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Definitions 1
θ generates Fqn (over Fq) if Fq(θ) = Fqn

θ1, θ2 (non-zero) generate Fqn (over Fq) if Fq(θ1, θ2) = Fqn

A primitive element of Fqn is a generator of the cyclic
multiplicative group of Fqn . It has order qn − 1

For any divisor k of qn − 1, a k-free element γ of F∗qn is such that

γ = βd (β ∈ Fqn , d | k) implies d = 1

I A primitive element of Fqn is (qn − 1)-free

I Q is the set of all prime powers

I Note: where appropriate, take q odd in what follows!



Translates problem

Theorem (Davenport, 1937; Carlitz, 1953)

Suppose θ generates Fqn . Then provided q is sufficiently large
∃a ∈ Fq such that θ + a is a primitive element of Fqn

Translates problem
Can we guarantee that ∃a ∈ Fq such that θ + a is a primitive
element of Fqn for every generator θ of Fqn?

Refer to the “line” {θ + a : a ∈ Fq} as a “translate” of Fq

Definition 2
Tn := set of prime powers q such that, ∀ generators θ of
Fqn ,∃a ∈ Fq such that θ + a is a primitive element of Fqn

= prime powers s. t. every translate contains a primitive element

Theorem (Davenport-Carlitz)

Given n, all sufficiently large q are in Tn Q \ Tn is finite



Line problem

Line problem
Can we guarantee that ∃a ∈ Fq such that θ1 + aθ2 is a primitive
element of Fqn whenever θ1, θ2 generate Fqn?

Alternative form (used from now on)
Given that α, θ generate Fqn , can we guarantee that ∃a ∈ Fq such
that α(θ + a) is a primitive element of Fqn?

I May be sensible even if θ itself does not generate Fqn



Reduction of line problem

Suppose Fq(θ) = Fqd where d |n with d < n
Write

I Qd = qn−1
qd−1

I Rd = largest factor of qd − 1 with gcd( n
d ,Rd) = 1

Then

α(θ + a) is primitive ⇐⇒
{
α is Qd -free and for some β ∈ Fqd

β(θ + a) is Rd − free in Fqd

I Reduces this degree n line problem to one of degree d

Henceforth assume θ is a generator of Fqn

Definition 3
Ln := set of prime powers q such that, ∀ generators θ of Fqn and
α ∈ F∗qn , ∃a ∈ Fq such that α(θ+ a) is a primitive element of Fqn

= prime powers s.t. all lines in Fqn contain a primitive element



Explicit results

Quadratic extensions

Theorem 1 (Cohen, 1983)

L2 = Q “All lines in Fq2 contain a primitive element”

I Method establishes numerical criteria to be satisfied for q ∈ Q
I for large q
I for remaining q in a reasonable number of steps

I no q ∈ Q checked to be in L2 by direct verification

I computer not needed/used!



Cubic extensions

Theorem (Mills and McNay, 2002 (presented at Fq6, 2001))

Subject to the non-existence of prime powers q in certain ranges
with 18 ≤ no. distinct primes in (q3 − 1) ≤ 24,
Q\ T3 is contained in a set of 429 prime powers (largest is 220411)

Theorem 2 (conjectured: M & M 2002; proved: SDC 2009)

T3 = Q \ {3, 7, 9, 13, 37}

Theorem 3 (Cohen, 2009)

Q \ L3 ⊆ {3, 4, 5, 7, 9, 11, 13, 31, 37}
⋃
S, where S is a set of 175

prime powers, the largest being 9811



Character sum expression

Let α, θ ∈ Fqn : α 6= 0, θ generates Fqn

For e|qn − 1,
N(e) := no. of e-free elements in {α(θ + a), a ∈ Fq} (given line)

N := N(qn − 1) = number of primitive elements on line

Proposition 4
N(e) = ρ(e)

q +
∑

1<d |e

µ(d)

φ(d)

∑
(d)

χd(α)Sθ(χd)


Here

I Sθ(χ) =
∑
a∈Fq

χ(θ + a), χ a multiplicative character of Fqn

I
∑
(d)

denotes a sum over all φ(d) characters of Fqn of order d

I ρ(e) = φ(e)
e proportion of e-free elements in F∗qn



Estimate for Sθ(χd )

Proposition 5 (Katz, 1989)

