Primitive Elements on Lines in Extensions

Stephen D Cohen

University of Glasgow

Fq9, Dublin, 15 July, 2009

Definitions 1 θ generates \mathbb{F}_{q^n} (over \mathbb{F}_q) if $\mathbb{F}_q(\theta) = \mathbb{F}_{q^n}$

 $heta_1, heta_2$ (non-zero) generate \mathbb{F}_{q^n} (over \mathbb{F}_q) if $\mathbb{F}_q(heta_1, heta_2) = \mathbb{F}_{q^n}$

A primitive element of \mathbb{F}_{q^n} is a generator of the cyclic multiplicative group of \mathbb{F}_{q^n} . It has order $q^n - 1$

For any divisor k of $q^n - 1$, a k-free element γ of $\mathbb{F}_{q^n}^*$ is such that $\gamma = \beta^d \ (\beta \in \mathbb{F}_{q^n}, \ d | k)$ implies d = 1

• A primitive element of \mathbb{F}_{q^n} is $(q^n - 1)$ -free

Q is the set of all prime powers

Note: where appropriate, take q odd in what follows!

Translates problem

Theorem (Davenport, 1937; Carlitz, 1953)

Suppose θ generates \mathbb{F}_{q^n} . Then provided q is sufficiently large $\exists a \in \mathbb{F}_q$ such that $\theta + a$ is a primitive element of \mathbb{F}_{q^n}

Translates problem

Can we guarantee that $\exists a \in \mathbb{F}_q$ such that $\theta + a$ is a primitive element of \mathbb{F}_{q^n} for every generator θ of \mathbb{F}_{q^n} ?

Refer to the "line" $\{\theta + a : a \in \mathbb{F}_q\}$ as a "translate" of \mathbb{F}_q

Definition 2 $\mathcal{T}_n :=$ set of prime powers q such that, \forall generators θ of $\mathbb{F}_{q^n}, \exists a \in \mathbb{F}_q$ such that $\theta + a$ is a primitive element of \mathbb{F}_{q^n} = prime powers s. t. every translate contains a primitive element

▲御★ ▲注★ ▲注★

Theorem (Davenport-Carlitz)

Given n, all sufficiently large q are in $T_n \qquad Q \setminus T_n$ is finite

Line problem

Can we guarantee that $\exists a \in \mathbb{F}_q$ such that $\theta_1 + a\theta_2$ is a primitive element of \mathbb{F}_{q^n} whenever θ_1, θ_2 generate \mathbb{F}_{q^n} ?

Alternative form (used from now on)

Given that α, θ generate \mathbb{F}_{q^n} , can we guarantee that $\exists a \in \mathbb{F}_q$ such that $\alpha(\theta + a)$ is a primitive element of \mathbb{F}_{q^n} ?

• May be sensible even if θ itself does not generate \mathbb{F}_{q^n}

Reduction of line problem

Suppose $\mathbb{F}_q(\theta) = \mathbb{F}_{q^d}$ where $d \mid n$ with d < nWrite

►
$$Q_d = rac{q^n-1}{q^d-1}$$

• R_d = largest factor of $q^d - 1$ with $gcd(\frac{n}{d}, R_d) = 1$

Then

 $\alpha(\theta + a) \text{ is primitive } \iff \begin{cases} \alpha \text{ is } Q_d \text{-free and for some } \beta \in \mathbb{F}_{q^d} \\ \beta(\theta + a) \text{ is } R_d - \text{free in } \mathbb{F}_{q^d} \end{cases}$

Reduces this degree n line problem to one of degree d

Henceforth assume θ is a generator of \mathbb{F}_{q^n}

Definition 3

 $\mathcal{L}_n :=$ set of prime powers q such that, \forall generators θ of \mathbb{F}_{q^n} and $\alpha \in \mathbb{F}_{q^n}^*, \exists a \in \mathbb{F}_q$ such that $\alpha(\theta + a)$ is a primitive element of \mathbb{F}_{q^n} = prime powers s.t. all lines in \mathbb{F}_{q^n} contain a primitive element

Quadratic extensions

Theorem 1 (Cohen, 1983) $\mathcal{L}_2 = \mathcal{Q}$ "All lines in \mathbb{F}_{q^2} contain a primitive element"

