with parameters same as $A G_{s-1}(s, 4), m=2 s$.

Theorem

The (64, 16, 5)-design \mathcal{D} obtained from the Rahilly construction applied to the line spread for $\operatorname{kim}(x)$ has:

- 2-rank $=19 \neq 16=2$-rank of $A G_{2}(3,4)$;
- $|\operatorname{Aut}(\mathcal{D})|=2688=2^{7} \times 3 \times 7$.

Another Interesting APN

$$
\begin{aligned}
& g(x)= \\
& w 159 * \times 160+w \wedge 34^{*} \times 158+w 188^{*} \times 157+w \wedge 23 * \times 156+w \wedge 21^{*} \times 154+w \wedge 39^{*} \times 153+w 148 * \times \wedge 52
\end{aligned}
$$

$$
\begin{aligned}
& W \wedge 13^{*} \times 144+W \wedge 54^{*} \times \wedge 43+w 145^{*} \times \wedge 42+w \wedge 32^{*} \times 141+w 141^{*} \times 140+w \wedge 48^{*} \times 139+
\end{aligned}
$$

$$
\begin{aligned}
& +w \wedge 31^{*} \times \wedge 30+w 145^{*} \times \wedge 29+w / 51^{*} \times \wedge 28+w \wedge 22^{*} \times \wedge 27+w \wedge 30^{*} \times \wedge 26+w \wedge 8^{*} \times \wedge 25+ \\
& W \wedge 33^{*} \times \wedge 24+w \wedge 39^{*} \times \wedge 23+w \wedge 36^{*} \times \wedge 22+w 14^{*} \times \wedge 21+w \wedge 38^{*} \times 120+w \wedge 52^{*} \times \wedge 19+ \\
& W \wedge 17 \times \times \wedge 18+W 15^{*} \times \wedge 17+W \wedge 31^{2} \times \wedge 16+W 142^{*} \times \wedge 15+W \wedge 5^{*} \times \Lambda 14+W 125^{*} \times \wedge 13+ \\
& w \wedge 9^{*} \times \wedge 12+w \wedge 3^{*} \times \wedge 11+w^{*} \times \wedge 10+w \wedge 30^{*} \times \wedge 9+w \wedge 22^{*} \times \wedge 8+w \wedge 23^{*} \times \wedge 7+w \wedge 54^{*} \times \wedge 6+ \\
& W \wedge 46^{*} \times \wedge 5+W \wedge 60^{*} \times \Lambda 4+w \wedge 2 g^{*} \times \wedge 3+W \wedge 20^{*} \times \wedge 2+w \wedge 61^{\hbar} x
\end{aligned}
$$

Another Interesting APN

Where did that come from?

Another Interesting APN

Where did that come from?

$g(x)$ is CCZ-equivalent to the Kim map; i.e.

$$
g=f_{2} \circ f_{1}^{-1}
$$

where f_{1} and f_{2} are quadratics obtained as follows:

Decompositions of the Code \mathcal{C}_{f}^{\perp}

We have $L=G F\left(2^{6}\right)=K \oplus K u$, where $K=G F\left(2^{3}\right)$; put $f(x)=u * \operatorname{kim}(x)$.

Decompositions of the Code \mathcal{C}_{f}^{\perp}

We have $L=G F\left(2^{6}\right)=K \oplus K u$, where $K=G F\left(2^{3}\right)$; put $f(x)=u * \operatorname{kim}(x)$.
We have $\mathcal{C}_{f}^{\perp}=\mathcal{A} \oplus \mathcal{B}$, where $\mathcal{A}=\{\operatorname{Tr}(a x): a \in L\}$ and $\mathcal{B}=\{\operatorname{Tr}(b f(x)): b \in L\}$.

Decompositions of the Code \mathcal{C}_{f}^{\perp}

We have $L=G F\left(2^{6}\right)=K \oplus K u$, where $K=G F\left(2^{3}\right)$; put $f(x)=u * \operatorname{kim}(x)$.
We have $\mathcal{C}_{f}^{\perp}=\mathcal{A} \oplus \mathcal{B}$, where
$\mathcal{A}=\{\operatorname{Tr}(a x): a \in L\}$ and $\mathcal{B}=\{\operatorname{Tr}(b f(x)): b \in L\}$.
Use the decomposition $L=K \oplus K u$ to decompose \mathcal{A} and \mathcal{B} :

