Primitive Elements on Lines in Extensions

Stephen D Cohen
University of Glasgow

Fq9, Dublin, 15 July, 2009

Definitions 1
θ generates $\mathbb{F}_{q^{n}}\left(\right.$ over $\left.\mathbb{F}_{q}\right)$ if $\mathbb{F}_{q}(\theta)=\mathbb{F}_{q^{n}}$
θ_{1}, θ_{2} (non-zero) generate $\mathbb{F}_{q^{n}}\left(\right.$ over $\left.\mathbb{F}_{q}\right)$ if $\mathbb{F}_{q}\left(\theta_{1}, \theta_{2}\right)=\mathbb{F}_{q^{n}}$
A primitive element of $\mathbb{F}_{q^{n}}$ is a generator of the cyclic multiplicative group of $\mathbb{F}_{q^{n}}$. It has order $q^{n}-1$

For any divisor k of $q^{n}-1$, a k-free element γ of $\mathbb{F}_{q^{n}}^{*}$ is such that $\gamma=\beta^{d}\left(\beta \in \mathbb{F}_{q^{n}}, d \mid k\right)$ implies $d=1$

- A primitive element of $\mathbb{F}_{q^{n}}$ is $\left(q^{n}-1\right)$-free
- \mathcal{Q} is the set of all prime powers
- Note: where appropriate, take q odd in what follows!

Translates problem

Theorem (Davenport, 1937; Carlitz, 1953)
Suppose θ generates $\mathbb{F}_{q^{n}}$. Then provided q is sufficiently large $\exists a \in \mathbb{F}_{q}$ such that $\theta+a$ is a primitive element of $\mathbb{F}_{q^{n}}$

Translates problem

Can we guarantee that $\exists a \in \mathbb{F}_{q}$ such that $\theta+a$ is a primitive element of $\mathbb{F}_{q^{n}}$ for every generator θ of $\mathbb{F}_{q^{n}}$?
Refer to the "line" $\left\{\theta+a: a \in \mathbb{F}_{q}\right\}$ as a "translate" of \mathbb{F}_{q}
Definition 2
$\mathcal{T}_{n}:=$ set of prime powers q such that, \forall generators θ of $\mathbb{F}_{q^{n}}, \exists a \in \mathbb{F}_{q}$ such that $\theta+a$ is a primitive element of $\mathbb{F}_{q^{n}}$
$=$ prime powers $\mathrm{s} . \mathrm{t}$. every translate contains a primitive element
Theorem (Davenport-Carlitz)
Given n, all sufficiently large q are in $\mathcal{T}_{n} \quad \mathcal{Q} \backslash \mathcal{T}_{n}$ is finite

Line problem

Line problem

Can we guarantee that $\exists a \in \mathbb{F}_{q}$ such that $\theta_{1}+a \theta_{2}$ is a primitive element of $\mathbb{F}_{q^{n}}$ whenever θ_{1}, θ_{2} generate $\mathbb{F}_{q^{n}}$?

Alternative form (used from now on)
Given that α, θ generate $\mathbb{F}_{q^{n}}$, can we guarantee that $\exists a \in \mathbb{F}_{q}$ such that $\alpha(\theta+a)$ is a primitive element of $\mathbb{F}_{q^{n}}$?

- May be sensible even if θ itself does not generate $\mathbb{F}_{q^{n}}$

Reduction of line problem

Suppose $\mathbb{F}_{q}(\theta)=\mathbb{F}_{q^{d}}$ where $d \mid n$ with $d<n$
Write

- $Q_{d}=\frac{q^{n}-1}{q^{d}-1}$
- $R_{d}=$ largest factor of $q^{d}-1$ with $\operatorname{gcd}\left(\frac{n}{d}, R_{d}\right)=1$

Then
$\alpha(\theta+a)$ is primitive $\Longleftrightarrow\left\{\begin{array}{l}\alpha \text { is } Q_{d} \text { - free and for some } \beta \in \mathbb{F}_{q^{d}} \\ \beta(\theta+a) \text { is } R_{d}-\text { free in } \mathbb{F}_{q^{d}}\end{array}\right.$

- Reduces this degree n line problem to one of degree d

Henceforth assume θ is a generator of $\mathbb{F}_{q^{n}}$
Definition 3
$\mathcal{L}_{n}:=$ set of prime powers q such that, \forall generators θ of $\mathbb{F}_{q^{n}}$ and $\alpha \in \mathbb{F}_{q^{n}}^{*}, \exists a \in \mathbb{F}_{q}$ such that $\alpha(\theta+a)$ is a primitive element of $\mathbb{F}_{q^{n}}$ $=$ prime powers s.t. all lines in $\mathbb{F}_{q^{n}}$ contain a primitive element

