On $\mathcal{C}$-ultrahomogeneous graphs and digraphs

Italo J. Dejter<br>University of Puerto Rico Rio Piedras, PR 00931-3355<br>idejter@uprrp.edu

The study of ultrahomogeneous graphs (resp. digraphs) is traceable back to the work of Sheehan 1974, Gardiner 1976, Ronse 1978, (resp. Fraisse 1954, Lachlan 1980, Cherlin 1988).
In the present work, some explicit $\mathcal{C}$-ultrahomogeneous graphs and digraphs are obtained, via the line of research on $\mathcal{C}$-ultrahomogeneous graphs conceived in 2007 by D. Isaksen et al., as follows.

Given a collection $\mathcal{C}$ of (di)graphs closed under isomorphisms, a
(di)graph $G$ is $\mathcal{C}$-ultrahomogeneous, or $\mathcal{C}$-UH, if every isomorphism between two induced members of $\mathcal{C}$ in $G$ extends to an automorphism of $G$.
If $\mathcal{C}=\{H\}$, we say that such a $G$ is $\{H\}-\mathrm{UH}$ or $H$-UH.
In the work of Isaksen et al., $\mathcal{C}$-UH graphs are defined and studied when $\mathcal{C}$ is the collection of either (a) complete graphs, or (b) disjoint unions of complete graphs, or (c) complements of those unions.
First, let us present a $\left\{K_{4}, K_{2,2,2}\right\}$ UH graph $G_{3}^{1}$ that fastens objects of (a) and (c), namely $K_{4}$ and $K_{2,2,2}$.

The Fano plane $\mathcal{F}=P(2,2)$ is the binary projective plane $\left(=\right.$ space of lines of the field $\left.G F_{2}^{3}\right)$, e.g. a ( $7_{3}$ )-configuration with points $1,2,3,4,5,6,7$
and Fano lines
$123,145,167,246,257,347,356$.
The map $\Phi$ that sends the points $1,2,3,4,5,6,7$ respectively onto the lines $123,145,167,246,257,347$, 356 has the following duality properties:
(1) each point $p$ of $\mathcal{F}$ pertains to the lines $\Phi(q)$, with $q \in \Phi(p)$;
(2) each Fano line $\ell$ contains the points $\Phi(k)$, where $k$ runs over the lines passing through $\Phi(\ell)$.

Given a point $p$ of $\mathcal{F}$, the collection of lines through $p$ is called a pencil of $\mathcal{F}$.
A linearly ordered presentation of these lines is an ordered pencil through $p$.
An ordered pencil $v$ through $p$, denoted $v=\left(p, q_{a} r_{a}, q_{b} r_{b}, q_{c} r_{c}\right)$, is orderly composed, in reality, by the lines

$$
p q_{a} r_{a}, p q_{b} r_{b}, p q_{c} r_{c} .
$$

There are $3!=6$ ordered pencils through any point $p$ of $\mathcal{F}$.
The claimed graph $G_{3}^{1}$ is presented in a paper just appeared in the Australasian J. of Combinatorics, (June 2009).

Ordered pencils constitute the vertex set of $G_{3}^{1}$, with any two vertices

$$
v=\left(p, q_{a} r_{a}, q_{b} r_{b}, q_{c} r_{c}\right)
$$

and

$$
v^{\prime}=\left(p^{\prime}, q_{a}^{\prime} r_{a}^{\prime}, q_{b}^{\prime} r_{b}^{\prime}, q_{c}^{\prime} r_{c}^{\prime}\right)
$$

adjacent whenever the following two conditions hold:
(1) $p \neq p^{\prime}$;
(2) $\left|p_{i} r_{i} \cap p_{i}^{\prime} r_{i}^{\prime}\right|=1$, for $i=a, b, c$.

The 3 points of intersection resulting from item (2) form an ordered Fano line by taking into account the subindex order

$$
a<b<c
$$

An alternate definition of $G_{3}^{1}$ can be given via $\Phi^{-1}$, with the vertices of $G_{3}^{1}$ seen as the ordered Fano lines $x_{a} x_{b} x_{c}$, with any two such vertices adjacent if their associated Fano lines share the entry in $\mathcal{F}$ of exactly one of its 3 positions, either $a$ or $b$ or $c$.