Suppose θ generates Fqn and d (> 1) divides qn − 1. Then

|Sθ(χd)| =

∣∣∣∣∣∣
∑
a∈Fq

χd(θ + a)

∣∣∣∣∣∣ ≤ (n − 1)
√

q

I deep, in general

I relevance noticed by R Odoni, 1993

I easy in quadratic extensions (see later)



N(e) = ρ(e)

q +
∑

1<d|e

µ(d)

φ(d)

∑
(d)

χd(α)Sθ(χd)

 , Sθ(χd) =
∑
a∈Fq

χd(θ + a)

Proposition 6

Suppose e|qn − 1. Then for a given line {α(θ + a) : a ∈ Fq}

N(e) > ρ(e)(q − (n − 1)2ω(e)√q); ω(e) = #{primes|e}

Take e = qn − 1 so that N(e) = N

Corollary 7

Suppose q > (n − 1)222ω(qn−1). Then q ∈ Ln

Corollary 8 (Davenport-Carlitz theorem)

Given n, ∃q0 = q0(n) such that, if q > q0, then q ∈ Ln



Application to small degree extensions

Let ωn := ω(qn − 1)

Quadratic: q > 22ω2 =⇒ q ∈ L2

Corollary 9

Suppose q /∈ L2. Then ω2 ≤ 14 and q < 2.265× 108

Proof.
Assumes “worst case”: q2 − 1 = 8p2 · · · pω2 (smallest primes)

Cubic: q > 4 · 22ω3 =⇒ q ∈ L3

Corollary 10

Suppose q /∈ L3. Then ω3 ≤ 52 and q < 2.203× 1032

Quartic: q > 9 · 22ω4 =⇒ q ∈ L4

Corollary 11

Suppose q /∈ L4. Then ω4 ≤ 154 and q < 4.694× 1094



Sθ(χd ) in quadratic extensions

Proposition 12 (Cohen,1983)

Suppose n = 2 and θ generates Fq2 . Let d |q2 − 1.

1. Assume d(> 1)|q + 1. Then Sθ(χd) = −1

2. Assume d |q2 − 1, but d - q + 1. Then |Sθ(χd)| =
√

q

Proof.
Based on fact that {1, θ} is a basis of Fq2/Fq.

I For d |q + 1, depends on χd(θ + a) = χd(c(θ + a)), c ∈ F∗q
I Otherwise { θ+a

θ+b ; a, b ∈ Fq} is “most” of Fq2

Corollary 13

Suppose e = f (q + 1), f (odd) with ω(f ) = t, ω(q + 1) = u. Then

N(e) ≥ ρ(e)(q − (2t − 1)2u√q − 1)



Norm Method for Quadratic Fields

Conjecture (Giudici, 1980 (extended))

All prime powers q are in L2

Proposition 14 (Giudici and Margaglio, 1980)

Suppose q is odd and

φ(q + 1) + 2φ(q − 1) > q − 1.

Then q ∈ T2

I Proportion of prime powers q this criterion fails to show in T2:

q < 105 106 107 108 109

% failures 14.983 15.176 15.081 15.065 15.066



φ(q + 1) + 2φ(q − 1) > q − 1 =⇒ q ∈ L2

Proof.
Let A := {imprimitive θ + a (a ∈ Fq) with primitive Fq-norm}

= {(q + 1)-free θ + a (a ∈ Fq) that are not primitive}
Let Nm(A) := set of Fq-norms of A

I Since
F∗q{(q + 1)-free θ + a} = {all (q + 1)-free members of Fq2}
then |A| = φ(q + 1)− N

I |A| ≤ 2|Nm(A)|
I Nm(A) ⊆ non-squares of Fq that are not primitive

I |Nm(A)| ≤ 1
2 (q − 1) − φ(q − 1)

I Thus
N ≥ φ(q + 1) + 2φ(q − 1) − (q − 1)



Modified norm method for quadratic extensions

Let f be an odd divisor of q − 1 with ω(f ) = t

A := {2f (q + 1)-free α(θ + a) that are not primitive}.