Explicit results

Quadratic extensions
Theorem 1 (Cohen, 1983)
$\mathcal{L}_{2}=\mathcal{Q}$ "All lines in $\mathbb{F}_{q^{2}}$ contain a primitive element"

- Method establishes numerical criteria to be satisfied for $q \in \mathcal{Q}$
- for large q
- for remaining q in a reasonable number of steps
- no $q \in \mathcal{Q}$ checked to be in \mathcal{L}_{2} by direct verification
- computer not needed/used!

Cubic extensions

Theorem (Mills and McNay, 2002 (presented at $\mathbb{F}_{q} 6,2001$))
Subject to the non-existence of prime powers q in certain ranges with $18 \leq$ no. distinct primes in $\left(q^{3}-1\right) \leq 24$,
$\mathcal{Q} \backslash \mathcal{T}_{3}$ is contained in a set of 429 prime powers (largest is 220411)

Theorem 2 (conjectured: M \& M 2002; proved: SDC 2009) $\mathcal{T}_{3}=\mathcal{Q} \backslash\{3,7,9,13,37\}$

Theorem 3 (Cohen, 2009)
$\mathcal{Q} \backslash \mathcal{L}_{3} \subseteq\{3,4,5,7,9,11,13,31,37\} \bigcup \mathcal{S}$, where \mathcal{S} is a set of 175 prime powers, the largest being 9811

Character sum expression

Let $\alpha, \theta \in \mathbb{F}_{q^{n}}: \quad \alpha \neq 0, \theta$ generates $\mathbb{F}_{q^{n}}$
For $e \mid q^{n}-1$,
$N(e):=$ no. of e-free elements in $\left\{\alpha(\theta+a), a \in \mathbb{F}_{q}\right\}$ (given line) $N:=N\left(q^{n}-1\right)=$ number of primitive elements on line

Proposition 4

$$
N(e)=\rho(e)\left(q+\sum_{1<d \mid e} \frac{\mu(d)}{\phi(d)} \sum_{(d)} \chi_{d}(\alpha) S_{\theta}\left(\chi_{d}\right)\right)
$$

Here

- $S_{\theta}(\chi)=\sum_{a \in \mathbb{F}_{q}} \chi(\theta+a), \quad \chi$ a multiplicative character of $\mathbb{F}_{q^{n}}$
$-\sum_{(d)}$ denotes a sum over all $\phi(d)$ characters of $\mathbb{F}_{q^{n}}$ of order d
- $\rho(e)=\frac{\phi(e)}{e} \quad$ proportion of e-free elements in $\mathbb{F}_{q^{n}}^{*}$

Estimate for $S_{\theta}\left(\chi_{d}\right)$

Proposition 5 (Katz, 1989)

Suppose θ generates $\mathbb{F}_{q^{n}}$ and $d(>1)$ divides $q^{n}-1$. Then

$$
\left|S_{\theta}\left(\chi_{d}\right)\right|=\left|\sum_{a \in \mathbb{F}_{q}} \chi_{d}(\theta+a)\right| \leq(n-1) \sqrt{q}
$$

- deep, in general
- relevance noticed by R Odoni, 1993
- easy in quadratic extensions (see later)

$$
N(e)=\rho(e)\left(q+\sum_{1<d \mid e} \frac{\mu(d)}{\phi(d)} \sum_{(d)} \chi_{d}(\alpha) S_{\theta}\left(\chi_{d}\right)\right), S_{\theta}\left(\chi_{d}\right)=\sum_{a \in \mathbb{F}_{q}} \chi_{d}(\theta+a)
$$

Proposition 6
Suppose e $\mid q^{n}-1$. Then for a given line $\left\{\alpha(\theta+a): a \in \mathbb{F}_{q}\right\}$

$$
N(e)>\rho(e)\left(q-(n-1) 2^{\omega(e)} \sqrt{q}\right) ; \quad \omega(e)=\#\{\text { primes } \mid e\}
$$

Take $e=q^{n}-1$ so that $N(e)=N$
Corollary 7
Suppose $q>(n-1)^{2} 2^{2 \omega\left(q^{n}-1\right)}$. Then $q \in \mathcal{L}_{n}$
Corollary 8 (Davenport-Carlitz theorem)
Given $n, \exists q_{0}=q_{0}(n)$ such that, if $q>q_{0}$, then $q \in \mathcal{L}_{n}$

