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Definitions 1
6 generates Fgn (over Fy) if Fg(0) = Fgn

61,6> (non-zero) generate Fgn (over Fg) if Fg(01,02) = Fgn

A primitive element of Fgn is a generator of the cyclic
multiplicative group of Fgn. It has order ¢" — 1

For any divisor k of ¢" — 1, a k-free element ~ of an is such that
v =39 (B € Fgn, d| k) implies d =1

> A primitive element of Fgn is (¢" — 1)-free

» Q is the set of all prime powers

» Note: where appropriate, take g odd in what follows!



Translates problem

Theorem (Davenport, 1937; Carlitz, 1953)

Suppose 0 generates Fqn. Then provided q is sufficiently large
da € F, such that 0 + a is a primitive element of IFgn

Translates problem
Can we guarantee that Ja € [, such that 6 + a is a primitive
element of Fgn for every generator 6 of Fgn?

Refer to the “line” {# +a:a € Fg} as a “translate” of Fy

Definition 2
T, := set of prime powers g such that, V generators 6 of
Fgn,da € Fy such that 6 + a is a primitive element of Fn
= prime powers s. t. every translate contains a primitive element

Theorem (Davenport-Carlitz)
Given n, all sufficiently large q are in T, Q\ 7, is finite



Line problem

Line problem
Can we guarantee that Ja € [, such that 6; + af is a primitive
element of Fg» whenever 01,0, generate Fgn?

Alternative form (used from now on)

Given that o, 0 generate Fgn, can we guarantee that Ja € Fq such
that a(6 + a) is a primitive element of Fgn?

> May be sensible even if 0 itself does not generate [Fn



Reduction of line problem

Suppose Fy(0) = F,a where d|n with d < n
Write
q"—-1

> Qd = 73
> Ry = largest factor of g9 — 1 with ged(4, Ry) = 1
Then
a(f + a) is primitive <= {

a is Qq-free and for some 7 € I 4
B(0 + a) is Ry — free in IF

» Reduces this degree n line problem to one of degree d

Henceforth assume 0 is a generator of Fgn

Definition 3
L, := set of prime powers g such that, V generators 0 of Fg» and
a € Fyn,3a € Fq such that a(0 + a) is a primitive element of Fgn
= prime powers s.t. all lines in F4» contain a primitive element



Explicit results

Quadratic extensions

Theorem 1 (Cohen, 1983)

Lo = Q “All lines in > contain a primitive element”

» Method establishes numerical criteria to be satisfied for g € Q

» for large q
» for remaining g in a reasonable number of steps

» no q € Q checked to be in £, by direct verification

» computer not needed/used!



Cubic extensions

Theorem (Mills and McNay, 2002 (presented at F,6, 2001))

Subject to the non-existence of prime powers q in certain ranges
with 18 < no. distinct primes in (g3 — 1) < 24,
Q\ 73 is contained in a set of 429 prime powers (largest is 220411)

Theorem 2 (conjectured: M & M 2002; proved: SDC 2009)
T3=0\{3,7,9,13,37}

Theorem 3 (Cohen, 2009)

O\ L3C{3,4,5,7,9,11,13,31,37} | S, where S is a set of 175
prime powers, the largest being 9811



Character sum expression

Let o, 0 € Fgn: a # 0, 6 generates Fgn

For e|q" — 1,

N(e) := no. of e-free elements in {a(0 + a), a € Fq} (given line)
N := N(g" — 1) = number of primitive elements on line

Proposition 4

N(e) = ple) [ g+ Z ZXd(a )So(xd)

1<dle (d

Here

> So(x) = Zx(@ +a), x a multiplicative character of Fgn
acly

> Z denotes a sum over all ¢(d) characters of Fqn of order d
(d)

> ple) =
D

2e) proportion of e-free elements in %,
° q



Estimate for Sy(xq)

Proposition 5 (Katz, 1989)
Suppose 0 generates Fqn and d (> 1) divides q" — 1. Then

1So(xa)l = | > xa(0+a)| < (n—1)\/q

aclFq

» deep, in general
» relevance noticed by R Odoni, 1993

» easy in quadratic extensions (see later)



N(e) = p(e) <Q+ Z iigji Z Xd(a)So(xq) ) So(xd) Z xd(0 + a)

Proposition 6
Suppose e|q" — 1. Then for a given line {a(0 + a) : a € Fg}

N(e) > p(e)(q — (n = 1)21)\/q);  w(e) = #{primes|e}

Take e = ¢" — 1 so that N(e) = N

Corollary 7
Suppose q > (n—1)222%(@"=1) Thenq e L,

Corollary 8 (Davenport-Carlitz theorem)
Given n, 3qo = qo(n) such that, if ¢ > qo, then q € L,



Application to small degree extensions

Let w, :=w(q" — 1)
Quadratic: ¢ > 222 = g€ L5

Corollary 9

Suppose q ¢ L. Then wy < 14 and q < 2.265 x 108
Proof.