- Method establishes numerical criteria to be satisfied for $q \in Q$
 - ▶ for large q
 - for remaining q in a reasonable number of steps
 - ▶ no $q \in \mathcal{Q}$ checked to be in \mathcal{L}_2 by direct verification

Cubic extensions

Theorem (Mills and McNay, 2002 (presented at \mathbb{F}_q6 , 2001)) Subject to the non-existence of prime powers q in certain ranges with $18 \leq no$. distinct primes in $(q^3 - 1) \leq 24$, $Q \setminus T_3$ is contained in a set of 429 prime powers (largest is 220411)

Theorem 2 (conjectured: M & M 2002; proved: SDC 2009) $\mathcal{T}_3 = \mathcal{Q} \setminus \{3,7,9,13,37\}$

Theorem 3 (Cohen, 2009) $\mathcal{Q} \setminus \mathcal{L}_3 \subseteq \{3, 4, 5, 7, 9, 11, 13, 31, 37\} \bigcup \mathcal{S}$, where \mathcal{S} is a set of 175 prime powers, the largest being 9811

Character sum expression

Let
$$\alpha, \theta \in \mathbb{F}_{q^n}$$
: $\alpha \neq 0$, θ generates \mathbb{F}_{q^n}
For $e|q^n - 1$,
 $N(e) :=$ no. of *e*-free elements in $\{\alpha(\theta + a), a \in \mathbb{F}_q\}$ (given line)
 $N := N(q^n - 1) =$ number of primitive elements on line

Proposition 4

$$N(e) = \rho(e) \left(q + \sum_{1 < d \mid e} \frac{\mu(d)}{\phi(d)} \sum_{(d)} \chi_d(\alpha) S_{\theta}(\chi_d) \right)$$

Here

•
$$S_{\theta}(\chi) = \sum_{a \in \mathbb{F}_q} \chi(\theta + a), \quad \chi \text{ a multiplicative character of } \mathbb{F}_{q^n}$$

• $\sum_{(d)}$ denotes a sum over all $\phi(d)$ characters of \mathbb{F}_{q^n} of order d

▶ $\rho(e) = \frac{\phi(e)}{e}$ proportion of *e*-free elements in $\mathbb{F}_{q^n}^*$

Proposition 5 (Katz, 1989)

Suppose θ generates \mathbb{F}_{q^n} and $d \ (> 1)$ divides $q^n - 1$. Then

$$|S_{ heta}(\chi_d)| = \left|\sum_{m{a} \in \mathbb{F}_q} \chi_d(heta+m{a})
ight| \leq (n-1)\sqrt{q}$$

deep, in general

- relevance noticed by R Odoni, 1993
- easy in quadratic extensions (see later)

$$N(e) = \rho(e) \left(q + \sum_{1 < d \mid e} \frac{\mu(d)}{\phi(d)} \sum_{(d)} \chi_d(\alpha) S_\theta(\chi_d) \right), \ S_\theta(\chi_d) = \sum_{a \in \mathbb{F}_q} \chi_d(\theta + a)$$

Proposition 6 Suppose $e|q^n - 1$. Then for a given line $\{\alpha(\theta + a) : a \in \mathbb{F}_q\}$ $N(e) > \rho(e)(q - (n - 1)2^{\omega(e)}\sqrt{q}); \quad \omega(e) = \#\{primes|e\}$

▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● の Q @

Take $e = q^n - 1$ so that N(e) = NCorollary 7 Suppose $q > (n - 1)^2 2^{2\omega(q^n - 1)}$. Then $q \in \mathcal{L}_n$ Corollary 8 (Davenport-Carlitz theorem) Given $n, \exists q_0 = q_0(n)$ such that, if $q > q_0$, then $q \in \mathcal{L}_n$