I |A| ≥ φ(f )
f (q + 1− (2t − 1)2ω(q+1)√q −1) − N

I Nm(A) ⊆ {2f -free elements of Fq that are not primitive}
I |Nm(A)| = φ(f )

2f (q − 1)− φ(q − 1)

Proposition 15 (Cohen 1983)

Suppose f is an odd divisor of q − 1, t = ω(f ), u := ω(q + 1) and

φ(f )

f
[φ(q+1)(1−

(2t − 1)2u√q

q + 1
)−1]+2φ(q−1)− φ(f )

f
(q−1) > 0

Then q ∈ L2



Application of modified norm criterion

I Take f to be the least odd prime in q − 1 (so t = ω(f ) = 1)
I shows q < 107 in L2 except (possibly) for

139, 181, 1429, 680681, 1898051, . . . 13 in all

I Proportion of prime powers this criterion fails to show in L2:

q < 105 106 107 108 109

# failures 3 4 13 101 812
% failures ×102 3.09 0.508 0.195 0.175 0.156

I Take f to be the product of the least two primes in q − 1
I fails (only) for 139, 181, 1429 (q < 109)
I 14292 − 1 = 23 × 3× 5× 7× 11× 13× 17

I Unable (provably) to identify L2 by this approach !



General prime sieve criterion (GPSC)

rad(qn − 1) := radical of (product of distinct primes in) qn − 1
rad(qn − 1) := kp1 · · · ps , p1, . . . , ps are distinct (sieving) primes

k is core, t := ω(k)

Lemma 4

N ≥
s∑

i=1

N(kpi ) − (s − 1)N(k)

= δN(k) +
s∑

i=1

(
N(kpi )−

(
1− 1

pi

)
N(k)

)
,

where δ := 1−
s∑

i=1

1

pi

I Must have δ > 0 . . .
. . . so incorporate small primes in qn − 1 into k



rad(qn − 1) = kp1 · · · ps , δ = 1−
s∑

i=1

1

pi

N ≥ δN(k) +
s∑

i=1

(
N(kpi )−

(
1− 1

pi

)
N(k)

)

I N(k) > ρ(k)(q − (n − 1)2t√q) (t = ω(k))

I |N(kpi )−
(

1− 1
pi

)
N(k)| ≤ (n − 1)(s − 1 + δ)2t√q

Proposition 16 (GPSC)

Suppose δ > 0 and

q > (n − 1)222t

(
s − 1

δ
+ 2

)2

:= RG

Then q ∈ Ln



Prime sieve criterion for quadratic extensions (QPSC)

Uses Sθ(χd) = −1 for d |q + 1

Proposition 17 (QPSC)

Assume all primes in the core k divide q + 1. Suppose δ > 0 and

q > 22t

(
s0 − 1

δ
+
δ0

δ

)2

:= RQ

I t = ω(k), δ = 1−
s∑

i=1

1

pi
as before

I p1, . . . , ps0 are primes dividing q − 1

I δ0 = 1−
s0∑

i=1

1

pi

Then q ∈ T2. If q > R+
Q (> RQ), then q ∈ L2

I Use QPSC for specific q but GPSC for ranges of q



q = 169 = 132

I q − 1 = 23 × 3× 7; q + 1 = 2× 5× 17 : take t = 1;

I δ = 1− 1
3 −

1
5 −

1
7 −

1
17 = 0.26498; δ0 = 1− 1

3 −
1
7 = 0.52380

I RQ < 133 < R+
Q < 137 < q = 169

q = 181

I q − 1 = 22 × 32 × 5; q + 1 = 2× 7× 13 : t = 1;

I δ = 1− 1
3 −

1
5 −

1
7 −

1
13 = 0.24688; δ0 = 0.46666

I RQ < 142 < R+
Q < 146 < q = 181

q = 1429

I q − 1 = 22 × 3× 7× 17; q + 1 = 2× 5× 11× 13 : t = 2;

I δ = 0.29715; δ0 = 0.60784

I RQ < 1233 < R+
Q < 1244 < q = 1429



Proof of Theorem 1: L2 = Q
first step (following Corollary 9) ω2 = ω(q2 − 1)

I can assume ω2 ≤ 14 (and q < 2.265× 108)
I take k to be product of 3 least primes in q + 1: so t = 3
I s ≤ ω2 − 3 ≤ 11 : δ ≥ 1− 1

7 −
1

11 − · · · −
1

43 > 0.39296
I so if q > 48215 > RG then q ∈ L2

I can assume q < 48215 and hence ω2 ≤ 9

second step ω2 ≤ 9

third step ω2 ≤ 8

fourth step
I assume ω2 ≤ 7 and q < 22652
I take t = 2
I s ≤ ω2 − 2 ≤ 5 : δ ≥ 1− 1