Application to small degree extensions

Let $\omega_{n}:=\omega\left(q^{n}-1\right)$
Quadratic: $q>2^{2 \omega_{2}} \Longrightarrow q \in \mathcal{L}_{2}$
Corollary 9
Suppose $q \notin \mathcal{L}_{2}$. Then $\omega_{2} \leq 14$ and $q<2.265 \times 10^{8}$
Proof.
Assumes "worst case": $q^{2}-1=8 p_{2} \cdots p_{\omega_{2}}$ (smallest primes) \square
Cubic: $q>4 \cdot 2^{2 \omega_{3}} \Longrightarrow q \in \mathcal{L}_{3}$
Corollary 10
Suppose $q \notin \mathcal{L}_{3}$. Then $\omega_{3} \leq 52$ and $q<2.203 \times 10^{32}$
Quartic: $q>9 \cdot 2^{2 \omega_{4}} \Longrightarrow q \in \mathcal{L}_{4}$
Corollary 11
Suppose $q \notin \mathcal{L}_{4}$. Then $\omega_{4} \leq 154$ and $q<4.694 \times 10^{94}$

$S_{\theta}\left(\chi_{d}\right)$ in quadratic extensions

Proposition 12 (Cohen,1983)

Suppose $n=2$ and θ generates $\mathbb{F}_{q^{2}}$. Let $d \mid q^{2}-1$.

1. Assume $d(>1) \mid q+1$. Then $S_{\theta}\left(\chi_{d}\right)=-1$
2. Assume $d \mid q^{2}-1$, but $d \nmid q+1$. Then $\left|S_{\theta}\left(\chi_{d}\right)\right|=\sqrt{q}$

Proof.
Based on fact that $\{1, \theta\}$ is a basis of $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$.

- For $d \mid q+1$, depends on $\chi_{d}(\theta+a)=\chi_{d}(c(\theta+a)), c \in \mathbb{F}_{q}^{*}$
- Otherwise $\left\{\frac{\theta+a}{\theta+b} ; a, b \in \mathbb{F}_{q}\right\}$ is "most" of $\mathbb{F}_{q^{2}}$

Corollary 13
Suppose $e=f(q+1), f($ odd $)$ with $\omega(f)=t, \omega(q+1)=u$. Then

$$
N(e) \geq \rho(e)\left(q-\left(2^{t}-1\right) 2^{u} \sqrt{q}-1\right)
$$

Norm Method for Quadratic Fields

Conjecture (Giudici, 1980 (extended))
All prime powers q are in \mathcal{L}_{2}
Proposition 14 (Giudici and Margaglio, 1980)
Suppose q is odd and

$$
\phi(q+1)+2 \phi(q-1)>q-1
$$

Then $q \in \mathcal{T}_{2}$

- Proportion of prime powers q this criterion fails to show in \mathcal{T}_{2} :

$q<$	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}
\% failures	14.983	15.176	15.081	15.065	15.066

$$
\phi(q+1)+2 \phi(q-1)>q-1 \Longrightarrow q \in \mathcal{L}_{2}
$$

Proof.

Let $A:=\left\{\right.$ imprimitive $\theta+a\left(a \in \mathbb{F}_{q}\right)$ with primitive \mathbb{F}_{q}-norm $\}$
$=\left\{(q+1)\right.$-free $\theta+a\left(a \in \mathbb{F}_{q}\right)$ that are not primitive $\}$
Let $\operatorname{Nm}(A):=$ set of \mathbb{F}_{q}-norms of A

- Since
$\mathbb{F}_{q}^{*}\{(q+1)$-free $\theta+a\}=\left\{\right.$ all $(q+1)$-free members of $\left.\mathbb{F}_{q^{2}}\right\}$ then $|A|=\phi(q+1)-N$
- $|A| \leq 2|\mathrm{Nm}(A)|$
- $\operatorname{Nm}(A) \subseteq$ non-squares of \mathbb{F}_{q} that are not primitive
- $|\operatorname{Nm}(A)| \leq \frac{1}{2}(q-1)-\phi(q-1)$
- Thus

$$
N \geq \phi(q+1)+2 \phi(q-1)-(q-1)
$$

Modified norm method for quadratic extensions

Let f be an odd divisor of $q-1$ with $\omega(f)=t$
$A:=\{2 f(q+1)$-free $\alpha(\theta+a)$ that are not primitive $\}$.