Application to small degree extensions

Let $\omega_n := \omega(q^n - 1)$ Quadratic: $q > 2^{2\omega_2} \implies q \in \mathcal{L}_2$ Corollary 9 Suppose $q \notin \mathcal{L}_2$. Then $\omega_2 < 14$ and $q < 2.265 \times 10^8$ Proof. Assumes "worst case": $q^2 - 1 = 8p_2 \cdots p_{\omega_2}$ (smallest primes) **Cubic:** $q > 4 \cdot 2^{2\omega_3} \implies q \in \mathcal{L}_3$ Corollary 10 Suppose $q \notin \mathcal{L}_3$. Then $\omega_3 \leq 52$ and $q < 2.203 \times 10^{32}$ Quartic: $q > 9 \cdot 2^{2\omega_4} \implies q \in \mathcal{L}_A$ Corollary 11 Suppose $q \notin \mathcal{L}_4$. Then $\omega_4 \leq 154$ and $q < 4.694 \times 10^{94}$

$S_{\theta}(\chi_d)$ in quadratic extensions

Proposition 12 (Cohen, 1983)

Suppose n = 2 and θ generates \mathbb{F}_{q^2} . Let $d|q^2 - 1$.

1. Assume d(>1)|q+1. Then $S_{ heta}(\chi_d)=-1$

2. Assume $d|q^2 - 1$, but $d \nmid q + 1$. Then $|S_{\theta}(\chi_d)| = \sqrt{q}$

Proof.

Based on fact that $\{1, \theta\}$ is a basis of $\mathbb{F}_{q^2}/\mathbb{F}_q$.

- ► For d|q+1, depends on $\chi_d(\theta + a) = \chi_d(c(\theta + a)), \ c \in \mathbb{F}_q^*$
- ▶ Otherwise $\{\frac{\theta+a}{\theta+b}; a, b \in \mathbb{F}_q\}$ is "most" of \mathbb{F}_{q^2}

Corollary 13

Suppose e = f(q + 1), f (odd) with $\omega(f) = t$, $\omega(q + 1) = u$. Then

$$\mathcal{N}(e) \geq
ho(e)(q-(2^t-1)2^u\sqrt{q}-1)$$

Conjecture (Giudici, 1980 (extended)) All prime powers q are in \mathcal{L}_2

Proposition 14 (Giudici and Margaglio, 1980) Suppose q is odd and

$$\phi(q+1) + 2\phi(q-1) > q-1.$$

Then $q \in T_2$

• Proportion of prime powers q this criterion fails to show in T_2 :

q <	10 ⁵	10 ⁶	10 ⁷	10 ⁸	10 ⁹
% failures	14.983	15.176	15.081	15.065	15.066

$$\phi(q+1)+2\phi(q-1)>q-1\implies q\in\mathcal{L}_2$$

Proof. Let $A := \{ \text{imprimitive } \theta + a \ (a \in \mathbb{F}_q) \text{ with primitive } \mathbb{F}_q \text{-norm} \}$ $= \{ (q+1) \text{-free } \theta + a \ (a \in \mathbb{F}_q) \text{ that are not primitive} \}$ Let $\operatorname{Nm}(A) := \text{set of } \mathbb{F}_q \text{-norms of } A$

Since

$$\mathbb{F}_q^*\{(q+1)\text{-free } \theta + a\} = \{\text{all } (q+1)\text{-free members of } \mathbb{F}_{q^2}\}$$

then $|A| = \phi(q+1) - N$

- $\blacktriangleright |A| \le 2|\mathrm{Nm}(A)|$
- ▶ $Nm(A) \subseteq$ non-squares of \mathbb{F}_q that are *not* primitive
- ▶ $|Nm(A)| \le \frac{1}{2}(q-1) \phi(q-1)$

Thus

$$N \ge \phi(q+1) + 2\phi(q-1) - (q-1)$$

・ロト ・四ト ・ヨト ・ヨトー

Modified norm method for quadratic extensions

Let f be an odd divisor of q-1 with $\omega(f) = t$

 $A := \{2f(q+1) \text{-free } \alpha(\theta + a) \text{ that are not primitive}\}.$

►
$$|A| \ge \frac{\phi(f)}{f}(q+1-(2^t-1)2^{\omega(q+1)}\sqrt{q} -1) - N$$

▶ $Nm(A) \subseteq \{2f \text{-free elements of } \mathbb{F}_q \text{ that are not primitive}\}$

$$\blacktriangleright |\operatorname{Nm}(A)| = \frac{\phi(f)}{2f}(q-1) - \phi(q-1)$$