$$
\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}
$$

and

$$
\mathcal{B}=\mathcal{B}_{1} \oplus \mathcal{B}_{2}
$$

Decompositions of the Code \mathcal{C}_{f}^{\perp}

We have $L=G F\left(2^{6}\right)=K \oplus K u$, where $K=G F\left(2^{3}\right)$; put $f(x)=u * \operatorname{kim}(x)$.
We have $\mathcal{C}_{f}^{\perp}=\mathcal{A} \oplus \mathcal{B}$, where
$\mathcal{A}=\{\operatorname{Tr}(a x): a \in L\}$ and $\mathcal{B}=\{\operatorname{Tr}(b f(x)): b \in L\}$.
Use the decomposition $L=K \oplus K u$ to decompose \mathcal{A} and \mathcal{B} :

$$
\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}
$$

and

$$
\mathcal{B}=\mathcal{B}_{1} \oplus \mathcal{B}_{2}
$$

Switch partners! :)

$$
\left[f_{1}(x)\right]:=\mathcal{A}_{1} \oplus \mathcal{B}_{1}
$$

and

$$
\left[f_{2}(x)\right]:=\mathcal{A}_{2} \oplus \mathcal{B}_{2} .
$$

Decompositions of the Code \mathcal{C}_{f}^{\perp}

We have $L=G F\left(2^{6}\right)=K \oplus K u$, where $K=G F\left(2^{3}\right)$; put $f(x)=u * \operatorname{kim}(x)$.
We have $\mathcal{C}_{f}^{\perp}=\mathcal{A} \oplus \mathcal{B}$, where
$\mathcal{A}=\{\operatorname{Tr}(a x): a \in L\}$ and $\mathcal{B}=\{\operatorname{Tr}(b f(x)): b \in L\}$.
Use the decomposition $L=K \oplus K u$ to decompose \mathcal{A} and \mathcal{B} :

$$
\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}
$$

and

$$
\mathcal{B}=\mathcal{B}_{1} \oplus \mathcal{B}_{2}
$$

Switch partners! :)

$$
\left[f_{1}(x)\right]:=\mathcal{A}_{1} \oplus \mathcal{B}_{1}
$$

and

$$
\left[f_{2}(x)\right]:=\mathcal{A}_{2} \oplus \mathcal{B}_{2} .
$$

SO

$$
\mathcal{C}_{f}^{\perp}=\left[f_{1}(x)\right] \oplus\left[f_{2}(x)\right] .
$$

Surprise!

$$
\mathcal{C}_{f}^{\perp}=\left[f_{1}(x)\right] \oplus\left[f_{2}(x)\right] .
$$

Surprise!

$$
\mathcal{C}_{f}^{\perp}=\left[f_{1}(x)\right] \oplus\left[f_{2}(x)\right] .
$$

and, incidentally ...

Surprise!

$$
\mathcal{C}_{f}^{\perp}=\left[f_{1}(x)\right] \oplus\left[f_{2}(x)\right] .
$$

and, incidentally ...
BOTH f_{1} and f_{2} are permutations!!!

Surprise!

$$
\mathcal{C}_{f}^{\perp}=\left[f_{1}(x)\right] \oplus\left[f_{2}(x)\right] .
$$

and, incidentally ...
BOTH f_{1} and f_{2} are permutations!!!
That's right!...
$g=f_{2} \circ f_{1}^{-1}$ is an
APN permutation on $\left.G F\left(2^{6}\right)!!!!\right)$

The First APN Permutation of even dimension

$$
\begin{aligned}
& \text { [} 054481315185335 \text {] } \\
& {[256345523204133]} \\
& {[59362341085737]} \\
& \text { [60 } 19421450265824] \\
& {[392721171629162]} \\
& {[474051567434438]} \\
& {[31114286146549]} \\
& \text { [96233230125522] }
\end{aligned}
$$

Adam Wolfe's Breakthrough

Theorem (Adam Wolfe)

The Kim map is CCZ-equivalent to an APN permutation.
The Kim code contains 222 simplex subcodes, 32 of which split into two sets of 16 , with any pair from different sets being "disjoint".
The 256 corresponding APN permutations are, of course, all CCZ-equivalent to $\operatorname{kim}(x)$.

Adam Wolfe's Breakthrough

Theorem (Adam Wolfe)

The Kim map is CCZ-equivalent to an APN permutation.
The Kim code contains 222 simplex subcodes, 32 of which split into two sets of 16 , with any pair from different sets being "disjoint".
The 256 corresponding APN permutations are, of course, all CCZ-equivalent to $\operatorname{kim}(x)$.