- $|A| \geq \frac{\phi(f)}{f}\left(q+1-\left(2^{t}-1\right) 2^{\omega(q+1)} \sqrt{q}-1\right)-N$
- $\operatorname{Nm}(A) \subseteq\left\{2 f\right.$-free elements of \mathbb{F}_{q} that are not primitive $\}$
- $|\operatorname{Nm}(A)|=\frac{\phi(f)}{2 f}(q-1)-\phi(q-1)$

Proposition 15 (Cohen 1983)

Suppose f is an odd divisor of $q-1, t=\omega(f), u:=\omega(q+1)$ and
$\frac{\phi(f)}{f}\left[\phi(q+1)\left(1-\frac{\left(2^{t}-1\right) 2^{u} \sqrt{q}}{q+1}\right)-1\right]+2 \phi(q-1)-\frac{\phi(f)}{f}(q-1)>0$
Then $q \in \mathcal{L}_{2}$

Application of modified norm criterion

- Take f to be the least odd prime in $q-1$ (so $t=\omega(f)=1$)
- shows $q<10^{7}$ in \mathcal{L}_{2} except (possibly) for 139, 181, 1429, 680681, 1898051,... 13 in all
- Proportion of prime powers this criterion fails to show in \mathcal{L}_{2} :

$q<$	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}
\# failures	3	4	13	101	812
\% failures $\times 10^{2}$	3.09	0.508	0.195	0.175	0.156

- Take f to be the product of the least two primes in $q-1$
- fails (only) for 139, 181, $1429 \quad\left(q<10^{9}\right)$
- $1429^{2}-1=2^{3} \times 3 \times 5 \times 7 \times 11 \times 13 \times 17$
- Unable (provably) to identify \mathcal{L}_{2} by this approach !

General prime sieve criterion (GPSC)

$\operatorname{rad}\left(q^{n}-1\right):=$ radical of (product of distinct primes in) $q^{n}-1$ $\operatorname{rad}\left(q^{n}-1\right):=k p_{1} \cdots p_{s}, p_{1}, \ldots, p_{s}$ are distinct (sieving) primes

$$
k \text { is core, } t:=\omega(k)
$$

Lemma 4

$$
\begin{aligned}
N & \geq \sum_{i=1}^{s} N\left(k p_{i}\right)-(s-1) N(k) \\
& =\delta N(k)+\sum_{i=1}^{s}\left(N\left(k p_{i}\right)-\left(1-\frac{1}{p_{i}}\right) N(k)\right)
\end{aligned}
$$

where $\delta:=1-\sum_{i=1}^{s} \frac{1}{p_{i}}$

- Must have $\delta>0 \ldots$
... so incorporate small primes in $q^{n}-1$ into k

$$
\begin{aligned}
& \operatorname{rad}\left(q^{n}-1\right)=k p_{1} \cdots p_{s}, \quad \delta=1-\sum_{i=1}^{s} \frac{1}{p_{i}} \\
& N \geq \delta N(k)+\sum_{i=1}^{s}\left(N\left(k p_{i}\right)-\left(1-\frac{1}{p_{i}}\right) N(k)\right)
\end{aligned}
$$

- $N(k)>\rho(k)\left(q-(n-1) 2^{t} \sqrt{q}\right) \quad(t=\omega(k))$
- $\left|N\left(k p_{i}\right)-\left(1-\frac{1}{p_{i}}\right) N(k)\right| \leq(n-1)(s-1+\delta) 2^{t} \sqrt{q}$

Proposition 16 (GPSC)
Suppose $\delta>0$ and

$$
q>(n-1)^{2} 2^{2 t}\left(\frac{s-1}{\delta}+2\right)^{2}:=R_{G}
$$

Then $q \in \mathcal{L}_{n}$

Prime sieve criterion for quadratic extensions (QPSC)

Uses $S_{\theta}\left(\chi_{d}\right)=-1$ for $d \mid q+1$
Proposition 17 (QPSC)
Assume all primes in the core k divide $q+1$. Suppose $\delta>0$ and

$$
q>2^{2 t}\left(\frac{s_{0}-1}{\delta}+\frac{\delta_{0}}{\delta}\right)^{2}:=R_{Q}
$$

- $t=\omega(k), \quad \delta=1-\sum_{i=1}^{s} \frac{1}{p_{i}}$ as before
- $p_{1}, \ldots, p_{s_{0}}$ are primes dividing $q-1$
- $\delta_{0}=1-\sum_{i=1}^{s_{0}} \frac{1}{p_{i}}$

