Using Galois Rings to construct DRADs

James Davis¹ John Polhill²

¹Department of Mathematics and Computer Science University of Richmond

> ²Department of Mathematical Sciences Bloomsburg University

Finite Fields and their Applications, July 13, 2009

(日) (同) (三) (三)

Chicago Galois Rings Multiplicative structure Further work

McFarland/Dillon difference sets

<ロ> <同> <同> < 同> < 同>

Chicago Galois Rings Multiplicative structure Further work

McFarland/Dillon difference sets

þ	þ

<ロ> <同> <同> < 同> < 同>

Chicago Galois Rings Multiplicative structure Further work

McFarland/Dillon difference sets

	þ	þ
#		
#		

<ロ> <同> <同> < 同> < 同>

Chicago Galois Rings Multiplicative structure Further work

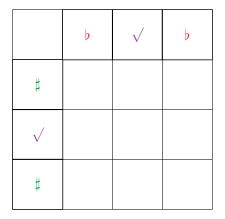
McFarland/Dillon difference sets

	þ	\checkmark	þ
#			
\checkmark			
#			

<ロ> <同> <同> < 同> < 同>

Chicago Galois Rings Multiplicative structure Further work

McFarland/Dillon difference sets

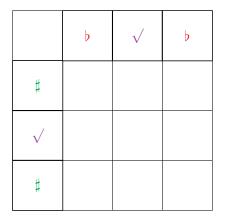


$$D = (1,0) + \langle (2,0) \rangle$$

<ロ> <同> <同> < 同> < 同>

Chicago Galois Rings Multiplicative structure Further work

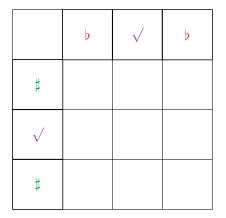
McFarland/Dillon difference sets



 $D = (1,0) + \langle (2,0) \rangle \cup$ $(0,1) + \langle (0,2) \rangle$

Chicago Galois Rings Multiplicative structure Further work

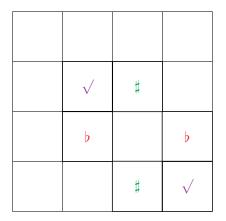
McFarland/Dillon difference sets



 $D = (1,0) + \langle (2,0) \rangle \cup$ $(0,1) + \langle (0,2) \rangle \cup (2,0) + \langle (2,2) \rangle$

▲□ ▶ ▲ 三 ▶ ▲

Other choices of coset representatives



 $D = (1,2) + \langle (2,0) \rangle \cup$ $(2,1) + \langle (0,2) \rangle \cup (1,1) + \langle (2,2) \rangle$

/⊒ > < ∃ >

Special session on Association Schemes

Find a difference set with the following properties:

•
$$D \cap D^{(-1)} = \emptyset$$

- 4 同 6 4 日 6 4 日 6

Special session on Association Schemes

Find a difference set with the following properties:

•
$$D \cap D^{(-1)} = \emptyset$$

•
$$G - (D \cup D^{(-1)}) = H$$

- 4 同 6 4 日 6 4 日 6

Special session on Association Schemes

Find a difference set with the following properties:

• $D \cap D^{(-1)} = \emptyset$

•
$$G - (D \cup D^{(-1)}) = H$$

• D should be a $(2^{2t}, 2^{2t-1} - 2^{t-1}, 2^{2t-2} - 2^{t-1})$ Hadamard difference set

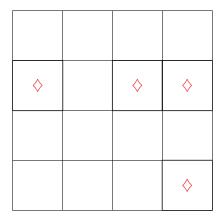
Napkin work

	\diamond
	\diamond

 $D = (\mathbf{3}, \mathbf{3}) + \langle (\mathbf{2}, \mathbf{0}) \rangle$

<ロ> <同> <同> < 同> < 同>

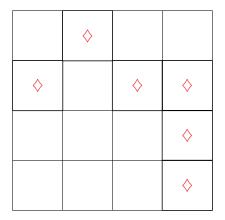
Napkin work



 $egin{aligned} D &= (\mathbf{3},\mathbf{3}) + \langle (\mathbf{2},\mathbf{0})
angle \cup \ & (\mathbf{1},\mathbf{0}) + \langle (\mathbf{0},\mathbf{2})
angle \end{aligned}$