Example of an edge in $G_{3}^{1}$ and its image via $\phi^{-1}$ :

Ordered pencils $\leftrightarrow$ ordered lines

$$
\begin{aligned}
& (1,23,45,67) \leftrightarrow 123 \\
& (2,13,46,57) \leftrightarrow 145
\end{aligned}
$$

Theorem 1 The graph $G_{3}^{1}$ is a 12-regular $K_{2}$-fastened
$\left\{K_{4}, K_{2,2,2}\right\}$-UH graph of order 42 and diameter 3. Each vertex of $G_{3}^{1}$ is incident to exactly 3 copies of $K_{2,2,2}$ and 4 copies of $K_{4}$. Moreover, $G_{3}^{1}$ is the Menger graph of a self-dual (424)-configuration.

That $G_{3}^{1}$ is $K_{2}$-fastened means that each edge of $G_{3}^{1}$ is the intersection of exactly one copy of $K_{4}$ and exactly one copy of $K_{2,2,2}$ in $G_{3}^{1}$.
It is important to note that $G_{3}^{1}$ is not the line graph of any graph. (Menger graphs of self-dual configurations are generally line graphs.)

## Idea of proof:

The 12 neighbors of any vertex $v$ of $G_{3}^{1}$ induce the open neighborhood of $v$ in $G_{3}^{1}$, namely a hemi-rhombicuboctahedron (obtained from the rhombicuboctahedron by identification of antipodal vertices and edges):


## The corresponding closed neighborhood of $v$ in $G_{3}^{1}$ looks like the center figure here:



Figure 1: Disposition of copies of $K_{2,2,2}$ and $K_{4}$ at vertex $7^{f}$ in $G$

Next:
On how cubic distance transitive graphs yield $\mathcal{C}$-UH graphs
In addition to the
Menger graph of the self-dual (424)configuration above, which is a $K_{2^{-}}$ fastened $\left\{K_{4}, K_{2,2,2}\right\}$-UH graph, we produced recently the Menger graph of a self-dual $\left(102_{4}\right)$-configuration, which is a $K_{3}$-fastened $\left\{K_{4}, L\left(Q_{3}\right)\right\}$ UH graph.
The procedure that yields such an object starts by taking an undirected graph $G$ as a digraph and by considering each edge of $G$ as a pair of oppositely oriented or OO arcs.

Let $M$ be a sub(di)graph of a (di)graph $H$ and let $G$ be both an $M$-UH and an $H$-UH (di)graph.
$G$ is a (fastened) $(H ; M)-U H$
(di)graph if given a copy $H_{0}$ of $H$ in $G$ containing a copy $M_{0}$ of $M$, there exists exactly one copy $H_{1} \neq H_{0}$ of $H$ in $G$ with

$$
V\left(H_{0}\right) \cap V\left(H_{1}\right)=V\left(M_{0}\right)
$$

and

$$
A\left(H_{0}\right) \cap \bar{A}\left(H_{1}\right)=A\left(M_{0}\right),
$$

where $\bar{A}\left(H_{1}\right)$ is formed by those arcs whose orientation is reversed with respect to the arcs of $A\left(H_{1}\right)$, and moreover: no more vertices or edges than those in $M_{0}$ are shared by $H_{0}$ and $H_{1}$.

In the undirected case, the vertex and edge conditions above are condensed as $H_{0} \cap H_{1}=M_{0}$. This can be generalized by saying that a graph $G$ is an $\ell$-fastened $(H ; M)$ UH graph if given a copy $H_{0}$ of $H$ in $G$ containing a copy $M_{0}$ of $M$, then there exist exactly $\ell$ copies $H_{i} \neq H_{0}$ of $H$ in $G$ such that $H_{i} \cap H_{0}=M_{0}$, for $i=1,2, \ldots, \ell$, and such that no more vertices or edges than those in $M_{0}$ are shared by each two of $H_{0}, H_{1}, \ldots, H_{\ell}$.
Theorem 2 Let $G$ be a cubic distance transitive graph (CDT) of arc transitivity $k$ and girth $g$. Then, $G$ is a $\left(C_{g} ; P_{k}\right)$-UH graph and has exactly $2^{k-2} 3 n g^{-1} g$-cycles.