Then $q \in \mathcal{T}_{2}$. If $q>R_{Q}^{+}\left(>R_{Q}\right)$, then $q \in \mathcal{L}_{2}$

- Use QPSC for specific q but GPSC for ranges of q

$$
\begin{aligned}
& q=169=13^{2} \\
& q-1=2^{3} \times 3 \times 7 ; \quad q+1=2 \times 5 \times 17: \quad \text { take } t=1 ; \\
& \delta=1-\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{17}=0.26498 ; \delta_{0}=1-\frac{1}{3}-\frac{1}{7}=0.52380 \\
& R_{Q}<133<R_{Q}^{+}<137<q=169 \\
& q=181 \\
& \hline q-1=2^{2} \times 3^{2} \times 5 ; \quad q+1=2 \times 7 \times 13: \quad t=1 ; \\
& \delta=1-\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{13}=0.24688 ; \delta_{0}=0.46666 \\
& R_{Q}<142<R_{Q}^{+}<146<q=181 \\
& q=1429 \\
& q-1=2^{2} \times 3 \times 7 \times 17 ; \quad q+1=2 \times 5 \times 11 \times 13: \quad t=2 ; \\
& \delta=0.29715 ; \delta_{0}=0.60784 \\
& R_{Q}<1233<R_{Q}^{+}<1244<q=1429
\end{aligned}
$$

Proof of Theorem 1: $\mathcal{L}_{2}=\mathcal{Q}$

first step (following Corollary 9) $\quad \omega_{2}=\omega\left(q^{2}-1\right)$

- can assume $\omega_{2} \leq 14$ (and $q<2.265 \times 10^{8}$)
- take k to be product of 3 least primes in $q+1$: so $t=3$
- $s \leq \omega_{2}-3 \leq 11: \quad \delta \geq 1-\frac{1}{7}-\frac{1}{11}-\cdots-\frac{1}{43}>0.39296$
- so if $q>48215>R_{G}$ then $q \in \mathcal{L}_{2}$
- can assume $q<48215$ and hence $\omega_{2} \leq 9$
second step $\quad \omega_{2} \leq 9$
third step $\quad \omega_{2} \leq 8$
fourth step
- assume $\omega_{2} \leq 7$ and $q<22652$
- take $t=2$
- $s \leq \omega_{2}-2 \leq 5: \quad \delta \geq 1-\frac{1}{5}-\frac{1}{7}-\cdots-\frac{1}{17}>0.43048$
- so if $q>2040>R_{G}$ then $q \in \mathcal{L}_{2}$
- can assume $q<2040$ and hence $\omega_{2} \leq 7$

fifth step Use QPSC

- assume $\omega_{2}=7$ and $q<2040$ (e.g., $q=1429$)
- must have: $\omega(q-1)=\omega(q+1)=3 ; 3$ or 5 divides $q+1$
- $t=2$
- $s \leq \omega_{2}-2 \leq 5$
$\delta \geq 1-\frac{1}{3}-\frac{1}{7}-\frac{1}{11}-\frac{1}{13}-\frac{1}{17}>0.29715 ; \delta_{0} / \delta<2.6025$
- so if $q>1407>R_{Q}^{+}>1393>R_{Q}$ then $q \in \mathcal{L}_{2}$ (covers 1429 !!)
further steps
- for $\omega_{2}=6$ similar argument gives $q>914 \Longrightarrow q \in \mathcal{L}_{2}$, etc
- Norm method covers small failures of QPSC (e.g, $q=211$)

Towards proof of Theorem 3: identifying \mathcal{L}_{3}

prime sieve criterion:

$$
q>4 \times 2^{2 t}\left(\frac{s-1}{\delta}+2\right)^{2}:=R_{G} \Longrightarrow q \in \mathcal{L}_{3}
$$

first step (after Cor 9) $\quad \omega_{3}=\omega\left(q^{3}-1\right)$

- assume $20 \leq \omega_{3} \leq 52 ; \quad 8.232 \times 10^{8}<q<2.2029 \times 10^{32}$
- $t=\omega(k)=4 ; \quad s \leq \omega_{3}-4 \leq 48 ; \delta>0.20068$
- $q \in \mathcal{L}_{3}$ since $q>5.7 \times 10^{7}>R_{G}$
second step
- assume $15 \leq \omega_{3} \leq 19$ and $q>850352: \quad R_{G}<672475$
third step
- assume $\omega_{3}=14$ and $q>235631: \quad R_{G}<193864$
$\underline{\text { next steps }}$
- assume $\omega_{3}=13$ and $q>67257: \quad R_{G}<142863$
- there are no prime powers q with $67257<q<142863$
- similarly for $10 \leq \omega_{3} \leq 12$
- $\omega_{3} \leq 9$ GPSC yields upper bounds for $q \notin \mathcal{L}_{3}$