We need invertible \mathcal{L} such that

$$
\mathcal{L}\left[\begin{array}{c}
x \\
f(x)
\end{array}\right]=\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x)
\end{array}\right]
$$

where f_{1} and f_{2} are permutations.

Adam Wolfe's Breakthrough

Adam found ALL simplex subcodes

$$
\left[f_{1}(x)\right]=L_{1}\left[\begin{array}{c}
x \\
f(x)
\end{array}\right]
$$

by generating L_{1} in reduced row echelon form, one column at a time, from left to right using the permutation constraint $x \neq y \Rightarrow f_{1}(x) \neq f_{1}(y)$ to restrict the choice of new column in L_{1}; i.e. no vector in $\Sigma:=\left\{\left[\begin{array}{c}x+y \\ f(x)+f(y)\end{array}\right]: x \neq y\right\}$ can be in the nullspace of L_{1}. Thus, avoid solutions to

$$
\left[l_{1}, l_{2}, \cdots, l_{j}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{j}
\end{array}\right]=0
$$

where c is a vector in the sorted set Σ for which $c_{t}=\delta_{j, t}$ for $t \geq j$.

In Retrospect: Randomized Search

It's easier to find something

In Retrospect: Randomized Search

It's easier to find something if you know it's there! .

In Retrospect: Randomized Search

It's easier to find something if you know it's there! .
Let $f(x)$ be an APN on $G F\left(2^{m}\right)$.
Compute $\mathcal{B}:=\{(a, b):$ Trace $(a x+b f(x))$ balanced $\}$.
Step 1. Set $\mathcal{B}_{1}=\mathcal{B}$.

In Retrospect: Randomized Search

It's easier to find something if you know it's there! .
Let $f(x)$ be an APN on $G F\left(2^{m}\right)$.
Compute $\mathcal{B}:=\{(a, b)$: Trace $(a x+b f(x))$ balanced $\}$.
Step 1. Set $\mathcal{B}_{1}=\mathcal{B}$. Choose $b_{1}, b_{2}, \ldots, b_{m}$ randomly so that $b_{i+1} \notin\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$ and $b_{i+1}+s \in \mathcal{B}_{1} \forall s \in\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$.

In Retrospect: Randomized Search

It's easier to find something if you know it's there! .
Let $f(x)$ be an APN on $G F\left(2^{m}\right)$.
Compute $\mathcal{B}:=\{(a, b)$: Trace $(a x+b f(x))$ balanced $\}$.
Step 1. Set $\mathcal{B}_{1}=\mathcal{B}$. Choose $b_{1}, b_{2}, \ldots, b_{m}$ randomly so that $b_{i+1} \notin\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$ and
$b_{i+1}+s \in \mathcal{B}_{1} \forall s \in\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$.
if you get stuck

In Retrospect: Randomized Search

It's easier to find something if you know it's there! .
Let $f(x)$ be an APN on $G F\left(2^{m}\right)$.
Compute $\mathcal{B}:=\{(a, b)$: Trace $(a x+b f(x))$ balanced $\}$.
Step 1. Set $\mathcal{B}_{1}=\mathcal{B}$. Choose $b_{1}, b_{2}, \ldots, b_{m}$ randomly so that $b_{i+1} \notin\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$ and $b_{i+1}+s \in \mathcal{B}_{1} \forall s \in\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$. if you get stuck just start over!

In Retrospect: Randomized Search

It's easier to find something if you know it's there! .
Let $f(x)$ be an APN on $G F\left(2^{m}\right)$.
Compute $\mathcal{B}:=\{(a, b)$: Trace $(a x+b f(x))$ balanced $\}$.
Step 1. Set $\mathcal{B}_{1}=\mathcal{B}$. Choose $b_{1}, b_{2}, \ldots, b_{m}$ randomly so that $b_{i+1} \notin\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$ and
$b_{i+1}+s \in \mathcal{B}_{1} \forall s \in\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$.
if you get stuck just start over!
Suppose we get the first m-dim subspace S_{1}.