- 4 回 2 - 4 □ 2 - 4 □

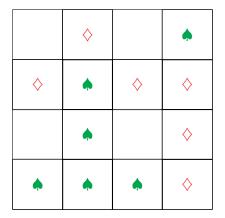
Napkin work



 $D = (3,3) + \langle (2,0) \rangle \cup$ $(1,0) + \langle (0,2) \rangle \cup (\mathbf{0},\mathbf{1}) + \langle (\mathbf{2},\mathbf{2}) \rangle$

- 4 聞 と 4 置 と 4 置 と

Napkin work

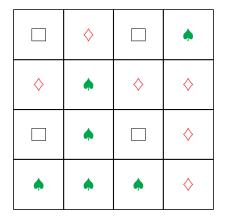


 $D = (3,3) + \langle (2,0) \rangle \cup$ $(1,0) + \langle (0,2) \rangle \cup (\mathbf{0},\mathbf{1}) + \langle (\mathbf{2},\mathbf{2}) \rangle$

 $D^{(-1)} = (1,1) + \langle (2,0)
angle \cup \ (3,0) \langle (0,2)
angle \cup (0,3) + \langle (2,2)
angle$

・聞き ・ 国を ・ 国を

Napkin work



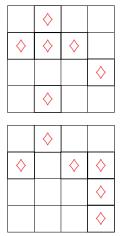
 $D = (3,3) + \langle (2,0) \rangle \cup$ $(1,0) + \langle (0,2) \rangle \cup (\mathbf{0},\mathbf{1}) + \langle (\mathbf{2},\mathbf{2}) \rangle$

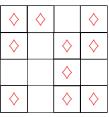
 $D^{(-1)} = (1,1) + \langle (2,0) \rangle \cup \ (3,0) \langle (0,2) \rangle \cup (0,3) + \langle (2,2)
angle$

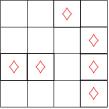
 $G - D - D^{(-1)} = \langle (2,0), (0,2) \rangle$

・聞き ・ ヨキ ・ ヨキー

Harder work

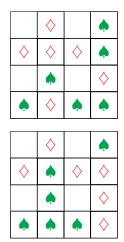


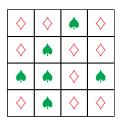


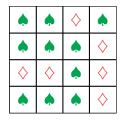


・ロト ・回ト ・ヨト ・ヨト

Harder work

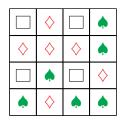


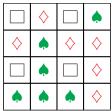


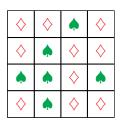


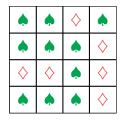
・ロン ・部 と ・ ヨ と ・ ヨ と …

Harder work









・ロン ・部 と ・ ヨ と ・ ヨ と …

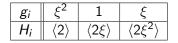
Notation and examples

 $GR(4,2) = \mathbb{Z}_4[\xi]$ where $\xi^2 + \xi + 1 = 0$ (could say $GR(4,2) = \mathbb{Z}_4[x]/\langle x^2 + x + 1 \rangle$).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Notation and examples

$$GR(4,2) = \mathbb{Z}_4[\xi]$$
 where $\xi^2 + \xi + 1 = 0$ (could say $GR(4,2) = \mathbb{Z}_4[x]/\langle x^2 + x + 1 \rangle$).



<ロ> <同> <同> < 同> < 同>

Notation and examples

$$GR(4,2) = \mathbb{Z}_4[\xi]$$
 where $\xi^2 + \xi + 1 = 0$ (could say $GR(4,2) = \mathbb{Z}_4[x]/\langle x^2 + x + 1 \rangle$).

gi	ξ^2	1	ξ
H _i	$\langle 2 \rangle$	$\langle 2\xi \rangle$	$\langle 2\xi^2 \rangle$

 $\mathsf{Correspondance:} \ (2,0) \longleftrightarrow 2; (0,2) \longleftrightarrow 2\xi; (2,2) \longleftrightarrow 2\xi^2$

・ロト ・回ト ・ヨト ・ヨト

Notation and examples

$$GR(4,2) = \mathbb{Z}_4[\xi]$$
 where $\xi^2 + \xi + 1 = 0$ (could say $GR(4,2) = \mathbb{Z}_4[x]/\langle x^2 + x + 1 \rangle$).

gi	ξ^2	1	ξ
H _i	$\langle 2 \rangle$	$\langle 2\xi \rangle$	$\langle 2\xi^2 \rangle$

 $\mathsf{Correspondance:} \ (2,0) \longleftrightarrow 2; (0,2) \longleftrightarrow 2\xi; (2,2) \longleftrightarrow 2\xi^2$

$$D = (\xi^2 + \langle 2
angle) \cup (1 + \langle 2 \xi
angle) \cup (\xi + \langle 2 \xi^2
angle)$$

イロン 不同 とくほう イロン

Next size up

$GR(4,3) = \mathbb{Z}_4[\zeta]$ where $\zeta^3 + 2\zeta^2 + \zeta + 3 = 0$.