Assumes “worst case”: q> — 1 =8py---p,, (smallest primes) [
Cubic: ¢ > 4-2%3 — g€ L3

Corollary 10
Suppose q ¢ L3. Then w3 < 52 and q < 2.203 x 1032

Quartic: ¢ >9-22 — g€ L4

Corollary 11
Suppose q ¢ L4. Then wy < 154 and q < 4.694 x 10%



So(x4) in quadratic extensions

Proposition 12 (Cohen,1983)
Suppose n =2 and 0 generates F 2. Let d|q* — 1.

1. Assume d(>1)|q+ 1. Then Sp(xq) = —1
2. Assume d|q® — 1, but d { g+ 1. Then |Sy(xq)| = /4

Proof.
Based on fact that {1,6} is a basis of F 2 /I,
» For d|g + 1, depends on x4(0 + a) = xq4(c( + a)), c € Fy,

> Otherwise {#2;a,b € F} is “most” of F

L]
Corollary 13
Suppose e = f(q+1),f (odd) with w(f) =t, w(q+1) = u. Then

N(e) = p(e)(q — (2" = 1)2"\/q — 1)
D



Norm Method for Quadratic Fields

Conjecture (Giudici, 1980 (extended))
All prime powers q are in Lo

Proposition 14 (Giudici and Margaglio, 1980)
Suppose q is odd and
#(q+1)+29(q—1)>q—1.

Then q € T

» Proportion of prime powers g this criterion fails to show in 75:

g< | 10° 10° 107 108 10°
% failures | 14.983 15.176 15.081 15.065 15.066




Pg+1)+24(qg—1)>qg—1 = g€ L>

Proof.

Let A := {imprimitive § + a (a € F) with primitive Fg-norm}
= {(q + 1)-free 0 + a (a € Fy) that are not primitive}

Let Nm(A) := set of Fg-norms of A

» Since
Fo{(q + 1)-free 0 + a} = {all (q + 1)-free members of F.}
then [A|=¢(g+1) - N

> [Al < 2[Nm(A)|
» Nm(A) C non-squares of F, that are not primitive
> INm(A) < 2(q—1) — 6(q—1)

» Thus
N>¢(g+1)+2¢(q—1) — (¢—1)

e



Modified norm method for quadratic extensions

Let f be an odd divisor of g — 1 with w(f) =t
A = {2f(q + 1)-free a(6 + a) that are not primitive}.

> A > (g1 (2t — 1)t g 1) — N
» Nm(A) C {2f-free elements of F, that are not primitive}
> [Nm(A) = G(q - 1)~ 6(a — 1)
Proposition 15 (Cohen 1983)
Suppose f is an odd divisor of ¢ — 1, t = w(f),u := w(q + 1) and

¢(ff)[¢(q+1)(1—Qt;ir)zlu\/a)—l]Jrzcb(q—l)—d)(fﬂ(q—l) >0

Then g € L>



Application of modified norm criterion

» Take f to be the least odd prime in g — 1 (so t = w(f) = 1)
» shows g < 107 in £, except (possibly) for

139, 181, 1429, 680681, 1898051, ... 13 in all
» Proportion of prime powers this criterion fails to show in L;:
q< | 105 10° 10”7 108 10°
# failures 3 4 13 101 812

% failures x10% | 3.09 0.508 0.195 0.175 0.156

» Take f to be the product of the least two primes in g — 1

» fails (only) for 139, 181, 1429 (q < 10°)
> 14292 -1 =23x3x5x%x7x11x13x17

» Unable (provably) to identify £, by this approach !



General prime sieve criterion (GPSC)

rad(q" — 1) := radical of (product of distinct primes in) g" — 1
rad(q" — 1) :== kpy - ps, p1,-- -, Ps are distinct (sieving) primes

k is core, t:=w(k)

Lemma 4 s
N> S Nk — (s— DN(K)
i=1

= ON(k)+ Z <N(kp,-) - (1 - 1> N(k)> ;

S
1
where § := 1—2—
— Pi

» Must have 6 >0...
... so incorporate small primes in g” — 1 into k



: 1
rad(q" — 1) = kp1 - - ps, 0:172‘—
Pi

N > §N(k) A Z <N(kp,) <1 pl> N(k)>

i=1

> N(K) > p(K) (@ — (n—1)20/@) (& = w(k))
> [N(kp;) — (1 - %) N(K)| < (n—1)(s— 1+ 6)2t/q

Proposition 16 (GPSC)
Suppose 6 > 0 and

1 2
q>(n— 1)222t<56 + 2> =Rg¢

Then q € L,



Prime sieve criterion for quadratic extensions (QPSC)

Uses Sp(xq) = —1 for d|g+1

Proposition 17 (QPSC)
Assume all primes in the core k divide g + 1. Suppose § > 0 and