In Retrospect: Randomized Search

It's easier to find something if you know it's there! .
Let $f(x)$ be an APN on $G F\left(2^{m}\right)$.
Compute $\mathcal{B}:=\{(a, b)$: Trace $(a x+b f(x))$ balanced $\}$.
Step 1. Set $\mathcal{B}_{1}=\mathcal{B}$. Choose $b_{1}, b_{2}, \ldots, b_{m}$ randomly so that
$b_{i+1} \notin\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$ and
$b_{i+1}+s \in \mathcal{B}_{1} \forall s \in\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$.
if you get stuck just start over!
Suppose we get the first m-dim subspace S_{1}.
Step 2. Set $\mathcal{B}_{2}=\mathcal{B} \backslash S_{1}$.
Repeat above Step 1 with \mathcal{B}_{2} in place of \mathcal{B}_{1}.
again... if stuck just start over!

In Retrospect: Randomized Search

It's easier to find something if you know it's there! .
Let $f(x)$ be an APN on $G F\left(2^{m}\right)$.
Compute $\mathcal{B}:=\{(a, b)$: Trace $(a x+b f(x))$ balanced $\}$.
Step 1. Set $\mathcal{B}_{1}=\mathcal{B}$. Choose $b_{1}, b_{2}, \ldots, b_{m}$ randomly so that
$b_{i+1} \notin\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$ and
$b_{i+1}+s \in \mathcal{B}_{1} \forall s \in\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$.
if you get stuck just start over!
Suppose we get the first m-dim subspace S_{1}.
Step 2. Set $\mathcal{B}_{2}=\mathcal{B} \backslash S_{1}$.
Repeat above Step 1 with \mathcal{B}_{2} in place of \mathcal{B}_{1}.
again... if stuck just start over!
Have upper bound on number of tries... if we hit the bound go back to Step 1 and start over.
If we get to m in Step 2 we're done!

In Retrospect: Randomized Search

It's easier to find something if you know it's there! .
Let $f(x)$ be an APN on $G F\left(2^{m}\right)$.
Compute $\mathcal{B}:=\{(a, b)$: Trace $(a x+b f(x))$ balanced $\}$.
Step 1. Set $\mathcal{B}_{1}=\mathcal{B}$. Choose $b_{1}, b_{2}, \ldots, b_{m}$ randomly so that
$b_{i+1} \notin\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$ and
$b_{i+1}+s \in \mathcal{B}_{1} \forall s \in\left\langle b_{1}, b_{2}, \ldots, b_{i}\right\rangle$.
if you get stuck just start over!
Suppose we get the first m-dim subspace S_{1}.
Step 2. Set $\mathcal{B}_{2}=\mathcal{B} \backslash S_{1}$.
Repeat above Step 1 with \mathcal{B}_{2} in place of \mathcal{B}_{1}.
again... if stuck just start over!
Have upper bound on number of tries... if we hit the bound go
back to Step 1 and start over.
If we get to m in Step 2 we're done!
For $m=6$ and $f(x)=k i m(x) \ldots \# \mathcal{B}=1071 \ldots$
but solutions pour out quickly! :)

Good News and Bad News

First the good news:

Good News and Bad News

First the good news:
We found an APN permutation in even dimension! :)

Good News and Bad News

First the good news:
We found an APN permutation in even dimension! :)
The bad news is: it is the ONLY one that we found! :(

Good News and Bad News

First the good news:
We found an APN permutation in even dimension! :)
The bad news is: it is the ONLY one that we found! :(We have shown that no other on the Banff-EP-MAGMA lists of known APNs of dimension up to 10 can have a double-simplex code. :(

Good News and Bad News

First the good news:
We found an APN permutation in even dimension! :)
The bad news is: it is the ONLY one that we found! :(We have shown that no other on the Banff-EP-MAGMA lists of known APNs of dimension up to 10 can have a double-simplex code. :(but maybe there's hope! :)

Good News and Bad News

The highly structured decomposition of the Kim code suggests that much of the structure ... if not all ... should generalize to higher dimensions.

Good News and Bad News

The highly structured decomposition of the Kim code suggests that much of the structure ... if not all ... should generalize to higher dimensions.
Does it?

Good News and Bad News

The highly structured decomposition of the Kim code suggests that much of the structure ... if not all ... should generalize to higher dimensions.
Does it?
and \cdots if not \cdots does something else work?

Good News and Bad News

The highly structured decomposition of the Kim code suggests that much of the structure . . . if not all ... should generalize to higher dimensions.
Does it?
and \cdots if not \cdots does something else work?
STILL BIG APN PROBLEM: Does there exist an APN permutation in even dimension greater than 6?