James Davis, John Polhill Using Galois Rings to construct DRADs

æ

<ロト <部ト < 注ト < 注ト

Next size up

$$GR(4,3) = \mathbb{Z}_4[\zeta]$$
 where $\zeta^3 + 2\zeta^2 + \zeta + 3 = 0$.

gi	ζ^6	1	ζ	 ζ^5
H _i	$\langle 2, 2\zeta \rangle$	$\langle 2\zeta, 2\zeta^2 \rangle$	$\langle 2\zeta^2, 2\zeta^3 \rangle$	 $\langle 2\zeta^6,2\rangle$

・ロン ・部 と ・ ヨ と ・ ヨ と …

Next size up

$$GR(4,3) = \mathbb{Z}_4[\zeta]$$
 where $\zeta^3 + 2\zeta^2 + \zeta + 3 = 0$.

gi	ζ^{6}	1	ζ		ζ^5
H_i	$\langle 2, 2\zeta \rangle$	$\langle 2\zeta, 2\zeta^2 \rangle$	$\langle 2\zeta^2, 2\zeta^3 \rangle$	• • •	$\langle 2\zeta^6,2\rangle$

Correspondance: (2,0,0) \longleftrightarrow 2; (0,2,0) \longleftrightarrow 2 ζ ; (0,0,2) \longleftrightarrow 2 ζ^2 ; ...

Next size up

$$GR(4,3) = \mathbb{Z}_4[\zeta]$$
 where $\zeta^3 + 2\zeta^2 + \zeta + 3 = 0$.

gi	ζ^6	1	ζ		ζ^5
H_i	$\langle 2, 2\zeta \rangle$	$\langle 2\zeta, 2\zeta^2 \rangle$	$\langle 2\zeta^2, 2\zeta^3 \rangle$	• • •	$\langle 2\zeta^6,2\rangle$

Correspondance: (2,0,0) \longleftrightarrow 2; (0,2,0) \longleftrightarrow 2 ζ ; (0,0,2) \longleftrightarrow 2 ζ^2 ; ...

$$D = (\zeta^{6} + \langle 2, 2\zeta \rangle) \cup (1 + \langle 2\zeta, 2\zeta^{2} \rangle) \cup \cdots \cup (\zeta^{5} + \langle 2\zeta^{6}, 2\rangle)$$

General construction

Theorem

Let $GR(4, t) = \mathbb{Z}_4[\varsigma]$ where $\Phi(\varsigma) = 0$ for Φ a basic primitive polynomial of degree t. Define:

$$\begin{array}{|c|c|c|c|c|c|c|}\hline g_i & \varsigma^{2^t-2} & 1 & \cdots & \varsigma^{2^t-3} \\ \hline H_i & \langle 2, 2\varsigma, \dots, 2\varsigma^{t-1} \rangle & \langle 2\varsigma, \dots, 2\varsigma^t \rangle & \cdots & \langle 2\varsigma^{2^t-2}, \dots, 2\varsigma^{t-2} \rangle \end{array}$$

Then $D = \bigcup_{i=0}^{2^t-2} \varsigma^{i-1} + \langle 2\varsigma^i, 2\varsigma^{i+1}, \dots, 2\varsigma^{i+t-1} \rangle$ is a DS with correct properties.

(日)

Key observation

Key observation: If g_i \notin H

James Davis, John Polhill Using Galois Rings to construct DRADs

Key observation

Key observation: If $g_i \notin H$ and $2g_i \notin H_i$

James Davis, John Polhill Using Galois Rings to construct DRADs

Key observation

Key observation: If $g_i \notin H$ and $2g_i \notin H_i$ for all i,

then D satisfies $D \cap D^{(-1)} = \emptyset$, $G - (D \cup D^{(-1)}) = H$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Key observation

Key observation: If $g_i \notin H$ and $2g_i \notin H_i$ for all i, then D satisfies $D \cap D^{(-1)} = \emptyset$, $G - (D \cup D^{(-1)}) = H$.