—1 5\
q>22t<506—|—;> Z:RQ

S

1
> t =w(k), y=1-— E o as before
i=1 "

> pi1,...,Ps, are primes dividing g — 1

50 1
> jo=1-— —
Then q € T». If g > R (> Rq), then q € Ly

» Use QPSC for specific g but GPSC for ranges of g
D



qg =169 = 13
> g—1=22x3x7; g+1=2x5x17: taket=1;
_ 1 1 1 1 . _ 1 1 _
> Rg <133 < R <137 < ¢ =169

q =181
> g—1=22x32x5 qg+1=2x7x13: t=1;
»§=1-3—1—1—15=0.24688; dp = 0.46666
> Rq <142 < R} <146 < q =181

q = 1429
> g—1=22x3x7x17; g+1=2x5x11x13: t=2;
> § = 0.29715; &y = 0.60784
> R <1233 < R <1244 < q=1429



Proof of Theorem 1: £, = O

first step (following Corollary 9)  wy = w(g” — 1)
> can assume wyp < 14 (and g < 2.265 x 108)
» take k to be product of 3 least primesin g+ 1: sot =3
»s<w—3<11: §>1-3-L—...— L >039206
» so if g > 48215 > R¢ then g € L»

» can assume g < 48215 and hence wy <9

second step wr <9
third step wr < 8

fourth step
» assume wy < 7 and g < 22652
> take t =2
»s<wp-2<5: §>1-f-1—...— L >0.43048
» so if g > 2040 > R then g € L»

» can assume g < 2040 and hence wy <7



fifth step Use QPSC
> assume wy = 7 and g < 2040 (e.g., g = 1429)
» must have: w(q—1) =w(g+1)=3; 3 orb5divides g +1
> t=2
> s<wy—2<5

§>1-3—7—4— 15— 15 > 02971560/ < 2.6025

» soif g > 1407>R$ > 1393 > Rq then g € L5
(covers 1429 1)

further steps
» for wo = 6 similar argument gives g > 914 —> q € L5, etc
» Norm method covers small failures of QPSC (e.g, g = 211)



Towards proof of Theorem 3: identifying L3

prime sieve criterion:

first step (after Cor 9) w3 — w(qg® — 1)
> assume 20 <wsz < 52; 8.232 x 10% <q < 2.2029 x 1032
> t=w(k)=4; s <ws—4<48; §>0.20068
» g € L3since ¢ >5.7 x 10" > Rg

second step

» assume 15 <ws3 < 19 and g > 850352 : Rg < 672475
third step
» assume w3 = 14 and g > 235631 : R¢ < 193864



next steps
» assume w3 = 13 and g > 67257 : R¢ < 142863
» there are no prime powers g with 67257 < g < 142863
» similarly for 10 < w3 <12

> w3 < 9 GPSC yields upper bounds for g & L3

ws| 9 8 7 6 5 4 3 2

q<‘25456 14849 8160 4131 1958 793 256 64



Modified prime sieve criterion (MPSC)

Write: rad(q"” — 1) = kp1 - - - ps/ where
= core, pi,...,ps, | distinct primes (with / largest)
S

t=w(k), 0= 1—Zi

i=1
Proposition 18 (MPSC)

If q>RM::(n—1)2{

then q € L,

2o(k)(s—1+20) +(1-3) ?
$(k)s —§

Proof. N > N(kpy---ps)+ N(I) — N(1)
and use GPSC (proof) for N(kpy - - ps)

Example (n=3) ¢=1759: Ry <1619 < g < Rg = 1782




Completion of proof of Theorem 3

Theorem
The complement of L3 C {3,4,5,7,9,11,13,31,37} | JS, where S
is a set of 175 prime powers, the largest being 9811

Proof.

Identify g € Q within admissible ranges for g € £3 and use MPSC
L]

Conjecture

L3=0\{3,4,57,9,11,13,31,37}

» verified using MAGMA for prime powers g < 100

> g =97 (€ S) took 84 hours

> to extend search to identify £3 would require g° searches for
each prime power g (largest being ~ 10,000)



Proof of Theorem 2: 73 = 9\ {3,7,9,13,37}

» for each possible “failure” (~ 180 fields) identify one member
of {0 +a:aeclF,}
e.g., for ¢ = p > 3, can assume Tr(0) =0

» use MAGMA to search for a primitive § + a (~ g° searches)
» successful except for g € {3,4,5,7,9,11,13,31,37}

» for g = p, maximum distance from an element 6 with
Tr(6) = 0 to a primitive element is 79 when g = 2731



Quartic extensions

From Corollary 11

g Ly = q<4.694 x10°* and w, < 154
Using the GPSC obtain:
Theorem 19

qg¢ Ly = q<25943 and w, < 12

Conjecture

L4 =0\{2,3,4,5,7,8,9,11,13,17,19, 23,25,27,29,31,32,41, 43,64}
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