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What’s an APN?

A map f : V := GF (2m)→ V satisfying any of the following:

x 7→ f (x + a)− f (x) is 2-to-1 for all a 6= 0.

∀ distinct a, b, c , d ,

a + b + c + d = 0⇒ f (a) + f (b) + f (c) + f (d) 6= 0

i.e. f does not sum to 0 on any 2-flat.

If f (0) = 0 (which we assume from now on) the binary code
with parity check matrix

Hf :=

[
· · · ωj · · ·
· · · f (ωj) · · ·

]
is double-error-correcting (no fewer than 5 cols sum to 0).

Example

The BCH f (x) = x3 is APN for all dimensions m.
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Exceptional APNs
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Exceptional APNs

Theorem (Hernando and McGuire 2009)

The conjecture is true.

We look forward to Fernando’s talk to hear the
details of this milestone result!
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The Dual Code

We’ll identify the dual code with the binary row space of the

matrix

[
x

f (x)

]
, where x ranges over all of L.

The columns comprise the graph Γf of f .

The codewords are

{Trace(ax) : a ∈ L} ⊕ {Trace(bf (x)) : b ∈ L}.
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CCZ-Equivalence

f and g are CCZ-equivalent if Γg = LΓf for some L in GL(L2).

This means that g = f2 ◦ f −1
1 , where[

f1(x)
f2(x)

]
= L

[
x

f (x)

]
.

For S = Γf or S = ∆f := {(a, b) : #(f (x + a) + f (x) = b) = 2}
the S-rank of f is the 2-rank of the matrix [S(X + Y )], X ,Y ∈ L2,
where we identify S with its characteristic function.

The Γ-rank and the ∆-rank are useful CCZ-invariants introduced
by Edel, Kyureghyan and Pott.
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The Banff APNs in dimension 6
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Quadratic and Bilinear Maps

V = L = GF (2m).

f (X ) =
∑

0≤i≤j≤m−1

ci ,jX
2i+2j ∈ GF (2m)[X ]

βf (X ,Y ) := f (X + Y ) + f (X ) + f (Y )

=
∑

0≤i<j≤m−1

ci ,j

[
X 2i

Y 2j
+ X 2j

Y 2i
]
.

βf is bi-additive (i.e. GF (2)-bilinear) and alternating.
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The Quadratic Forms

Let f : L→ L be any map.
The Boolean functions fb(x) := Trace(bf (x)), b ∈ L, are the
components of f .
If f is a quadratic map, then the components fb are quadratic
forms on L.
Recall:

q : V → GF (2) a quadratic form;

βq(x , y) := q(x + y) + q(x) + q(y) is an alternating bilinear
form;

radq := {y ∈ V : βq(x , y) = 0 ∀x ∈ V };
dim radq ≡ dimV mod 2.

Let’s call rad∗q := radq\{0} the pointed radical.
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The Radicals of a Quadratic APN

Theorem

Let f be a quadratic APN on L = GF (2m).
Then the nonempty pointed radicals rad∗fb partition L×.

Corollary (Nyberg’s Theorem 1994)

If m is odd, then all components fb, b 6= 0, are near-bent;i.e.
dim radfb = 1;

If m is even, then at least two-thirds of the fb, b 6= 0, are
bent; i.e. radfb = 0;
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What Boolean functions can be added?

Observation. f : L→ L APN; g : L→ GF (2) Boolean.
TFAE:

h := f + g is APN;

g sums to 0 on every 2-flat on which f sums to 1.

Budaghyan and Carlet discovered the beautiful general example

x3 + Trace(x9).

Such g ’s constitute the dual of the binary code spanned by (the
characteristic functions of) the 2-flats on which f sums to 1.
Some of the APNs in the Banff lists are related in this way...

but Edel and Pott had a better idea!!!
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Switching

Replace JFD’s Boolean function g by cg for c any element in L×.
The above proposition and coding interpretation remain true on
replacing 1 by c .

But this switching operation can be iterated with different c ’s!!!
Edel and Pott applied this idea to the Banff lists of APNs.
Some results:
For m = 6 the Banff list of 13 APNs breaks into TWO switching
classes represented by

x3 (2 members)

x3 + x10 + u ∗ x24 (11 members).

We call these maps the cube map and the Kim map, the latter
because it is the first new APN found by Kim Browning when we
began to study APNs.
EP also discovered in the kim(x) switching class a new APN which
is cubic and not CCZ-equivalent to any quadratic or power map!
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Combinatorial Properties of the Kim Map

kim(x) = x3 + x10 + u ∗ x24 ∈ L[x ], L = GF (26).

Theorem

The image D := kim(L) is a (64,36,20)-ds in L.
Its characteristic function is a cubic bent function.

Proof.

It’s not too hard to show that x = 0 is the unique zero of kim(x).