ω_{3}	9	8	7	6	5	4	3	2
$q<$	25456	14849	8160	4131	1958	793	256	64

Modified prime sieve criterion (MPSC)

Write: $\operatorname{rad}\left(q^{n}-1\right)=k p_{1} \cdots p_{s} /$ where
$k=$ core, p_{1}, \ldots, p_{s}, I distinct primes (with / largest)
$t=\omega(k), \quad \delta=1-\sum_{i=1}^{s} \frac{1}{p_{i}}$
Proposition 18 (MPSC)
If $\quad q>R_{M}:=(n-1)^{2}\left\{\frac{2^{t} \phi(k)(s-1+2 \delta)+\left(1-\frac{1}{l}\right)}{\phi(k) \delta-\frac{1}{l}}-1\right\}^{2}$
then $q \in \mathcal{L}_{n}$
Proof. $\quad N \geq N\left(k p_{1} \cdots p_{s}\right)+N(I)-N(1)$
and use GPSC (proof) for $N\left(k p_{1} \cdots p_{s}\right)$

Example $(n=3) \quad q=1759: R_{M}<1619<q<R_{G}=1782$

Completion of proof of Theorem 3

Theorem
The complement of $\mathcal{L}_{3} \subseteq\{3,4,5,7,9,11,13,31,37\} \cup \mathcal{S}$, where \mathcal{S} is a set of 175 prime powers, the largest being 9811

Proof.
Identify $q \in \mathcal{Q}$ within admissible ranges for $q \notin \mathcal{L}_{3}$ and use MPSC

Conjecture

$\mathcal{L}_{3}=\mathcal{Q} \backslash\{3,4,5,7,9,11,13,31,37\}$

- verified using MAGMA for prime powers $q \leq 100$
- $q=97(\in \mathcal{S})$ took 84 hours
- to extend search to identify \mathcal{L}_{3} would require q^{5} searches for each prime power q (largest being $\sim 10,000$)

Proof of Theorem 2: $\mathcal{T}_{3}=\mathcal{Q} \backslash\{3,7,9,13,37\}$

- for each possible "failure" (~ 180 fields) identify one member of $\left\{\theta+a: a \in \mathbb{F}_{q}\right\}$
e.g., for $q=p>3$, can assume $\operatorname{Tr}(\theta)=0$
- use MAGMA to search for a primitive $\theta+a$ ($\sim q^{2}$ searches)
- successful except for $q \in\{3,4,5,7,9,11,13,31,37\}$
- for $q=p$, maximum distance from an element θ with $\operatorname{Tr}(\theta)=0$ to a primitive element is 79 when $q=2731$

Quartic extensions

From Corollary 11

$$
q \notin \mathcal{L}_{4} \Longrightarrow q<4.694 \times 10^{94} \text { and } \omega_{4} \leq 154
$$

Using the GPSC obtain:
Theorem 19

$$
q \notin \mathcal{L}_{4} \Longrightarrow q \leq 25943 \text { and } \omega_{4} \leq 12
$$

Conjecture

$$
\mathcal{L}_{4}=\mathcal{Q} \backslash\{2,3,4,5,7,8,9,11,13,17,19,23,25,27,29,31,32,41,43,64\}
$$

H Davenport
On primitive roots in finite fields
Quart. J. Math. Oxford, 8 (1937), 308-312

L Carlitz
Distribution of primitive roots in a finite field
Quart. J. Math. Oxford, (2) 4 (1953), 4-10R E Giudici \& C Margaglio
A geometric characterization of the generators in a quadratic extension ...
Rend. Sem. Mat. Univ. Padova, 62,(1980), 103-114

S D Cohen
Primitive roots in the quadratic extension of a finite field
J. London Math Soc., (2) 27 (1983), 221-228

N M Katz
An estimate for character sums
J. Amer. Math. Soc., 27 (1989), 197-200

D Mills \& G McNay
Primitive roots in cubic extensions of finite fields
$\mathbb{F}_{q} 6$ Proceedings (Oaxaca, 2001), Springer, 239-250, 2002

S D Cohen
Generators of the cubic extension of a finite field
J. Comb. Number Th., to appear 2009