Theorem 3 The CDT graphs G of girth $g$ and arc transitivity $k$ that are $\operatorname{not}\left(\vec{C}_{g} ; \overrightarrow{P_{k}}\right)$-UH digraphs are the Petersen graph, the Heawood graph and the Foster graph. The remaining nine CDT graphs here are fastened $\left(\vec{C}_{g} ; \vec{P}_{k}\right)-U H$.
Given a $\left(\vec{C}_{g} ; \vec{P}_{k}\right)$-UH graph $G$, an assignment of an orientation to each $g$-cycle of $G$, such that the two $g$-cycles shared by each $(k-1)$-path have opposite orientations, yields a $\left(\vec{C}_{g} ; \vec{P}_{k}\right)$-orientation assignment or $\left(\vec{C}_{g} ; \vec{P}_{k}\right)-O A$.
The collection of $\eta$ oriented $g$-cycles corresponding to the $\eta g$-cycles of $G$, for a particular $\left(\vec{C}_{g} ; \vec{P}_{k}\right)$-OA, will be called an $\left(\eta \vec{C}_{g} ; \vec{P}_{k}\right)-O A C$.

The graph $G=K_{4}$ on vertex set $\{1,2,3,0\}$ admits the $\left(4 \vec{C}_{3} ; \vec{P}_{2}\right)$-OAC: $\{(123),(210),(301),(032)\}$.

The graph $G=K_{3,3}$ obtained from $K_{6}$ (with vertex set $\{1,2,3,4,5,0\}$ ) by deleting the edges of the triangles $(1,3,5)$ and $(2,4,0)$ admits the ( $9 \vec{C}_{4} ; \vec{P}_{3}$ )-OAC:
$\{(1234),(3210),(4325),(1430),(2145)$,
(0125), (5230), (0345), (5410)\}.


Let $G$ be either the Pappus,
Desargues, Coxeter or Biggs-Smith
graph. Consider the collection $\mathcal{C}_{g}^{k-1}(G)$
of $(k-1)$-powers of the oriented $g$ -
cycles of a $\left(\eta \vec{C}_{g} ; \vec{P}_{k}\right)$-OAC of $G$.
If $k=3$, then each arc $\vec{e}$ of a member $C^{2}$ of $\mathcal{C}_{g}^{2}(G)$ is indicated by the middle vertex of the $2-\operatorname{arc} \vec{E}$ in $C$ for which $\vec{e}$ stands, while the tail and head of $\vec{e}$ are indicated by the tail and head of $\vec{E}$, respectively. If $k=4$, which is the case of the Biggs-Smith graph, cube powers $C^{3}$ in $\mathcal{C}_{g}^{3}(G)$ are considered. But such $C^{3}$ are formed by 3 cycles. Such 3-cycles arrange themselves into 102 copies of $K_{4}$.

The Fano plane $\mathcal{F}$, with point set $J_{7}=\{1, \ldots, 7\}$ and line set $\{124$, $235,346,457,561,672,713\}$,
bestows a coloring to the vertices and edges of the Coxeter graph
$G=C o x$.
The colors of each vertex $v$ of $G$ and of its three incident edges form a quadruple $q$ whose complement $\mathcal{F} \backslash q$ is a triangle of $\mathcal{F}$ used as a 'customary' vertex denomination for $v$. Then:
(a) the triple formed by the colors of the edges incident to each vertex of $G$ is a line of $\mathcal{F}$;
(b) the color of each edge $e$ of $G$ together with the colors of the endvertices of $e$ form a line of $\mathcal{F}$.


Theorem 4 The Klein graph

$$
Y(C o x)
$$

on 56 vertices is a $\left(C_{7} ; P_{2}\right)$-UH graph composed by 24 7-cycles that yield the Klein map $\{7,3\}_{8}$ in the 3-torus $T_{3}$.