Secondary observation: Any *t* consecutive powers of ς in the Galois Ring will be a basis for the maximal ideal.

Key observation

Key observation: If $g_i \notin H$ and $2g_i \notin H_i$ for all i, then D satisfies $D \cap D^{(-1)} = \emptyset$, $G - (D \cup D^{(-1)}) = H$.

Secondary observation: Any *t* consecutive powers of ς in the Galois Ring will be a basis for the maximal ideal.

Question: In what groups can we make this work?

Interesting observation

Example

 $D=\{\xi^2,\xi^2+2,1,1+2\xi,\xi,\xi+2\xi^2\}$ is a multiplicative subgroup of GR(4,2).

More generally, $D = \bigcup_{i=0}^{2^t-2} \varsigma^{i-1} + \langle 2\varsigma^i, 2\varsigma^{i+1}, \dots, 2\varsigma^{i+t-1} \rangle$ is a multiplicative subgroup of GR(4, t).

・ロト ・四ト ・ヨト ・ヨト

All Rings????

Example

 $\mathcal{D}_m = \{\xi^i (1 + p^{s-1} \Sigma_{j=1}^m a_j \xi^j)\}$ is a multiplicative subgroup of $GR(p^s, t)$.

All Rings????

Example

 $\mathcal{D}_m = \{\xi^i (1 + p^{s-1} \Sigma_{j=1}^m a_j \xi^j)\}$ is a multiplicative subgroup of $GR(p^s, t)$.

 $(x, y) \in R_i$ if $x - y \in a_i \mathcal{D}_m$ defines an association scheme.

(日)

All Rings????

Example

 $\mathcal{D}_m = \{\xi^i(1 + p^{s-1}\Sigma_{j=1}^m a_j \xi^j)\}$ is a multiplicative subgroup of $GR(p^s, t)$.

 $(x, y) \in R_i$ if $x - y \in a_i \mathcal{D}_m$ defines an association scheme.

Theorem

Let R be a ring with unity and let D be a multiplicative subgroup. Then there is an association scheme associated defined as in the Galois Ring example.

Ito's Theorem

If \mathcal{X} is the set of points of the DRAD and if G is an automorphism group of the DRAD, then the rank of G is the number of orbits of $\mathcal{X} \times \mathcal{X}$.

Theorem

The DRAD coming from the (16,6,2) example is the only (up to equivalence) DRAD which has an automorphism group of rank 4.

Counterexamples

Example

Jorgensen did a computer search for nonsymmetric 3-class association schemes, and found a (64,28,12) example that can be used to construct a DRAD with a rank 4 automorphism group.

▲ 同 ▶ → 三 ▶

Counterexamples

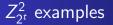
Example

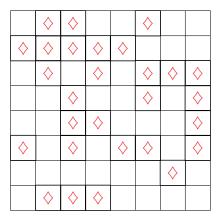
Jorgensen did a computer search for nonsymmetric 3-class association schemes, and found a (64,28,12) example that can be used to construct a DRAD with a rank 4 automorphism group.

Theorem

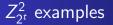
There are DRADs with rank 4 automorphism groups with valency 4^t for all $t \ge 2$.

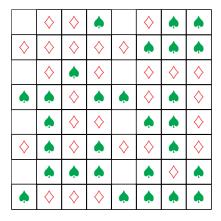
▲ 同 ▶ → 三 ▶



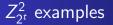


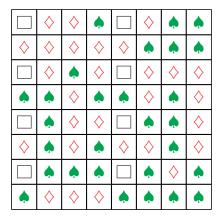
・ロト ・回ト ・ヨト ・ヨト





・ロン ・部 と ・ ヨ と ・ ヨ と …





・ロン ・部 と ・ ヨ と ・ ヨ と …

5-class examples

Example

McFarland (96,20,4) difference sets, find four disjoint in the same group so that $D_i^{(-1)} = D_j$, $G - D_1 - D_2 - D_3 - D_4 = H$ for H a subgroup of order 16. There are such examples!

| 4 同 🕨 🔺 🖹 🕨 🤘

5-class examples

Example

McFarland (96,20,4) difference sets, find four disjoint in the same group so that $D_i^{(-1)} = D_j$, $G - D_1 - D_2 - D_3 - D_4 = H$ for H a subgroup of order 16. There are such examples!

How to generalize?

| 4 同 🕨 🖌 🖉 🕨 🔺