For all λ ∈ K := GF (23), kim(λz) = λ3kim(z). Thus, kim(x)
maps the subspace Kz to the subspace Kkim(z).

The nine subspaces Kz comprise the components of a spread for L;
and kim(x) hits exactly five of them.
Therefore, kim(L) is a partial-spread difference set of type PS(+).
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Line Spread and Affine Design

If f is any quadratic APN with exactly 2(2m−1)
3 bent components,

then the 2m−1
3 pointed nonzero radicals give a line spread for

L× = PG (m − 1, 2).

We know only one quadratic APN which does not share this
property with x3.
A theorem of Rahilly gives an affine design with parameters same
as AGs−1(s, 4), m = 2s.

Theorem

The (64, 16, 5)-design D obtained from the Rahilly construction
applied to the line spread for kim(x) has:

2-rank = 19 6= 16 = 2-rank of AG2(3, 4);

|Aut(D)| = 2688 = 27x3x7.
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Another Interesting APN

Where did that come from?

g(x) is CCZ-equivalent to the Kim map; i.e.

g = f2 ◦ f −1
1 ,

where f1 and f2 are quadratics obtained as follows:
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Decompositions of the Code C⊥f
We have L = GF (26) = K ⊕ Ku, where K = GF (23); put
f (x) = u ∗ kim(x).

We have C⊥f = A⊕ B, where
A = {Tr(ax) : a ∈ L} and B = {Tr(bf (x)) : b ∈ L}.
Use the decomposition L = K ⊕ Ku to decompose A and B:

A = A1 ⊕A2

and
B = B1 ⊕ B2.

Switch partners! :)
[f1(x)] := A1 ⊕ B1

and
[f2(x)] := A2 ⊕ B2.

so
C⊥f = [f1(x)]⊕ [f2(x)].
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Surprise!

C⊥f = [f1(x)]⊕ [f2(x)].

and, incidentally . . .
BOTH f1 and f2 are permutations!!!

That’s right!...
g = f2 ◦ f −1

1 is an

APN permutation on GF (26)!!! :)
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The First APN Permutation of even dimension
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Adam Wolfe’s Breakthrough

Theorem (Adam Wolfe)

The Kim map is CCZ-equivalent to an APN permutation.
The Kim code contains 222 simplex subcodes, 32 of which split
into two sets of 16, with any pair from different sets being
“disjoint”.
The 256 corresponding APN permutations are, of course, all
CCZ-equivalent to kim(x).

We need invertible L such that

L
[

x
f (x)

]
=

[
f1(x)
f2(x)

]
,

where f1 and f2 are permutations.
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Adam Wolfe’s Breakthrough

Adam found ALL simplex subcodes

[f1(x)] = L1

[
x

f (x)

]
by generating L1 in reduced row echelon form, one column at a
time, from left to right using the permutation constraint
x 6= y ⇒ f1(x) 6= f1(y) to restrict the choice of new column in L1;

i.e. no vector in Σ :=

{[
x + y

f (x) + f (y)

]
: x 6= y

}
can be in the

nullspace of L1. Thus, avoid solutions to

[l1, l2, · · · , lj ]


c1

c2
...

cj

 = 0,

where c is a vector in the sorted set Σ for which ct = δj ,t for t ≥ j .
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In Retrospect: Randomized Search

It’s easier to find something

if you know it’s there! .
Let f (x) be an APN on GF (2m).
Compute B := {(a, b) : Trace(ax + bf (x))balanced}.
Step 1. Set B1 = B. Choose b1, b2, . . . , bm randomly so that
bi+1 /∈ 〈b1, b2, . . . , bi 〉 and
bi+1 + s ∈ B1 ∀s ∈ 〈b1, b2, . . . , bi 〉.
if you get stuck just start over!
Suppose we get the first m-dim subspace S1.
Step 2. Set B2 = B\S1.
Repeat above Step 1 with B2 in place of B1.
again... if stuck just start over!
Have upper bound on number of tries... if we hit the bound go
back to Step 1 and start over.
If we get to m in Step 2 we’re done!
For m = 6 and f (x) = kim(x)...#B = 1071...
but solutions pour out quickly! :)
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Good News and Bad News

First the good news:

We found an APN permutation in even dimension! :)

The bad news is: it is the ONLY one that we found! :(
We have shown that no other on the Banff-EP-MAGMA lists of
known APNs of dimension up to 10 can have a double-simplex
code. :(
but maybe there’s hope! :)
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Good News and Bad News

The highly structured decomposition of the Kim code suggests
that much of the structure . . . if not all . . . should generalize to
higher dimensions.

Does it?
and · · · if not · · · does something else work?
STILL BIG APN PROBLEM: Does there exist an APN
permutation in even dimension greater than 6?
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