Proposition 15 (Cohen 1983)

Suppose f is an odd divisor of q-1, $t = \omega(f), u := \omega(q+1)$ and

$$rac{\phi(f)}{f}[\phi(q\!+\!1)(1\!-\!rac{(2^t-1)2^u\sqrt{q}}{q+1})\!-\!1]\!+\!2\phi(q\!-\!1)\!-\!rac{\phi(f)}{f}(q\!-\!1)>0$$

Then $q \in \mathcal{L}_2$

Application of modified norm criterion

▶ Take f to be the least odd prime in q - 1 (so $t = \omega(f) = 1$)

- shows q < 10⁷ in L₂ except (possibly) for 139, 181, 1429, 680681, 1898051,...
 13 in all
- Proportion of prime powers this criterion fails to show in L₂:

q <	10 ⁵	10 ⁶	10 ⁷	10 ⁸	10 ⁹
# failures	3	4	13	101	812
% failures $\times 10^2$	3.09	0.508	0.195	0.175	0.156

- Take f to be the product of the least two primes in q-1
 - fails (only) for 139, 181, 1429 $(q < 10^9)$
 - $1429^2 1 = 2^3 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17$

▶ Unable (provably) to identify L₂ by this approach !

General prime sieve criterion (GPSC)

 $rad(q^n - 1) := radical of (product of distinct primes in) q^n - 1$ $rad(q^n - 1) := kp_1 \cdots p_s, p_1, \dots, p_s$ are distinct (sieving) primes k is core, $t := \omega(k)$

Lemma 4 $N \ge \sum_{i=1}^{s} N(kp_i) - (s-1)N(k)$ $= \delta N(k) + \sum_{i=1}^{s} \left(N(kp_i) - \left(1 - \frac{1}{p_i}\right) N(k) \right),$

where
$$\delta := 1 - \sum_{i=1}^{s} \frac{1}{p_i}$$

• Must have $\delta > 0 \dots$

... so incorporate small primes in $q^n - 1$ into k

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

$$\operatorname{rad}(q^n-1) = kp_1 \cdots p_s, \qquad \delta = 1 - \sum_{i=1}^s \frac{1}{p_i}$$
 $N \ge \delta N(k) + \sum_{i=1}^s \left(N(kp_i) - \left(1 - \frac{1}{p_i}\right) N(k) \right)$

$$\mathsf{N}(k) > \rho(k)(q - (n - 1)2^t \sqrt{q}) \quad (t = \omega(k))$$

$$\mathsf{N}(kp_i) - \left(1 - \frac{1}{p_i}\right) \mathsf{N}(k)| \le (n - 1)(s - 1 + \delta)2^t \sqrt{q}$$

Proposition 16 (GPSC) Suppose $\delta > 0$ and

$$q > (n-1)^2 2^{2t} \left(\frac{s-1}{\delta} + 2\right)^2 := R_G$$

Then $q \in \mathcal{L}_n$

Prime sieve criterion for quadratic extensions (QPSC)

Uses $S_{ heta}(\chi_d) = -1$ for d|q+1

Proposition 17 (QPSC)

Assume all primes in the core k divide q + 1. Suppose $\delta > 0$ and

$$q > 2^{2t} \left(\frac{s_0 - 1}{\delta} + \frac{\delta_0}{\delta}\right)^2 := R_Q$$

• $t = \omega(k), \qquad \delta = 1 - \sum_{i=1}^s \frac{1}{p_i} \text{ as before}$

• p_1, \ldots, p_{s_0} are primes dividing q-1

•
$$\delta_0 = 1 - \sum_{i=1}^{s_0} \frac{1}{p_i}$$

Then $q \in T_2$. If $q > R_Q^+$ (> R_Q), then $q \in \mathcal{L}_2$

Use QPSC for specific q but GPSC for ranges of q

 $\begin{array}{l} \underline{q = 169 = 13^2} \\ \blacktriangleright \ q - 1 = 2^3 \times 3 \times 7; \quad q + 1 = 2 \times 5 \times 17: \quad \text{take } t = 1; \\ \blacktriangleright \ \delta = 1 - \frac{1}{3} - \frac{1}{5} - \frac{1}{7} - \frac{1}{17} = 0.26498; \ \delta_0 = 1 - \frac{1}{3} - \frac{1}{7} = 0.52380 \\ \blacktriangleright \ R_Q < 133 \ < R_Q^+ < 137 \ < q = 169 \end{array}$