A $\vec{C}_{4}$-UH digraph which is strongly connected and without OO arcs:
The Fano plane $\mathcal{F}$ is taken with point set $J_{7}=\{0,1, \ldots, 6\}$ and line set $\{124,235,346,450,561$, $602,013\}$. The vertices and edges of the Coxeter graph $G=$ Cox are colored as follows:

which suggests that each vertex $v$ of $C o x$ can be considered as a pencil of ordered lines of $\mathcal{F}$ :

$$
\begin{equation*}
x b_{1} c_{1}, x b_{2} c_{2}, x b_{0} c_{0} \tag{1}
\end{equation*}
$$

corresponding to the three edges $e_{1}, e_{2}, e_{0}$ incident to $v$, respectively, and denoted by $\left[x, b_{1} c_{1}, b_{2} c_{2}, b_{0} c_{0}\right]$, where $x$ is the color of $v$ in the figure and $b_{i}$ and $c_{i}$ are the color of $e_{i}$ and the color of the endvertex of $e_{i}$ other than $v$, for $i \in\{1,2,0\}$.
Moreover, two such vertices
$\left[x, b_{1} c_{1}, b_{2} c_{2}, b_{0} c_{0}\right],\left[x^{\prime}, b_{1}^{\prime} c_{1}^{\prime}, b_{2}^{\prime} c_{2}^{\prime}, b_{0}^{\prime} c_{0}^{\prime}\right]$
are adjacent in Cox if $b_{i} c_{i} \cap b_{i}^{\prime} c_{i}^{\prime}$ is constituted by just one element $d_{i}$, for one $i \in\{1,2,0\}$, and the resulting triple $d_{1} d_{2} d_{0}$ is a line of $\mathcal{F}$.

In this definition of Cox, there is not any ordering imposed on the lines of each pencil representing a vertex of Cox.
Consider the digraph $D$ whose vertices are the ordered pencils of ordered lines of $\mathcal{F}$ as in (1) above. Each such vertex will be denoted as $\left(x, b_{1} c_{1}, b_{2} c_{2}, b_{0} c_{0}\right)$, where $b_{1} b_{2} b_{0}$ is a line of $\mathcal{F}$. An arc between two vertices of $D$, say from

$$
\begin{aligned}
& \left(x, b_{1} c_{1}, b_{2} c_{2}, b_{0} c_{0}\right) \text { to } \\
& \left(x^{\prime}, b_{1}^{\prime} c_{1}^{\prime}, b_{2}^{\prime} c_{2}^{\prime}, b_{0}^{\prime} c_{0}^{\prime}\right),
\end{aligned}
$$

is established if and only if

$$
\begin{aligned}
& x=c_{i}^{\prime}, b_{i+1}^{\prime}=c_{i-1}, b_{i-1}^{\prime}=c_{i+1}, \\
& x^{\prime}=c_{i}, c_{i+1}^{\prime}=b_{i+1}, c_{i-1}^{\prime}=b_{i-1}, \\
& b_{i}^{\prime}=b_{i}, \\
& \text { for some, } i \in\{1,2,0\} .
\end{aligned}
$$

This way, we obtain oriented 4 -cycles in $D$, such as
$((0,26,54,31),(6,20,15,43),(0,26,31,54),(6.20 .43 .15))$.
A simplified notation for the vertices $(x, y z, u v, p q)$ of $D$ is $y u p_{x}$. With such a notation, the adjacency sub-list of $D$ departing from the vertices of the form $y u p_{0}$ is (with rows indicated $a, b, c, d, e, f)$ :