5 −
1
7 − · · · −

1
17 > 0.43048

I so if q > 2040 > RG then q ∈ L2

I can assume q < 2040 and hence ω2 ≤ 7



fifth step Use QPSC

I assume ω2 = 7 and q < 2040 (e.g., q = 1429)

I must have: ω(q − 1) = ω(q + 1) = 3; 3 or 5 divides q + 1

I t = 2

I s ≤ ω2 − 2 ≤ 5
δ ≥ 1− 1

3 −
1
7 −

1
11 −

1
13 −

1
17 > 0.29715; δ0/δ < 2.6025

I so if q > 1407 > R+
Q > 1393 > RQ then q ∈ L2

(covers 1429 !!)

further steps

I for ω2 = 6 similar argument gives q > 914 =⇒ q ∈ L2, etc

I Norm method covers small failures of QPSC (e.g, q = 211)



Towards proof of Theorem 3: identifying L3

prime sieve criterion:

q > 4× 22t

(
s − 1

δ
+ 2

)2

:= RG =⇒ q ∈ L3

first step (after Cor 9) ω3 = ω(q3 − 1)

I assume 20 ≤ω3 ≤ 52; 8.232× 108 <q < 2.2029× 1032

I t = ω(k) = 4; s ≤ ω3 − 4 ≤ 48; δ > 0.20068

I q ∈ L3 since q > 5.7× 107 > RG

second step

I assume 15 ≤ω3 ≤ 19 and q > 850352 : RG < 672475

third step

I assume ω3 = 14 and q > 235631 : RG < 193864



next steps

I assume ω3 = 13 and q > 67257 : RG < 142863

I there are no prime powers q with 67257 < q < 142863

I similarly for 10 ≤ ω3 ≤ 12

I ω3 ≤ 9 GPSC yields upper bounds for q 6∈ L3

ω3 9 8 7 6 5 4 3 2

q < 25456 14849 8160 4131 1958 793 256 64



Modified prime sieve criterion (MPSC)

Write: rad(qn − 1) = kp1 · · · ps l where
k = core, p1, . . . , ps , l distinct primes (with l largest)

t = ω(k), δ = 1−
s∑

i=1

1

pi

Proposition 18 (MPSC)

If q > RM := (n − 1)2

{
2tφ(k)(s − 1 + 2δ) + (1− 1

l )

φ(k)δ − 1
l

− 1

}2

then q ∈ Ln

Proof. N ≥ N(kp1 · · · ps) + N(l)− N(1)

and use GPSC (proof) for N(kp1 · · · ps)

Example (n = 3) q = 1759 : RM < 1619 < q < RG = 1782



Completion of proof of Theorem 3

Theorem
The complement of L3 ⊆ {3, 4, 5, 7, 9, 11, 13, 31, 37}

⋃
S, where S

is a set of 175 prime powers, the largest being 9811

Proof.
Identify q ∈ Q within admissible ranges for q 6∈ L3 and use MPSC

Conjecture

L3 = Q \ {3, 4, 5, 7, 9, 11, 13, 31, 37}

I verified using MAGMA for prime powers q ≤ 100

I q = 97 (∈ S) took 84 hours

I to extend search to identify L3 would require q5 searches for
each prime power q (largest being ∼ 10, 000)



Proof of Theorem 2: T3 = Q \ {3, 7, 9, 13, 37}

I for each possible “failure” (∼ 180 fields) identify one member
of {θ + a : a ∈ Fq}
e.g., for q = p > 3, can assume Tr(θ) = 0

I use MAGMA to search for a primitive θ + a (∼ q2 searches)

I successful except for q ∈ {3, 4, 5, 7, 9, 11, 13, 31, 37}

I for q = p, maximum distance from an element θ with
Tr(θ) = 0 to a primitive element is 79 when q = 2731



Quartic extensions

From Corollary 11

q 6∈ L4 =⇒ q < 4.694× 1094 and ω4 ≤ 154

Using the GPSC obtain:

Theorem 19

q 6∈ L4 =⇒ q ≤ 25943 and ω4 ≤ 12

Conjecture

L4 = Q\{2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 41, 43, 64}
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