$$\begin{array}{l} \underline{q = 181} \\ \blacktriangleright \ q - 1 = 2^2 \times 3^2 \times 5; \quad q + 1 = 2 \times 7 \times 13: \quad t = 1; \\ \blacktriangleright \ \delta = 1 - \frac{1}{3} - \frac{1}{5} - \frac{1}{7} - \frac{1}{13} = 0.24688; \ \delta_0 = 0.46666 \\ \blacktriangleright \ R_Q < 142 \ < R_Q^+ < 146 \ < q = 181 \end{array}$$

q = 1429

- ▶ $q-1 = 2^2 \times 3 \times 7 \times 17$; $q+1 = 2 \times 5 \times 11 \times 13$: t = 2;
- $\delta = 0.29715; \ \delta_0 = 0.60784$
- $\blacktriangleright \ R_Q < 1233 \ < R_Q^+ < 1244 \ < q = 1429$

Proof of Theorem 1: $\mathcal{L}_2 = \mathcal{Q}$

first step (following Corollary 9) $\omega_2 = \omega(q^2 - 1)$

- ▶ can assume $\omega_2 \le 14$ (and $q < 2.265 imes 10^8$)
- ▶ take k to be product of 3 least primes in q + 1: so t = 3

►
$$s \le \omega_2 - 3 \le 11$$
: $\delta \ge 1 - \frac{1}{7} - \frac{1}{11} - \dots - \frac{1}{43} > 0.39296$

$$\blacktriangleright$$
 so if $q>48215>R_G$ then $q\in\mathcal{L}_2$

▶ can assume q < 48215 and hence $\omega_2 \leq 9$

 $\begin{array}{lll} \underline{\operatorname{second step}} & \omega_2 \leq 9 \\ \underline{\operatorname{third step}} & \omega_2 \leq 8 \\ \hline \underline{\operatorname{fourth step}} & \\ & \mathsf{assume } \omega_2 \leq 7 \text{ and } q < 22652 \\ & \mathsf{b} \text{ take } t = 2 \\ & \mathsf{b} s \leq \omega_2 - 2 \leq 5 : \quad \delta \geq 1 - \frac{1}{5} - \frac{1}{7} - \dots - \frac{1}{17} > 0.43048 \\ & \mathsf{b} \text{ so if } q > 2040 > R_G \text{ then } q \in \mathcal{L}_2 \end{array}$

▶ can assume q < 2040 and hence $\omega_2 \leq 7$

fifth step Use QPSC

- ▶ assume $\omega_2 = 7$ and q < 2040 (e.g., q = 1429)
- must have: $\omega(q-1) = \omega(q+1) = 3$; 3 or 5 divides q+1
- ► *t* = 2

further steps

- ▶ for $\omega_2 = 6$ similar argument gives $q > 914 \implies q \in \mathcal{L}_2$, etc
- ▶ Norm method covers small failures of QPSC (e.g. q = 211)

Towards proof of Theorem 3: identifying \mathcal{L}_3

prime sieve criterion:

$$q > 4 imes 2^{2t} \left(rac{s-1}{\delta} + 2
ight)^2 := R_G \implies q \in \mathcal{L}_3$$

first step (after Cor 9) $\omega_3 = \omega(q^3 - 1)$

▶ assume $20 \le \omega_3 \le 52$; $8.232 \times 10^8 < q < 2.2029 \times 10^{32}$

▶
$$t = \omega(k) = 4$$
; $s \le \omega_3 - 4 \le 48$; $\delta > 0.20068$

•
$$q \in \mathcal{L}_3$$
 since $q > 5.7 \times 10^7 > R_G$

second step

 \blacktriangleright assume 15 ${\leq}\omega_3 {\leq}$ 19 and q > 850352 : $$R_G < 672475$$ third step