| $124_{0}: 165_{3}, 325_{6}, 364_{5} ;$ | $235_{0}: 214_{6}, 634_{1}, 615_{6} ;$ | $346_{0}: 352_{1}, 142_{5}, 156_{2} ;$ | $156_{0}: 142_{3}, 352_{4}, 346_{2} ;$ |
| :--- | :--- | :--- | :--- |
| $142_{0} ; 156_{3}, 346_{5}, 352_{6} ;$ | $253_{0}: 241_{6}, 651_{4}, 643_{3} ;$ | $364_{0}: 325_{1}, 165_{2}, 124_{5} ;$ | $165_{0}: 124_{3}, 364_{2}, 325_{4} ;$ |
| $214_{0}: 235_{3}, 615_{3}, 634_{5} ;$ | $325_{0}: 364_{1}, 124_{6}, 165_{1} ;$ | $436_{0}: 412_{5}, 532_{1}, 516_{2} ;$ | $516_{0}: 532_{4}, 412_{3}, 436_{2} ;$ |
| $241_{0}: 253_{6}, 643_{5}, 651_{3} ;$ | $352_{0}: 346_{1}, 156_{4}, 142_{1} ;$ | $463_{0}: 421_{5}, 561_{2}, 523_{1} ;$ | $561_{0}: 523_{4}, 463_{2}, 421_{3} ;$ |
| $412_{0}: 436_{5}, 516_{3}, 532_{6} ;$ | $523_{0}: 561_{4}, 421_{6}, 463_{4} ;$ | $634_{0}: 615_{2}, 235_{1}, 214_{5} ;$ | $615_{0}: 634_{2}, 214_{3}, 235{ }_{4} ;$ |
| $421_{0}: 463_{5}, 523_{6}, 561_{3} ;$ | $532_{0}: 516_{4}, 436_{1}, 412_{4} ;$ | $643_{0}: 651_{2}, 241_{5}, 253_{1} ;$ | $651_{0}: 643_{2}, 253_{4}, 241_{3}$. |

From this sub-list, the adjacency list of $D$, for its $168=24 \times 7$ vertices, is obtained via translations $\bmod 7$. Let us represent each vertex $y u p_{0}$ of $D$ by means of a symbol $i_{j}$, where $j=a, b, c, d, e, f$ stands for the successive rows of the table above and $i \in\{0,1,2,4\}$.

These symbols $i_{j}$ are assigned to the lines yup avoiding $0 \in \mathcal{F}$, and thus to the $y u p_{0}$, as follows:

$$
\begin{aligned}
& \text { The quotient graph } D / \mathbf{Z}_{7} \text { admits } \\
& \text { a split representation:: }
\end{aligned}
$$


in which:
(a)the 18 oriented 4-cycles shown are interpreted all with counterclockwise orientation;
(b)the three vertices indicated by $0_{j}$, for each $j \in\{a, \ldots, f\}$, represent just one vertex of $D / Z_{7}$, so they must be identified; (c)the leftmost arc in each one of the three connected graphs must be identified with the corresponding rightmost arc by parallel translation;
(d) the arcs are indicated with voltages mod 7 whose additions with the corresponding tail symbols $\in$ $J_{7}$ yield the corresponding head symbols.

All the oriented 4-cycles of $D$ are obtained by uniform translations mod 7 from these 18 oriented 4-cycles; thus, there are just $126=7 \times 18$ oriented 4-cycles of $D$.
Our construction of $D$ shows that the following statement holds.
Theorem 5 The digraph $D$ is a strongly connected $\vec{C}_{4}$-UH digraph on 168 vertices, 126 pairwise disjoint oriented 4-cycles, with regular indegree and outdegree both equal to 3 and no circuits of lengths 2 and 3.

## Extension of the ordered pencil technique for $G_{3}^{1}$

A graph $G$ is said to be
$\overrightarrow{\mathcal{C}}$-homogeneous if for each two isomorphic induced subgraphs $X_{1}, X_{2} \in \mathcal{C}$ in $G$ and arcs $v_{1} w_{1}, v_{2} w_{2}$ of $X_{1}, X_{2}$, resp., there exists an isomorphism

$$
f: X_{1} \rightarrow X_{2}
$$

with $f\left(v_{1}\right)=v_{2}$ and $f\left(w_{1}\right)=w_{2}$, extending to an automorphism of $G$.
If $\mathcal{C}$ is the minimal class containing two nonisomorphic graphs $X_{1}$ and $X_{2}$, then a $\overrightarrow{\mathcal{C}}$-homogeneous graph is said to be $\left\{X_{1}, X_{2}\right\}$-homogeneous.