▶ assume $\omega_3 = 14$ and q > 235631 : $R_G < 193864$

next steps

- ▶ assume $\omega_3 = 13$ and q > 67257 : $R_G < 142863$
- there are no prime powers q with 67257 < q < 142863
- similarly for $10 \le \omega_3 \le 12$

▶ $\omega_3 \leq 9$ GPSC yields upper bounds for $q \notin \mathcal{L}_3$

ω_3	9	8	7	6	5	4	3	2
q <	25456	14849	8160	4131	1958	793	256	64

Modified prime sieve criterion (MPSC)

Write:
$$rad(q^n - 1) = kp_1 \cdots p_s/$$
 where
 $k = core, p_1, \dots, p_s, l$ distinct primes (with l largest)
 $t = \omega(k), \quad \delta = 1 - \sum_{i=1}^s \frac{1}{p_i}$

Proposition 18 (MPSC)

$$\begin{array}{ll} \textit{If} \quad q > R_M := (n-1)^2 \left\{ \frac{2^t \phi(k)(s-1+2\delta) + (1-\frac{1}{l})}{\phi(k)\delta - \frac{1}{l}} - 1 \right\}^2 \\ \textit{then } q \in \mathcal{L}_n \end{array}$$

Proof.
$$N \geq N(kp_1 \cdots p_s) + N(l) - N(1)$$

and use GPSC (proof) for $N(kp_1 \cdots p_s)$

Example (n = 3) q = 1759: $R_M < 1619 < q < R_G = 1782$

Theorem

The complement of $\mathcal{L}_3 \subseteq \{3, 4, 5, 7, 9, 11, 13, 31, 37\} \bigcup S$, where S is a set of 175 prime powers, the largest being 9811

Proof.

Identify $q \in \mathcal{Q}$ within admissible ranges for $q
ot\in \mathcal{L}_3$ and use MPSC

Conjecture

$$\mathcal{L}_3 = \mathcal{Q} \setminus \{3, 4, 5, 7, 9, 11, 13, 31, 37\}$$

- ▶ verified using MAGMA for prime powers $q \le 100$
- ▶ $q = 97~(\in \mathcal{S})$ took 84 hours
- ▶ to extend search to identify L₃ would require q⁵ searches for each prime power q (largest being ~ 10,000)

Proof of Theorem 2: $T_3 = Q \setminus \{3, 7, 9, 13, 37\}$

- for each possible "failure" (~ 180 fields) identify one member of {θ + a : a ∈ F_q} e.g., for q = p > 3, can assume Tr(θ) = 0
- use MAGMA to search for a primitive $\theta + a$ ($\sim q^2$ searches)
- successful except for $q \in \{3, 4, 5, 7, 9, 11, 13, 31, 37\}$
- ▶ for q = p, maximum distance from an element θ with $Tr(\theta) = 0$ to a primitive element is 79 when q = 2731

From Corollary 11

$$q
ot\in \mathcal{L}_4 \implies q < 4.694 imes 10^{94}$$
 and $\omega_4 \le 154$

Using the GPSC obtain:

Theorem 19

$$q
ot\in \mathcal{L}_4 \implies q \le 25943$$
 and $\omega_4 \le 12$

Conjecture

 $\mathcal{L}_4 = \mathcal{Q} \backslash \{2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 41, 43, 64\}$

1 Davenport

On primitive roots in finite fields Quart. J. Math. Oxford, 8 (1937), 308–312

L Carlitz

Distribution of primitive roots in a finite field *Quart. J. Math. Oxford*, (2) 4 (**1953**), 4–10

R E Giudici & C Margaglio

A geometric characterization of the generators in a quadratic extension ... Rend. Sem. Mat. Univ. Padova, 62,(**1980**), 103–114

-∢ ≣ ≯

S D Cohen

Primitive roots in the quadratic extension of a finite field J. London Math Soc., (2) 27 (1983), 221–228

N M Katz

An estimate for character sums J. Amer. Math. Soc., 27 (1989), 197–200

D Mills & G McNay

Primitive roots in cubic extensions of finite fields \mathbb{F}_{q6} Proceedings (Oaxaca, 2001), Springer, 239-250, 2002

S D Cohen

Generators of the cubic extension of a finite field

J. Comb. Number Th., to appear 2009