For each $(r, \sigma) \in \mathbf{Z}^{2}$ with $r>2$ and $\sigma \in(0, r-1)$, we introduce a connected
$\left\{K_{2 s}, T_{t s, t}\right\}$-homogeneous graph $G_{r}^{\sigma}$ that is not $\left\{K_{2 s}, T_{t s, t}\right\}-\mathrm{UH}$ for $r>3$, where:
$K_{2 s}$ is the complete graph on $2 s$ vertices and
$T_{t s, t}$ is the $t$-partite Turán graph on $s$ vertices per part (a total of $t s$ vertices) with:
$t=2^{\sigma+1}-1$ and $s=2^{r-\sigma-1}$, but $r \leq 8$ and $\rho=r-\sigma \leq 5$.
To obtain these objects, we need to work with the projective geometry $P(r-1,2)$ (=space of lines of the field $G F_{2}^{r}$ ).

Let $A_{0}$ be a $(\sigma-1)$-subspace of $P(r-1)$. The collection of all the $\sigma$-subspaces of $P(r-1)$ containing $A_{0}$ is called the $(r, \sigma)$-pencil of $P(r-1)$ through $A_{0}$.
A linearly ordered presentation of this pencil is said to be an
$(r, \sigma)$-ordered pencil of $P(r-1)$
through $A_{0}$.
An $(r, \sigma)$-ordered pencil $v$ of
$P(r-1)$ through $A_{0}$ has the form

$$
v=\left(A_{0} \cup A_{1}, \ldots, A_{0} \cup A_{m_{1}}\right)
$$

where $A_{1}, \ldots, A_{m_{1}}$ are the nontrivial cosets of $G F_{2}^{r}$ mod its subspace $A_{0} \cup\{\overline{0}\}$, with
$m=2^{r-\sigma}-1$.
A shorthand for $v$ :

$$
v=\left(A_{0}, A_{1}, \ldots, A_{m}\right)
$$

In order to keep notation, the empty set of $P(r-1)$ is said to be a $(-i)$-subspace of $P(r-1)$, for every negative integer $i$. The $(r, \sigma)$-ordered pencils of $P(r-1)$ constitute the set of vertices $v=$ $\left(A_{0}, A_{1}, \ldots, A_{m}\right)$ of a graph $\mathcal{G}_{r}^{\sigma}$, with an edge between each two vertices $v=\left(A_{0}, A_{1} \ldots, A_{m}\right)$ and $v^{\prime}=$ $\left(A_{0}^{\prime}, A_{1}^{\prime} \ldots, A_{m}^{\prime}\right)$ such that:

1. $A_{0} \cap A_{0}^{\prime}$ is a $(\sigma-2)$-subspace of $P(r-1)$;
2. for each $1 \leq i \leq m, A_{i} \cap A_{i}^{\prime}$ is a nontrivial coset of $F_{2}^{r}$ $\bmod \left(A_{0} \cap A_{0}^{\prime}\right) \cup\{\overline{0}\} ;$
3. $U\left(v, v^{\prime}\right)=\cup_{i=1}^{m}\left(A_{i} \cap A_{i}^{\prime}\right)$ is an $(r-2)$-subspace of $P(r-1)$; (needed only if $(r, \sigma) \neq(3,1)$ ).

## Let $v_{r}^{\sigma}$ be the lexicographically small-

 est $(r, \sigma)$-ordered pencil in $\mathcal{G}_{r}^{\sigma}$. and let $u_{r}^{\sigma}$ be its lexicographically smallest neighbor in $\mathcal{G}_{r}^{\sigma}$. Examples:$$
\begin{array}{lll}
v_{3}^{1}=(1,23,45,67), & u_{3}^{1}=(2,13,46,57), & \left(U\left(v_{3}^{1}, u_{3}^{1}\right)=347\right) ; \\
v_{4}^{1}=(1,23,45,67,89, a b, c d, e f), & u_{4}^{1}=(2,13,46,57,8 a, 9 b, c e, d f), & \left(U\left(v_{4}^{1}, u_{4}^{1}\right)=3479 b c f\right) ; \\
v_{4}^{2}=(123,4567,89 a b, c d e f), & u_{4}^{2}=(145,2367,89 c d, a b e f, & \left.\left(U_{( } v_{4}^{2}, u_{4}^{2}\right)=16789 e f\right) .
\end{array}
$$

Then, the component of $\mathcal{G}_{r}^{\sigma}$ containing $v_{r}^{\sigma}$ is the connected $\left\{K_{2 s}, T_{t s, t}\right\}$-homogeneous graph $G_{r}^{\sigma}$ that we claimed above.

